|
[1]
|
Raghu, G., Remy-Jardin, M., Richeldi, L., et al. (2022) Idiopathic Pulmonary Fibrosis (an Update) and Progressive Pulmonary Fibrosis in Adults: An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. American Journal of Respiratory and Critical Care Medicine, 205, e18-e47.
|
|
[2]
|
Rajan, S.K., Cottin, V., Dhar, R., Danoff, S., Flaherty, K.R., Brown, K.K., et al. (2022) Progressive Pulmonary Fibrosis: An Expert Group Consensus Statement. European Respiratory Journal, 61, Article ID: 2103187. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
邹如意, 蔡后荣. 进展性纤维化性间质性肺疾病: 新概念与新机遇[J]. 中华结核和呼吸杂志, 2021, 44(6): 559-561.
|
|
[4]
|
Kim, K., Lee, J. and Jo, Y.S. (2023) Factors for Progressive Pulmonary Fibrosis in Connective Tissue Disease-Related Interstitial Lung Disease. Therapeutic Advances in Respiratory Disease, 17, 1-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Spagnolo, P., Distler, O., Ryerson, C.J., Tzouvelekis, A., Lee, J.S., Bonella, F., et al. (2021) Mechanisms of Progressive Fibrosis in Connective Tissue Disease (CTD)-Associated Interstitial Lung Diseases (ILDs). Annals of the Rheumatic Diseases, 80, 143-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
孙宇新, 黄慧. 尼达尼布治疗进展性纤维化间质性肺疾病INBUILD试验的亚组分析[J]. 中华结核和呼吸杂志, 2020(6): 552.
|
|
[7]
|
Kurosaki, F., Bando, M., Nakayama, M., Mato, N., Nakaya, T., Yamasawa, H., et al. (2014) Clinical Features of Pulmonary Aspergillosis Associated with Interstitial Pneumonia. Internal Medicine, 53, 1299-1306. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ullmann, A.J., Aguado, J.M., Arikan-Akdagli, S., Denning, D.W., Groll, A.H., Lagrou, K., et al. (2018) Diagnosis and Management of Aspergillus Diseases: Executive Summary of the 2017 ESCMID-ECMM-ERS Guideline. Clinical Microbiology and Infection, 24, e1-e38. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
丁百兴, 王明贵. 艾沙康唑和伏立康唑[J]. 中国感染与化疗杂志, 2017, 17(1): 51.
|
|
[10]
|
Chen, X., Lin, S., Jin, Q., Zhang, L., Jiang, W., Lu, X., et al. (2024) Prevalence, Risk Factors, and Mortality of Invasive Pulmonary Aspergillosis in Patients with Anti-MDA5+ Dermatomyositis: A Retrospective Study in China. Journal of Inflammation Research, 17, 3247-3257. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Sokolove, J. (2021) Lung Inflammation, NETosis, and the Pulmonary Initiation of Anti-Citrullinated Protein Antibody Response: What Came First, the Chicken or the Egg? Arthritis & Rheumatology, 74, 10-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Okamoto, Y., Devoe, S., Seto, N., Minarchick, V., Wilson, T., Rothfuss, H.M., et al. (2021) Association of Sputum Neutrophil Extracellular Trap Subsets with Iga Anti-Citrullinated Protein Antibodies in Subjects at Risk for Rheumatoid Arthritis. Arthritis & Rheumatology, 74, 38-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Chang, S.H., Park, Y., McDermott, G.C., Paudel, M.L., Hayashi, K., Ha, Y., et al. (2025) Serum Biomarkers of Pulmonary Damage and Risk for Progression of Rheumatoid Arthritis-Associated Interstitial Lung Disease. The Journal of Rheumatology, 52. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Luppi, F., Sebastiani, M., Salvarani, C., Bendstrup, E. and Manfredi, A. (2021) Acute Exacerbation of Interstitial Lung Disease Associated with Rheumatic Disease. Nature Reviews Rheumatology, 18, 85-96. [Google Scholar] [CrossRef] [PubMed]
|