[1]
|
Kasper, P., Martin, A., Lang, S., Kütting, F., Goeser, T., Demir, M., et al. (2020) NAFLD and Cardiovascular Diseases: A Clinical Review. Clinical Research in Cardiology, 110, 921-937. https://doi.org/10.1007/s00392-020-01709-7
|
[2]
|
Tanase, D.M., Gosav, E.M., Costea, C.F., Ciocoiu, M., Lacatusu, C.M., Maranduca, M.A., et al. (2020) The Intricate Relationship between Type 2 Diabetes Mellitus (T2DM), Insulin Resistance (IR), and Nonalcoholic Fatty Liver Disease (NAFLD). Journal of Diabetes Research, 2020, Article ID: 3920196. https://doi.org/10.1155/2020/3920196
|
[3]
|
Sohrabi, Y., Reinecke, H. and Godfrey, R. (2021) Altered Cholesterol and Lipid Synthesis Mediates Hyperinflammation in Covid-19. Trends in Endocrinology & Metabolism, 32, 132-134. https://doi.org/10.1016/j.tem.2021.01.001
|
[4]
|
Li, X., Hu, X., Pan, T., Dong, L., Ding, L., Wang, Z., et al. (2021) Kanglexin, a New Anthraquinone Compound, Attenuates Lipid Accumulation by Activating the AMPK/SREBP-2/PCSK9/LDLR Signalling Pathway. Biomedicine & Pharmacotherapy, 133, Article ID: 110802. https://doi.org/10.1016/j.biopha.2020.110802
|
[5]
|
Xue, L., Qi, H., Zhang, H., Ding, L., Huang, Q., Zhao, D., et al. (2020) Targeting Srebp-2-Regulated Mevalonate Metabolism for Cancer Therapy. Frontiers in Oncology, 10, Article No. 1510. https://doi.org/10.3389/fonc.2020.01510
|
[6]
|
Lee, W., Ahn, J.H., Park, H.H., Kim, H.N., Kim, H., Yoo, Y., et al. (2020) Covid-19-Activated SREBP2 Disturbs Cholesterol Biosynthesis and Leads to Cytokine Storm. Signal Transduction and Targeted Therapy, 5, Article No. 186. https://doi.org/10.1038/s41392-020-00292-7
|
[7]
|
Lu, J., Meng, Z., Cheng, B., Liu, M., Tao, S. and Guan, S. (2019) Apigenin Reduces the Excessive Accumulation of Lipids Induced by Palmitic Acid via the AMPK Signaling Pathway in Hepg2 Cells. Experimental and Therapeutic Medicine, 18, 2965-2971. https://doi.org/10.3892/etm.2019.7905
|
[8]
|
Liu, X., Wu, Q., Chen, Z., Yan, G., Lu, Y., Dai, H., et al. (2020) Elevated Triglyceride to High-Density Lipoprotein Cholesterol (TG/HDL-C) Ratio Increased Risk of Hyperuricemia: A 4-Year Cohort Study in China. Endocrine, 68, 71-80. https://doi.org/10.1007/s12020-019-02176-5
|
[9]
|
Baez-Duarte, B.G., Zamora-Gínez, I., González-Duarte, R., et al. (2017) Triglyceride/High-Density Lipoprotein Cholesterol (TG/HDL-C) Index as a Reference Criterion of Risk for Metabolic Syndrome (MetS) and Low Insulin Sensitivity in Apparently Healthy Subjects. Gaceta Médica de México, 153, 152-158.
|
[10]
|
Chen, Z., Hu, H., Chen, M., Luo, X., Yao, W., Liang, Q., et al. (2020) Association of Triglyceride to High-Density Lipoprotein Cholesterol Ratio and Incident of Diabetes Mellitus: A Secondary Retrospective Analysis Based on a Chinese Cohort Study. Lipids in Health and Disease, 19, Article No. 33. https://doi.org/10.1186/s12944-020-01213-x
|
[11]
|
Fan, N., Peng, L., Xia, Z., Zhang, L., Song, Z., Wang, Y., et al. (2019) Triglycerides to High-Density Lipoprotein Cholesterol Ratio as a Surrogate for Nonalcoholic Fatty Liver Disease: A Cross-Sectional Study. Lipids in Health and Disease, 18, Article No. 39. https://doi.org/10.1186/s12944-019-0986-7
|
[12]
|
Xue, J., Wang, Y., Li, B., Yu, S., Wang, A., Wang, W., et al. (2021) Triglycerides to High-Density Lipoprotein Cholesterol Ratio Is Superior to Triglycerides and Other Lipid Ratios as an Indicator of Increased Urinary Albumin-to-Creatinine Ratio in the General Population of China: A Cross-Sectional Study. Lipids in Health and Disease, 20, Article No. 13. https://doi.org/10.1186/s12944-021-01442-8
|
[13]
|
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) (上) [J]. 中国实用内科杂志, 2021, 41(8): 668-695.
|
[14]
|
中华医学会肝病学分会. 代谢相关(非酒精性)脂肪性肝病防治指南(2024 年版) [J]. 中华肝脏病杂志, 2024, 32(5): 418-434.
|
[15]
|
薛芮, 范建高. 代谢相关脂肪性肝病新定义的国际专家共识简介[J]. 临床肝胆病杂志, 2020, 36(6): 1224-1227.
|
[16]
|
孙先丽, 叶玲玲, 孙红娟. 腰高比预测非酒精性脂肪肝的前瞻性研究[J]. 海南医学, 2022, 33(10): 1245-1248.
|
[17]
|
Vallejo-Vaz, A.J., Corral, P., Schreier, L. and Ray, K.K. (2020) Triglycerides and Residual Risk. Current Opinion in Endocrinology, Diabetes & Obesity, 27, 95-103. https://doi.org/10.1097/med.0000000000000530
|
[18]
|
Chapman, M.J., et al. (2011) Triglyceride-Rich Lipoproteins and High-Density Lipoprotein Cholesterol in Patients at High Risk of Cardiovascular Disease: Evidence and Guidance for Management. European Heart Journal, 32, 1345-1361.
|
[19]
|
Oliveros-Montiel, A., Santos-López, G. and Sedeño-Monge, V. (2020) Proteins Involved in Lipid Metabolism as Possible Biomarkers or Predisposing Factors for Non-Alcoholic Fatty Liver Disease. Acta Gastro-Enterologica Belgica, 83, 622-630.
|
[20]
|
Busik, J.V. (2021) Lipid Metabolism Dysregulation in Diabetic Retinopathy. Journal of Lipid Research, 62, Article ID: 100017. https://doi.org/10.1194/jlr.tr120000981
|
[21]
|
Charles, K.N., Shackelford, J.E., Faust, P.L., Fliesler, S.J., Stangl, H. and Kovacs, W.J. (2020) Functional Peroxisomes Are Essential for Efficient Cholesterol Sensing and Synthesis. Frontiers in Cell and Developmental Biology, 8, Article ID: 560266. https://doi.org/10.3389/fcell.2020.560266
|
[22]
|
Mato, J.M., Alonso, C., Noureddin, M. and Lu, S.C. (2019) Biomarkers and Subtypes of Deranged Lipid Metabolism in Non-Alcoholic Fatty Liver Disease. World Journal of Gastroenterology, 25, 3009-3020. https://doi.org/10.3748/wjg.v25.i24.3009
|
[23]
|
Yang, Y., Zhang, W., Wu, X., Wu, J., Sun, C., Luo, F., et al. (2021) Systemic Overexpression of GDF5 in Adipocytes but Not Hepatocytes Alleviates High-Fat Diet-Induced Nonalcoholic Fatty Liver in Mice. Canadian Journal of Gastroenterology and Hepatology, 2021, Article ID: 8894685. https://doi.org/10.1155/2021/8894685
|
[24]
|
Chao, H., Chao, S., Lin, H., Ku, H. and Cheng, C. (2019) Homeostasis of Glucose and Lipid in Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 20, Article No. 298. https://doi.org/10.3390/ijms20020298
|
[25]
|
Luo, N., Yang, C., Zhu, Y., Chen, Q. and Zhang, B. (2021) Diosmetin Ameliorates Nonalcoholic Steatohepatitis through Modulating Lipogenesis and Inflammatory Response in a Stat1/Cxcl10-Dependent Manner. Journal of Agricultural and Food Chemistry, 69, 655-667. https://doi.org/10.1021/acs.jafc.0c06652
|
[26]
|
Tan, X., Liu, Y., Long, J., Chen, S., Liao, G., Wu, S., et al. (2019) Trimethylamine n‐Oxide Aggravates Liver Steatosis through Modulation of Bile Acid Metabolism and Inhibition of Farnesoid X Receptor Signaling in Nonalcoholic Fatty Liver Disease. Molecular Nutrition & Food Research, 63, e1900257. https://doi.org/10.1002/mnfr.201900257
|