[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834
|
[2]
|
姜潇. 新型结直肠癌生物标志物在诊断中的作用[D]: [博士学位论文]. 大连: 大连理工大学, 2019.
|
[3]
|
张倩. 激活突变SHP2E76K酪氨酸磷酸酶对结直肠癌发生发展的影响及其分子机制研究[D]: [博士学位论文]. 合肥: 安徽医科大学, 2018.
|
[4]
|
漆家康. 结直肠癌患者手术标本中AIM2表达情况及其与临床病理资料关系的研究[D]: [硕士学位论文]. 泸州: 西南医科大学, 2018.
|
[5]
|
Mojsilovic, S., Mojsilovic, S.S., Bjelica, S. and Santibanez, J.F. (2021) Transforming Growth Factor‐Beta1 and Myeloid‐Derived Suppressor Cells: A Cancerous Partnership. Developmental Dynamics, 251, 85-104. https://doi.org/10.1002/dvdy.339
|
[6]
|
Waldner, M.J. and Neurath, M.F. (2023) TGFβ and the Tumor Microenvironment in Colorectal Cancer. Cells, 12, Article 1139. https://doi.org/10.3390/cells12081139
|
[7]
|
Zhang, H., Li, Z., Wang, L., Tian, G., Tian, J., Yang, Z., et al. (2017) Critical Role of Myeloid-Derived Suppressor Cells in Tumor-Induced Liver Immune Suppression through Inhibition of NKT Cell Function. Frontiers in Immunology, 8, Article 129. https://doi.org/10.3389/fimmu.2017.00129
|
[8]
|
Shang, A., Gu, C., Wang, W., Wang, X., Sun, J., Zeng, B., et al. (2020) Exosomal circPACRGL Promotes Progression of Colorectal Cancer via the miR-142-3p/miR-506-3p-TGF-β1 Axis. Molecular Cancer, 19, Article No. 117. https://doi.org/10.1186/s12943-020-01235-0
|
[9]
|
Lan, X., Wei, D., Fang, L., Wu, X. and Wu, B. (2024) Tumor-associated Macrophage-Derived TGF-β1 Activates GLI2 via the Smad2/3 Signaling Pathway to Affect Cisplatin Resistance in Lung Adenocarcinoma. Technology in Cancer Research & Treatment, 23. https://doi.org/10.1177/15330338241274337
|
[10]
|
Bodogai, M., Moritoh, K., Lee-Chang, C., Hollander, C.M., Sherman-Baust, C.A., Wersto, R.P., et al. (2015) Immunosuppressive and Prometastatic Functions of Myeloid-Derived Suppressive Cells Rely Upon Education from Tumor-Associated B Cells. Cancer Research, 75, 3456-3465. https://doi.org/10.1158/0008-5472.can-14-3077
|
[11]
|
Ozawa, Y., Koh, Y., Shibaki, R., Harutani, Y., Akamatsu, H., Hayata, A., et al. (2024) Uncovering the Role of Tumor cGAS Expression in Predicting Response to PD-1/L1 Inhibitors in Non-Small Cell Lung Cancer. Cancer Immunology, Immunotherapy, 74, Article No. 7. https://doi.org/10.1007/s00262-024-03861-9
|
[12]
|
Fu, J., Li, G., Li, X., Song, S., Cheng, L., Rui, B., et al. (2024) Gut Commensal Alistipes as a Potential Pathogenic Factor in Colorectal Cancer. Discover Oncology, 15, Article No. 473. https://doi.org/10.1007/s12672-024-01393-3
|
[13]
|
Mohammed, O.A., Youssef, M.E., Hamad, R.S., Abdel-Reheim, M.A., Saleh, L.A., Alamri, M.M.S., et al. (2024) Unlocking Vinpocetine’s Oncostatic Potential in Early-Stage Hepatocellular Carcinoma: A New Approach to Oncogenic Modulation by a Nootropic Drug. PLOS ONE, 19, e0312572. https://doi.org/10.1371/journal.pone.0312572
|
[14]
|
Jamialahmadi, H., Nazari, S.E., TanzadehPanah, H., Saburi, E., Asgharzadeh, F., Khojasteh-Leylakoohi, F., et al. (2023) Targeting Transforming Growth Factor Beta (TGF-β) Using Pirfenidone, a Potential Repurposing Therapeutic Strategy in Colorectal Cancer. Scientific Reports, 13, Article No. 14357. https://doi.org/10.1038/s41598-023-41550-2
|
[15]
|
Sanchez-Pino, M.D., Dean, M.J. and Ochoa, A.C. (2021) Myeloid-Derived Suppressor Cells (MDSC): When Good Intentions Go Awry. Cellular Immunology, 362, Article 104302. https://doi.org/10.1016/j.cellimm.2021.104302
|
[16]
|
Bronte, V., Brandau, S., Chen, S., Colombo, M.P., Frey, A.B., Greten, T.F., et al. (2016) Recommendations for Myeloid-Derived Suppressor Cell Nomenclature and Characterization Standards. Nature Communications, 7, Article No. 12150. https://doi.org/10.1038/ncomms12150
|
[17]
|
孙健, 张继明. 髓源性抑制细胞研究进展[J]. 微生物与感染, 2022, 17(6): 386-394.
|
[18]
|
Wu, Y., Yi, M., Niu, M., Mei, Q. and Wu, K. (2022) Myeloid-Derived Suppressor Cells: An Emerging Target for Anticancer Immunotherapy. Molecular Cancer, 21, Article No. 184. https://doi.org/10.1186/s12943-022-01657-y
|
[19]
|
胡桃, 冯正权. MDSCs与免疫逃逸及中医药治疗的研究进展[J]. 江西中医药大学学报, 2015, 27(3): 117-120, 124.
|
[20]
|
Zeng, W., Liu, H., Mao, Y., Jiang, S., Yi, H., Zhang, Z., et al. (2024) Myeloid-Derived Suppressor Cells: Key Immunosuppressive Regulators and Therapeutic Targets in Colorectal Cancer (Review). International Journal of Oncology, 65, Article No. 85. https://doi.org/10.3892/ijo.2024.5673
|
[21]
|
邓婉萍, 孙君重. MDSCs的功能研究新发现[J]. 临床肿瘤学杂志, 2015, 20(5): 474-477.
|
[22]
|
Yang, Z., Zuo, H., Hou, Y., Zhou, S., Zhang, Y., Yang, W., et al. (2024) Dual Oxygen‐Supply Immunosuppression‐Inhibiting Nanomedicine to Avoid the Intratumoral Recruitment of Myeloid‐Derived Suppressor Cells. Small, 20, Article ID: 2406860. https://doi.org/10.1002/smll.202406860
|
[23]
|
漆家康. 结直肠癌患者手术标本中AIM2表达情况及其与临床病理资料关系的研究[D]: [硕士学位论文]. 泸州: 西南医科大学, 2018.
|
[24]
|
Deng, S., Cheng, D., Wang, J., Gu, J., Xue, Y., Jiang, Z., et al. (2023) MYL9 Expressed in Cancer-Associated Fibroblasts Regulate the Immune Microenvironment of Colorectal Cancer and Promotes Tumor Progression in an Autocrine Manner. Journal of Experimental & Clinical Cancer Research, 42, Article No. 294. https://doi.org/10.1186/s13046-023-02863-2
|
[25]
|
Tao, B., Yi, C., Ma, Y., Li, Y., Zhang, B., Geng, Y., et al. (2023) A Novel TGF-β-Related Signature for Predicting Prognosis, Tumor Microenvironment, and Therapeutic Response in Colorectal Cancer. Biochemical Genetics, 62, 2999-3029. https://doi.org/10.1007/s10528-023-10591-7
|
[26]
|
Fu, M., Li, Q., Qian, H., Min, X., Yang, H., Liu, Z., et al. (2024) Exendin-4 Intervention Attenuates Atherosclerosis Severity by Modulating Myeloid-Derived Suppressor Cells and Inflammatory Cytokines in ApoE-/- Mice. International Immunopharmacology, 140, Article 112844. https://doi.org/10.1016/j.intimp.2024.112844
|
[27]
|
陈雪, 王成磊, 杨冰炜, 等. 芍药汤调控MDSCs相关免疫抑制微环境防治慢性肠炎癌变的效应机制[J]. 中国实验方剂学杂志, 2025, 31(1): 10-19.
|
[28]
|
褚雪镭. 基于肠道菌群-胆汁酸-免疫轴探讨养肝益中方防治结直肠癌肝转移的作用机制[D]: [博士学位论文]. 北京: 中国中医科学院, 2024.
|
[29]
|
Liu, A., Yu, C., Qiu, C., Wu, Q., Huang, C., Li, X., et al. (2023) PRMT5 Methylating SMAD4 Activates TGF-β Signaling and Promotes Colorectal Cancer Metastasis. Oncogene, 42, 1572-1584. https://doi.org/10.1038/s41388-023-02674-x
|
[30]
|
赵安东, 白克运, 尹悦. 十全大补汤联合FOLFOX方案治疗晚期结直肠癌术后的疗效及对患者血清TGF-β1、IL-17水平的影响[J]. 山东中医杂志, 2017, 36(8): 644-646.
|
[31]
|
Calon, A., Espinet, E., Palomo-Ponce, S., Tauriello, D.V.F., Iglesias, M., Céspedes, M.V., et al. (2012) Dependency of Colorectal Cancer on a TGF-β-Driven Program in Stromal Cells for Metastasis Initiation. Cancer Cell, 22, 571-584. https://doi.org/10.1016/j.ccr.2012.08.013
|
[32]
|
Lu, J., Kornmann, M. and Traub, B. (2023) Role of Epithelial to Mesenchymal Transition in Colorectal Cancer. International Journal of Molecular Sciences, 24, Article 14815. https://doi.org/10.3390/ijms241914815
|
[33]
|
Minini, M. and Fouassier, L. (2023) Cancer-Associated Fibroblasts and Extracellular Matrix: Therapeutical Strategies for Modulating the Cholangiocarcinoma Microenvironment. Current Oncology, 30, 4185-4196. https://doi.org/10.3390/curroncol30040319
|
[34]
|
张小艺. TGF-β1、PDGF-B在TLR4信号通路中作用的研究[D]: [硕士学位论文]. 贵阳: 贵州大学, 2015.
|
[35]
|
Fasano, M., Pirozzi, M., Miceli, C.C., Cocule, M., Caraglia, M., Boccellino, M., et al. (2024) TGF-β Modulated Pathways in Colorectal Cancer: New Potential Therapeutic Opportunities. International Journal of Molecular Sciences, 25, Article 7400. https://doi.org/10.3390/ijms25137400
|
[36]
|
Liu, C., Zhang, W., Wang, J., Si, T. and Xing, W. (2021) Tumor‐Associated Macrophage‐Derived Transforming Growth Factor‐β Promotes Colorectal Cancer Progression through HIF1‐TRIB3 Signaling. Cancer Science, 112, 4198-4207. https://doi.org/10.1111/cas.15101
|
[37]
|
Rodríguez‐García, A., Samsó, P., Fontova, P., Simon‐Molas, H., Manzano, A., Castaño, E., et al. (2017) TGF‐β1 Targets Smad, p38 MAPK, and PI3K/Akt Signaling Pathways to Induce PFKFB3 Gene Expression and Glycolysis in Glioblastoma Cells. The FEBS Journal, 284, 3437-3454. https://doi.org/10.1111/febs.14201
|
[38]
|
Ungefroren, H., Witte, D. and Lehnert, H. (2017) The Role of Small GTPases of the Rho/Rac Family in TGF‐β‐Induced EMT and Cell Motility in Cancer. Developmental Dynamics, 247, 451-461. https://doi.org/10.1002/dvdy.24505
|
[39]
|
MacDonald, W.J., Verschleiser, B., Carlsen, L., Huntington, K.E., Zhou, L. and El-Deiry, W.S. (2023) Broad Spectrum Integrin Inhibitor GLPG-0187 Bypasses Immune Evasion in Colorectal Cancer by TGF-β Signaling Mediated Downregulation of PD-L1. American Journal of Cancer Research, 13, 2938-2947.
|
[40]
|
Thomas, D.A. and Massagué, J. (2005) TGF-β Directly Targets Cytotoxic T Cell Functions during Tumor Evasion of Immune Surveillance. Cancer Cell, 8, 369-380. https://doi.org/10.1016/j.ccr.2005.10.012
|
[41]
|
Gorelik, L. and Flavell, R.A. (2002) Transforming Growth Factor-β in T-Cell Biology. Nature Reviews Immunology, 2, 46-53. https://doi.org/10.1038/nri704
|
[42]
|
Shin, S.H., Lee, Y.E., Yoon, H., Yuk, C.M., An, J.Y., Seo, M., et al. (2025) An Innovative Strategy Harnessing Self-Activating CAR-NK Cells to Mitigate TGF-β1-Driven Immune Suppression. Biomaterials, 314, Article 122888. https://doi.org/10.1016/j.biomaterials.2024.122888
|
[43]
|
Guo, Y., Hu, C., Cai, K., Long, G., Cai, D., Yu, Z., et al. (2024) KRAS Inhibitors May Prevent Colorectal Cancer Metachronous Metastasis by Suppressing TGF-β Mediated Epithelial-Mesenchymal Transition. Molecular Medicine Reports, 31, Article No. 24. https://doi.org/10.3892/mmr.2024.13389
|
[44]
|
邵建富, 李兴海, 马文杰, 等. 胃癌患者组织中TGF-α、TGF-β1和miR-302a的表达及其与胃癌的相关性研究[J]. 现代消化及介入诊疗, 2020, 25(5): 629-633.
|
[45]
|
Batlle, E. and Massagué, J. (2019) Transforming Growth Factor-β Signaling in Immunity and Cancer. Immunity, 50, 924-940. https://doi.org/10.1016/j.immuni.2019.03.024
|
[46]
|
Lee, C., Lee, W., Cho, S. and Park, S. (2018) Characterization of Multiple Cytokine Combinations and TGF-β on Differentiation and Functions of Myeloid-Derived Suppressor Cells. International Journal of Molecular Sciences, 19, Article 869. https://doi.org/10.3390/ijms19030869
|
[47]
|
吴端. 体内外研究18β-甘草次酸对MDSCs免疫抑制功能的影响[D]: [硕士学位论文]. 厦门: 厦门大学, 2014.
|
[48]
|
Ruixin, S., Yifan, L., Yansha, S., Min, Z., Yiwei, D., Xiaoli, H., et al. (2024) Dual Targeting Chimeric Antigen Receptor Cells Enhance Antitumour Activity by Overcoming T Cell Exhaustion in Pancreatic Cancer. British Journal of Pharmacology, 181, 4628-4646. https://doi.org/10.1111/bph.16505
|
[49]
|
Lasser, S.A., Ozbay Kurt, F.G., Arkhypov, I., Utikal, J. and Umansky, V. (2024) Myeloid-Derived Suppressor Cells in Cancer and Cancer Therapy. Nature Reviews Clinical Oncology, 21, 147-164. https://doi.org/10.1038/s41571-023-00846-y
|
[50]
|
吕川. MSC旁分泌TGF-β通过ERK1/2信号通路诱导黑色素瘤EMT的作用研究[D]: [博士学位论文]. 上海: 中国人民解放军海军军医大学, 2020.
|
[51]
|
Marvel, D. and Gabrilovich, D.I. (2015) Myeloid-Derived Suppressor Cells in the Tumor Microenvironment: Expect the Unexpected. Journal of Clinical Investigation, 125, 3356-3364. https://doi.org/10.1172/jci80005
|
[52]
|
Kim, B.-G., Malek, E., Choi, S.H., Ignatz-Hoover, J.J. and Driscoll, J.J. (2021) Novel Therapies Emerging in Oncology to Target the TGF-β Pathway. Journal of Hematology & Oncology, 14, Article No. 55. https://doi.org/10.1186/s13045-021-01053-x
|
[53]
|
Jayaraman, P., Parikh, F., Newton, J.M., Hanoteau, A., Rivas, C., Krupar, R., et al. (2018) TGF-β1 Programmed Myeloid-Derived Suppressor Cells (MDSC) Acquire Immune-Stimulating and Tumor Killing Activity Capable of Rejecting Established Tumors in Combination with Radiotherapy. OncoImmunology, 7, e1490853. https://doi.org/10.1080/2162402x.2018.1490853
|
[54]
|
Zhang, F., Dong, W., Zeng, W., Zhang, L., Zhang, C., Qiu, Y., et al. (2016) Naringenin Prevents TGF-β1 Secretion from Breast Cancer and Suppresses Pulmonary Metastasis by Inhibiting PKC Activation. Breast Cancer Research, 18, Article No. 38. https://doi.org/10.1186/s13058-016-0698-0
|
[55]
|
杨萍芬, 牛艳芬. TGF-β1/Smad信号通路在组织纤维化中的研究进展[J]. 国际药学研究杂志, 2019, 46(10): 738-744.
|
[56]
|
Yi, Q., Zhu, G., Zhu, W., Wang, J., Ouyang, X., Yang, K., et al. (2024) Oncogenic Mechanisms of COL10A1 in Cancer and Clinical Challenges (Review). Oncology Reports, 52, Article No. 162. https://doi.org/10.3892/or.2024.8821
|
[57]
|
Yang, Z., Guo, J., Weng, L., Tang, W., Jin, S. and Ma, W. (2020) Myeloid-Derived Suppressor Cells—New and Exciting Players in Lung Cancer. Journal of Hematology & Oncology, 13, Article No. 10. https://doi.org/10.1186/s13045-020-0843-1
|
[58]
|
Sánchez-León, M.L., Jiménez-Cortegana, C., Silva Romeiro, S., Garnacho, C., de la Cruz-Merino, L., García-Domínguez, D.J., et al. (2023) Defining the Emergence of New Immunotherapy Approaches in Breast Cancer: Role of Myeloid-Derived Suppressor Cells. International Journal of Molecular Sciences, 24, Article 5208. https://doi.org/10.3390/ijms24065208
|
[59]
|
Shojaei, F., Wu, X., Malik, A.K., Zhong, C., Baldwin, M.E., Schanz, S., et al. (2007) Tumor Refractoriness to Anti-VEGF Treatment Is Mediated by CD11b+Gr1+ Myeloid Cells. Nature Biotechnology, 25, 911-920. https://doi.org/10.1038/nbt1323
|
[60]
|
Mehta, A.R. and Armstrong, A.J. (2015) Tasquinimod in the Treatment of Castrate-Resistant Prostate Cancer—Current Status and Future Prospects. Therapeutic Advances in Urology, 8, 9-18. https://doi.org/10.1177/1756287215603558
|
[61]
|
Yuan, B., Clowers, M.J., Velasco, W.V., Peng, S., Peng, Q., Shi, Y., et al. (2022) Targeting IL-1β as an Immunopreventive and Therapeutic Modality for K-Ras-Mutant Lung Cancer. JCI Insight, 7, e157788. https://doi.org/10.1172/jci.insight.157788
|
[62]
|
Flores-Toro, J.A., Luo, D., Gopinath, A., Sarkisian, M.R., Campbell, J.J., Charo, I.F., et al. (2019) CCR2 Inhibition Reduces Tumor Myeloid Cells and Unmasks a Checkpoint Inhibitor Effect to Slow Progression of Resistant Murine Gliomas. Proceedings of the National Academy of Sciences, 117, 1129-1138. https://doi.org/10.1073/pnas.1910856117
|
[63]
|
Chiu, D.K., Tse, A.P., Xu, I.M., Di Cui, J., Lai, R.K., Li, L.L., et al. (2017) Hypoxia Inducible Factor HIF-1 Promotes Myeloid-Derived Suppressor Cells Accumulation through ENTPD2/CD39L1 in Hepatocellular Carcinoma. Nature Communications, 8, Article No. 517. https://doi.org/10.1038/s41467-017-00530-7
|
[64]
|
Zahran, A.M., Moeen, S.M., Thabet, A.F., Rayan, A., Abdel-Rahim, M.H., Mohamed, W.M.Y., et al. (2020) Monocytic Myeloid-Derived Suppressor Cells in Chronic Lymphocytic Leukemia Patients: A Single Center Experience. Leukemia & Lymphoma, 61, 1645-1652. https://doi.org/10.1080/10428194.2020.1728747
|
[65]
|
O’Mahony, C., Clooney, A., Clarke, S.F., Aguilera, M., Gavin, A., Simnica, D., et al. (2023) Dietary-Induced Bacterial Metabolites Reduce Inflammation and Inflammation-Associated Cancer via Vitamin D Pathway. International Journal of Molecular Sciences, 24, Article 1864. https://doi.org/10.3390/ijms24031864
|
[66]
|
Mirza, N., Fishman, M., Fricke, I., Dunn, M., Neuger, A.M., Frost, T.J., et al. (2006) All-trans-Retinoic Acid Improves Differentiation of Myeloid Cells and Immune Response in Cancer Patients. Cancer Research, 66, 9299-9307. https://doi.org/10.1158/0008-5472.can-06-1690
|
[67]
|
Lu, P., Yu, B. and Xu, J. (2012) Cucurbitacin B Regulates Immature Myeloid Cell Differentiation and Enhances Antitumor Immunity in Patients with Lung Cancer. Cancer Biotherapy and Radiopharmaceuticals, 27, 495-503. https://doi.org/10.1089/cbr.2012.1219
|
[68]
|
Roberts, L.M., Perez, M.J., Balogh, K.N., Mingledorff, G., Cross, J.V. and Munson, J.M. (2022) Myeloid Derived Suppressor Cells Migrate in Response to Flow and Lymphatic Endothelial Cell Interaction in the Breast Tumor Microenvironment. Cancers, 14, Article 3008. https://doi.org/10.3390/cancers14123008
|
[69]
|
Li, F., Zhao, Y., Wei, L., Li, S. and Liu, J. (2018) Tumor-Infiltrating Treg, MDSC, and IDO Expression Associated with Outcomes of Neoadjuvant Chemotherapy of Breast Cancer. Cancer Biology & Therapy, 19, 695-705. https://doi.org/10.1080/15384047.2018.1450116
|
[70]
|
Christmas, B.J., Rafie, C.I., Hopkins, A.C., Scott, B.A., Ma, H.S., Cruz, K.A., et al. (2018) Entinostat Converts Immune-Resistant Breast and Pancreatic Cancers into Checkpoint-Responsive Tumors by Reprogramming Tumor-Infiltrating Mdscs. Cancer Immunology Research, 6, 1561-1577. https://doi.org/10.1158/2326-6066.cir-18-0070
|
[71]
|
Orillion, A., Hashimoto, A., Damayanti, N., Shen, L., Adelaiye-Ogala, R., Arisa, S., et al. (2017) Entinostat Neutralizes Myeloid-Derived Suppressor Cells and Enhances the Antitumor Effect of PD-1 Inhibition in Murine Models of Lung and Renal Cell Carcinoma. Clinical Cancer Research, 23, 5187-5201. https://doi.org/10.1158/1078-0432.ccr-17-0741
|
[72]
|
Tang, Y., Zhou, C., Li, Q., Cheng, X., Huang, T., Li, F., et al. (2022) Targeting Depletion of Myeloid-Derived Suppressor Cells Potentiates PD-L1 Blockade Efficacy in Gastric and Colon Cancers. OncoImmunology, 11, Article 2131084. https://doi.org/10.1080/2162402x.2022.2131084
|
[73]
|
Kim, R., Hashimoto, A., Markosyan, N., Tyurin, V.A., Tyurina, Y.Y., Kar, G., et al. (2022) Ferroptosis of Tumour Neutrophils Causes Immune Suppression in Cancer. Nature, 612, 338-346. https://doi.org/10.1038/s41586-022-05443-0
|
[74]
|
Zhao, Y., Lian, J., Lan, Z., Zou, K., Wang, W. and Yu, G. (2021) Ferroptosis Promotes Anti‐Tumor Immune Response by Inducing Immunogenic Exposure in Hnscc. Oral Diseases, 29, 933-941. https://doi.org/10.1111/odi.14077
|
[75]
|
Vincent, J., Mignot, G., Chalmin, F., Ladoire, S., Bruchard, M., Chevriaux, A., et al. (2010) 5-Fluorouracil Selectively Kills Tumor-Associated Myeloid-Derived Suppressor Cells Resulting in Enhanced T Cell-Dependent Antitumor Immunity. Cancer Research, 70, 3052-3061. https://doi.org/10.1158/0008-5472.can-09-3690
|
[76]
|
Ko, J.S., Zea, A.H., Rini, B.I., Ireland, J.L., Elson, P., Cohen, P., et al. (2009) Sunitinib Mediates Reversal of Myeloid-Derived Suppressor Cell Accumulation in Renal Cell Carcinoma Patients. Clinical Cancer Research, 15, 2148-2157. https://doi.org/10.1158/1078-0432.ccr-08-1332
|
[77]
|
Xu, H., Russell, S.N., Steiner, K., O’Neill, E. and Jones, K.I. (2024) Targeting PI3K-Gamma in Myeloid Driven Tumour Immune Suppression: A Systematic Review and Meta-Analysis of the Preclinical Literature. Cancer Immunology, Immunotherapy, 73, Article No. 204. https://doi.org/10.1007/s00262-024-03779-2
|
[78]
|
Qin, H., Lerman, B., Sakamaki, I., Wei, G., Cha, S.C., Rao, S.S., et al. (2014) Generation of a New Therapeutic Peptide That Depletes Myeloid-Derived Suppressor Cells in Tumor-Bearing Mice. Nature Medicine, 20, 676-681. https://doi.org/10.1038/nm.3560
|
[79]
|
Wang, H., Liu, R., Yu, Y., Xue, H., Shen, R., Zhang, Y. and Ding, J. (2025) Effects of Cell Shape and Nucleus Shape on Epithelial-Mesenchymal Transition Revealed Using Chimeric Micropatterns. Biomaterials, 317, Article 123013. https://doi.org/10.1016/j.biomaterials.2024.123013
|
[80]
|
Deb, V.K., Chauhan, N. and Jain, U. (2025) Deciphering TGF-β1’s Role in Drug Resistance and Leveraging Plant Bioactives for Cancer Therapy. European Journal of Pharmacology, 988, Article 177218. https://doi.org/10.1016/j.ejphar.2024.177218
|
[81]
|
Oft, M., Heider, K. and Beug, H. (1998) TGFβ Signaling Is Necessary for Carcinoma Cell Invasiveness and Metastasis. Current Biology, 8, 1243-1252. https://doi.org/10.1016/s0960-9822(07)00533-7
|
[82]
|
Tian, Y., Gao, X., Yang, X., Chen, S. and Ren, Y. (2024) VEGFA Contributes to Tumor Property of Glioblastoma Cells by Promoting Differentiation of Myeloid-Derived Suppressor Cells. BMC Cancer, 24, Article No. 1040. https://doi.org/10.1186/s12885-024-12803-8
|
[83]
|
Bu, M.T., Chandrasekhar, P., Ding, L. and Hugo, W. (2022) The Roles of TGF-β and VEGF Pathways in the Suppression of Antitumor Immunity in Melanoma and Other Solid Tumors. Pharmacology & Therapeutics, 240, Article 108211. https://doi.org/10.1016/j.pharmthera.2022.108211
|
[84]
|
Dahmani, A. and Delisle, J. (2018) TGF-β in T Cell Biology: Implications for Cancer Immunotherapy. Cancers, 10, Article 194. https://doi.org/10.3390/cancers10060194
|
[85]
|
Tolcher, A.W., Berlin, J.D., Cosaert, J., Kauh, J., Chan, E., Piha-Paul, S.A., et al. (2017) A Phase 1 Study of Anti-TGFβ Receptor Type-II Monoclonal Antibody LY3022859 in Patients with Advanced Solid Tumors. Cancer Chemotherapy and Pharmacology, 79, 673-680. https://doi.org/10.1007/s00280-017-3245-5
|
[86]
|
Hu, Z., Gerseny, H., Zhang, Z., Chen, Y., Berg, A., Zhang, Z., et al. (2011) Oncolytic Adenovirus Expressing Soluble TGFβ Receptor II-Fc-Mediated Inhibition of Established Bone Metastases: A Safe and Effective Systemic Therapeutic Approach for Breast Cancer. Molecular Therapy, 19, 1609-1618. https://doi.org/10.1038/mt.2011.114
|
[87]
|
Lee, J.D., Hempel, N., Lee, N.Y. and Blobe, G.C. (2009) The Type III TGF-β Receptor Suppresses Breast Cancer Progression through GIPC-Mediated Inhibition of TGF-β Signaling. Carcinogenesis, 31, 175-183. https://doi.org/10.1093/carcin/bgp271
|
[88]
|
Hau, P., Jachimczak, P., Schlingensiepen, R., Schulmeyer, F., Jauch, T., Steinbrecher, A., et al. (2007) Inhibition of TGF-β2 with AP 12009 in Recurrent Malignant Gliomas: From Preclinical to Phase I/II Studies. Oligonucleotides, 17, 201-212. https://doi.org/10.1089/oli.2006.0053
|
[89]
|
Keedy, V.L., Bauer, T.M., Clarke, J.M., Hurwitz, H., Baek, I., Ha, I., et al. (2018) Association of TGF-β Responsive Signature with Anti-Tumor Effect of Vactosertib, a Potent, Oral TGF-β Receptor Type I (TGFBRI) Inhibitor in Patients with Advanced Solid Tumors. Journal of Clinical Oncology, 36, 3031-3031. https://doi.org/10.1200/jco.2018.36.15_suppl.3031
|
[90]
|
Yap, T.A., Vieito, M., Baldini, C., Sepúlveda-Sánchez, J.M., Kondo, S., Simonelli, M., et al. (2021) First-in-Human Phase I Study of a Next-Generation, Oral, TGFβ Receptor 1 Inhibitor, LY3200882, in Patients with Advanced Cancer. Clinical Cancer Research, 27, 6666-6676. https://doi.org/10.1158/1078-0432.ccr-21-1504
|
[91]
|
Ciardiello, D., Elez, E., Tabernero, J. and Seoane, J. (2020) Clinical Development of Therapies Targeting TGFβ: Current Knowledge and Future Perspectives. Annals of Oncology, 31, 1336-1349. https://doi.org/10.1016/j.annonc.2020.07.009
|
[92]
|
Lind, H., Gameiro, S.R., Jochems, C., Donahue, R.N., Strauss, J., Gulley, J.L., et al. (2020) Dual Targeting of TGF-β and PD-L1 via a Bifunctional Anti-PD-L1/TGF-βRII Agent: Status of Preclinical and Clinical Advances. Journal for ImmunoTherapy of Cancer, 8, e000433. https://doi.org/10.1136/jitc-2019-000433
|
[93]
|
Chang, W., Ragazzi, E., Liu, P. and Wu, S. (2020) Effective Block by Pirfenidone, an Antifibrotic Pyridone Compound (5-Methyl-1-Phenylpyridin-2[H-1]-One), on Hyperpolarization-Activated Cation Current: An Additional but Distinctive Target. European Journal of Pharmacology, 882, Article 173237. https://doi.org/10.1016/j.ejphar.2020.173237
|
[94]
|
Dione, M.N., Zhang, Q., Shang, S. and Lu, X. (2024) Transcriptomic Analysis of Blood Collagen-Induced Arthritis Mice Exposed to 0.1 THz Reveals Inhibition of Genes and Pathways Involved in Rheumatoid Arthritis. International Journal of Molecular Sciences, 25, Article 12812. https://doi.org/10.3390/ijms252312812
|
[95]
|
Wu, Q., Miao, X., Zhang, J., Xiang, L., Li, X., Bao, X., et al. (2021) Astrocytic YAP Protects the Optic Nerve and Retina in an Experimental Autoimmune Encephalomyelitis Model through TGF-β Signaling. Theranostics, 11, 8480-8499. https://doi.org/10.7150/thno.60031
|
[96]
|
Wu, B., Zhang, S., Guo, Z., Bi, Y., Zhou, M., Li, P., et al. (2021) The TGF-β Superfamily Cytokine Activin-A Is Induced during Autoimmune Neuroinflammation and Drives Pathogenic Th17 Cell Differentiation. Immunity, 54, 308-323.E6. https://doi.org/10.1016/j.immuni.2020.12.010
|
[97]
|
Gokavi, J., Sadawarte, S., Shelke, A., Kulkarni-Kale, U., Thakar, M. and Saxena, V. (2021) Inhibition of miR-155 Promotes TGF-β Mediated Suppression of HIV Release in the Cervical Epithelial Cells. Viruses, 13, Article 2266. https://doi.org/10.3390/v13112266
|
[98]
|
Ge, Q., Shi, Z., Zou, K., Ying, J., Chen, J., Yuan, W., et al. (2023) Protein Phosphatase PPM1A Inhibition Attenuates Osteoarthritis via Regulating TGF-β/Smad2 Signaling in Chondrocytes. JCI Insight, 8, e166688. https://doi.org/10.1172/jci.insight.166688
|
[99]
|
Blaney Davidson, E.N., van der Kraan, P.M. and van den Berg, W.B. (2007) TGF-β and Osteoarthritis. Osteoarthritis and Cartilage, 15, 597-604. https://doi.org/10.1016/j.joca.2007.02.005
|
[100]
|
Niu, B., Tian, T., Wang, L., Tian, Y., Tian, T., Guo, Y., et al. (2024) CCL9/CCR1 Axis-Driven Chemotactic Nanovesicles for Attenuating Metastasis of Smad4-Deficient Colorectal Cancer by Trapping TGF-β. Acta Pharmaceutica Sinica B, 14, 3711-3729. https://doi.org/10.1016/j.apsb.2024.05.009
|
[101]
|
Gneo, L., Rizkalla, N., Hejmadi, R., Mussai, F., de Santo, C. and Middleton, G. (2021) TGF-β Orchestrates the Phenotype and Function of Monocytic Myeloid-Derived Suppressor Cells in Colorectal Cancer. Cancer Immunology, Immunotherapy, 71, 1583-1596. https://doi.org/10.1007/s00262-021-03081-5
|
[102]
|
Lin, X., Xu, W., Shao, M., Fan, Q., Wen, G., Li, C., et al. (2015) Shenling Baizhu San Supresses Colitis Associated Colorectal Cancer through Inhibition of Epithelial-Mesenchymal Transition and Myeloid-Derived Suppressor Infiltration. BMC Complementary and Alternative Medicine, 15, Article No. 126. https://doi.org/10.1186/s12906-015-0649-9
|
[103]
|
李敏艳. IL-36γ联合TGF-β抗体促进肿瘤免疫应答的效应与机制[D]: [硕士学位论文]. 苏州: 苏州大学, 2022.
|