[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834
|
[2]
|
Wang, J.J., Lei, K.F. and Han, F. (2018) Tumor Microenvironment: Recent Advances in Various Cancer Treatments. European Review for Medical and Pharmacological Sciences, 22, 3855-3864.
|
[3]
|
Ross, J.A. and Kasum, C.M. (2002) Dietary Flavonoids: Bioavailability, Metabolic Effects, and Safety. Annual Review of Nutrition, 22, 19-34. https://doi.org/10.1146/annurev.nutr.22.111401.144957
|
[4]
|
Chan, T.S., Galati, G., Pannala, A.S., Rice-Evans, C. and O'Brien, P.J. (2003) Simultaneous Detection of the Antioxidant and Pro-Oxidant Activity of Dietary Polyphenolics in a Peroxidase System. Free Radical Research, 37, 787-794. https://doi.org/10.1080/1071576031000094899
|
[5]
|
Neuhouser, M.L. (2004) Review: Dietary Flavonoids and Cancer Risk: Evidence from Human Population Studies. Nutrition and Cancer, 50, 1-7. https://doi.org/10.1207/s15327914nc5001_1
|
[6]
|
Miean, K.H. and Mohamed, S. (2001) Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin, and Apigenin) Content of Edible Tropical Plants. Journal of Agricultural and Food Chemistry, 49, 3106-3112. https://doi.org/10.1021/jf000892m
|
[7]
|
Mencherini, T., Picerno, P., Scesa, C. and Aquino, R. (2007) Triterpene, Antioxidant, and Antimicrobial Compounds from Melissa officinalis. Journal of Natural Products, 70, 1889-1894. https://doi.org/10.1021/np070351s
|
[8]
|
Chagas, M.d.S.S., Behrens, M.D., Moragas-Tellis, C.J., Penedo, G.X.M., Silva, A.R. and Gonçalves-de-Albuquerque, C.F. (2022) Flavonols and Flavones as Potential Anti-Inflammatory, Antioxidant, and Antibacterial Compounds. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 9966750. https://doi.org/10.1155/2022/9966750
|
[9]
|
Aziz, N., Kim, M. and Cho, J.Y. (2018) Anti-Inflammatory Effects of Luteolin: A Review of in vitro, in vivo, and in Silico Studies. Journal of Ethnopharmacology, 225, 342-358. https://doi.org/10.1016/j.jep.2018.05.019
|
[10]
|
Wang, I., Lin, J., Lee, W., Liu, C., Lin, T. and Yang, K. (2023) Baicalein and Luteolin Inhibit Ischemia/Reperfusion-Induced Ferroptosis in Rat Cardiomyocytes. International Journal of Cardiology, 375, 74-86. https://doi.org/10.1016/j.ijcard.2022.12.018
|
[11]
|
Kou, J., Shi, J., He, Y., Hao, J., Zhang, H., Luo, D., et al. (2021) Luteolin Alleviates Cognitive Impairment in Alzheimer’s Disease Mouse Model via Inhibiting Endoplasmic Reticulum Stress-Dependent Neuroinflammation. Acta Pharmacologica Sinica, 43, 840-849. https://doi.org/10.1038/s41401-021-00702-8
|
[12]
|
Çetinkaya, M. and Baran, Y. (2023) Therapeutic Potential of Luteolin on Cancer. Vaccines, 11, Article 554. https://pubmed.ncbi.nlm.nih.gov/36992138/ https://doi.org/10.3390/vaccines11030554
|
[13]
|
Wu, W., Li, K., Zhao, C., Ran, X., Zhang, Y. and Zhang, T. (2022) A Rapid HPLC-MS/MS Method for the Simultaneous Determination of Luteolin, Resveratrol and Their Metabolites in Rat Plasma and Its Application to Pharmacokinetic Interaction Studies. Journal of Chromatography B, 1191, Article 123118. https://doi.org/10.1016/j.jchromb.2022.123118
|
[14]
|
Lo, S., Leung, E., Fedrizzi, B. and Barker, D. (2021) Syntheses of Mono-Acylated Luteolin Derivatives, Evaluation of Their Antiproliferative and Radical Scavenging Activities and Implications on Their Oral Bioavailability. Scientific Reports, 11, Article No. 12595. https://doi.org/10.1038/s41598-021-92135-w
|
[15]
|
Li, Y., Yang, F., Wang, L., Cao, Z., Han, T., Duan, Z., et al. (2016) Phosphoramidate Protides of Five Flavones and Their Antiproliferative Activity against HepG2 and L-O2 Cell Lines. European Journal of Medicinal Chemistry, 112, 196-208. https://doi.org/10.1016/j.ejmech.2016.02.012
|
[16]
|
Fischer, F., Zufferey, E., Bourgeois, J., Héritier, J. and Micaux, F. (2011) UV-ABC Screens of Luteolin Derivatives Compared to Edelweiss Extract. Journal of Photochemistry and Photobiology B: Biology, 103, 8-15. https://doi.org/10.1016/j.jphotobiol.2011.01.005
|
[17]
|
Tsai, H., Chen, M., Hsu, C., Kuan, K., Chang, C., Wang, C., et al. (2022) Luteolin Phosphate Derivatives Generated by Cultivating Bacillus subtilis var. Natto BCRC 80517 with Luteolin. Journal of Agricultural and Food Chemistry, 70, 8738-8745. https://doi.org/10.1021/acs.jafc.2c03524
|
[18]
|
Osonga, F.J., Le, P., Luther, D., Sakhaee, L. and Sadik, O.A. (2018) Water-Based Synthesis of Gold and Silver Nanoparticles with Cuboidal and Spherical Shapes Using Luteolin Tetraphosphate at Room Temperature. Environmental Science: Nano, 5, 917-932. https://doi.org/10.1039/c8en00042e
|
[19]
|
Zhang, J., Liu, X., Lei, X., Wang, L., Guo, L., Zhao, G., et al. (2010) Discovery and Synthesis of Novel Luteolin Derivatives as DAT Agonists. Bioorganic & Medicinal Chemistry, 18, 7842-7848. https://doi.org/10.1016/j.bmc.2010.09.049
|
[20]
|
Yamauchi, K., Fujieda, A. and Mitsunaga, T. (2018) Selective Synthesis of 7-O-Substituted Luteolin Derivatives and Their Melanonenesis and Proliferation Inhibitory Activity in B16 Melanoma Cells. Bioorganic & Medicinal Chemistry Letters, 28, 2518-2522. https://doi.org/10.1016/j.bmcl.2018.05.051
|
[21]
|
Lv, P., Li, H., Xue, J., Shi, L. and Zhu, H. (2009) Synthesis and Biological Evaluation of Novel Luteolin Derivatives as Antibacterial Agents. European Journal of Medicinal Chemistry, 44, 908-914. https://doi.org/10.1016/j.ejmech.2008.01.013
|
[22]
|
Cheng, N., Yi, W., Wang, Q., Peng, S. and Zou, X. (2014) Synthesis and Α-Glucosidase Inhibitory Activity of Chrysin, Diosmetin, Apigenin, and Luteolin Derivatives. Chinese Chemical Letters, 25, 1094-1098. https://doi.org/10.1016/j.cclet.2014.05.021
|
[23]
|
杨为民, 李鲜, 翁稚颖, 等. 一类3′-氨烷氧基-木犀草素衍生物及其制备方法和应用[P]. 中国专利, CN201811575228.8. 2020-12-08
|
[24]
|
Ravishankar, D., Watson, K.A., Boateng, S.Y., Green, R.J., Greco, F. and Osborn, H.M.I. (2015) Exploring Quercetin and Luteolin Derivatives as Antiangiogenic Agents. European Journal of Medicinal Chemistry, 97, 259-274. https://doi.org/10.1016/j.ejmech.2015.04.056
|
[25]
|
Li, J.F., Wang, L.S., Bai, H.Q., Yang, B. and Chen, Z.G. (2010) Synthesis and Structure Characterization of Novel Luteolin Derivatives. Chemistry of Natural Compounds, 46, 716-718. https://doi.org/10.1007/s10600-010-9723-1
|
[26]
|
Reiberger, R., Radilová, K., Kráľ, M., Zima, V., Majer, P., Brynda, J., et al. (2021) Synthesis and in vitro Evaluation of C-7 and C-8 Luteolin Derivatives as Influenza Endonuclease Inhibitors. International Journal of Molecular Sciences, 22, Article 7735. https://doi.org/10.3390/ijms22147735
|
[27]
|
任杰, 潘莎莎, 程虹, 等. 木犀草素Mannich碱衍生物的合成及其抗癌活性[J]. 中国新药杂志, 2011, 20(8): 743-747.
|
[28]
|
周美荣, 李颖, 窦后松, 等. 8-氨甲基取代木犀草素衍生物的合成和抗炎活性研究[J]. 化学研究与应用, 2008, 20(1): 10-15.
|
[29]
|
Ge, X., He, X., Lin, Z., Zhu, Y., Jiang, X., Zhao, L., et al. (2022) 6,8-(1,3-Diaminoguanidine) Luteolin and Its Cr Complex Show Hypoglycemic Activities and Alter Intestinal Microbiota Composition in Type 2 Diabetes Mice. Food & Function, 13, 3572-3589. https://doi.org/10.1039/d2fo00021k
|
[30]
|
Naso, L.G., Lezama, L., Valcarcel, M., Salado, C., Villacé, P., Kortazar, D., et al. (2016) Bovine Serum Albumin Binding, Antioxidant and Anticancer Properties of an Oxidovanadium(IV) Complex with Luteolin. Journal of Inorganic Biochemistry, 157, 80-93. https://doi.org/10.1016/j.jinorgbio.2016.01.021
|
[31]
|
Juszczak, A.M., Wöelfle, U., Končić, M.Z. and Tomczyk, M. (2022) Skin Cancer, Including Related Pathways and Therapy and the Role of Luteolin Derivatives as Potential Therapeutics. Medicinal Research Reviews, 42, 1423-1462. https://doi.org/10.1002/med.21880
|
[32]
|
Dong, H., Yang, X., He, J., Cai, S., Xiao, K. and Zhu, L. (2017) Enhanced Antioxidant Activity, Antibacterial Activity and Hypoglycemic Effect of Luteolin by Complexation with Manganese(II) and Its Inhibition Kinetics on Xanthine Oxidase. RSC Advances, 7, 53385-53395. https://doi.org/10.1039/c7ra11036g
|
[33]
|
Dong, X., Zheng, T., Zhang, Z., et al. (2020) Luteolin Reverses OPCML Methylation to Inhibit Proliferation of Breast Cancer MDA-MB-231 Cells. Journal of Southern Medical University, 40, 550-555.
|
[34]
|
Wu, H., Lin, J., Liu, Y., Chen, H., Hsu, K., Lin, S., et al. (2021) Luteolin Suppresses Androgen Receptor-Positive Triple-Negative Breast Cancer Cell Proliferation and Metastasis by Epigenetic Regulation of MMP9 Expression via the Akt/mTOR Signaling Pathway. Phytomedicine, 81, Article 153437. https://doi.org/10.1016/j.phymed.2020.153437
|
[35]
|
Yao, X., Jiang, W., Yu, D. and Yan, Z. (2019) Luteolin Inhibits Proliferation and Induces Apoptosis of Human Melanoma Cells in vivo and in vitro by Suppressing MMP-2 and MMP-9 through the PI3K/AKT Pathway. Food & Function, 10, 703-712. https://doi.org/10.1039/c8fo02013b
|
[36]
|
Ren, L., Li, Q. and Zhang, Y. (2020) Luteolin Suppresses the Proliferation of Gastric Cancer Cells and Acts in Synergy with Oxaliplatin. BioMed Research International, 2020, Article ID: 9396512. https://doi.org/10.1155/2020/9396512
|
[37]
|
Matthews, H.K., Bertoli, C. and de Bruin, R.A.M. (2021) Cell Cycle Control in Cancer. Nature Reviews Molecular Cell Biology, 23, 74-88. https://doi.org/10.1038/s41580-021-00404-3
|
[38]
|
Casagrande, F. and Darbon, J. (2001) Effects of Structurally Related Flavonoids on Cell Cycle Progression of Human Melanoma Cells: Regulation of Cyclin-Dependent Kinases CDK2 and CDK1. Biochemical Pharmacology, 61, 1205-1215. https://doi.org/10.1016/s0006-2952(01)00583-4
|
[39]
|
Huang, L., Jin, K. and Lan, H. (2019) Luteolin Inhibits Cell Cycle Progression and Induces Apoptosis of Breast Cancer Cells through Downregulation of Human Telomerase Reverse Transcriptase. Oncology Letters, 17, 3842-3850. https://doi.org/10.3892/ol.2019.10052
|
[40]
|
Lim, D.Y., Jeong, Y., Tyner, A.L. and Park, J.H.Y. (2007) Induction of Cell Cycle Arrest and Apoptosis in HT-29 Human Colon Cancer Cells by the Dietary Compound Luteolin. American Journal of Physiology-Gastrointestinal and Liver Physiology, 292, G66-G75. https://doi.org/10.1152/ajpgi.00248.2006
|
[41]
|
Chen, Z., Zhang, B., Gao, F. and Shi, R. (2017) Modulation of G2/M Cell Cycle Arrest and Apoptosis by Luteolin in Human Colon Cancer Cells and Xenografts. Oncology Letters, 15, 1559-1565. https://doi.org/10.3892/ol.2017.7475
|
[42]
|
Tuli, H.S., Tuorkey, M.J., Thakral, F., Sak, K., Kumar, M., Sharma, A.K., et al. (2019) Molecular Mechanisms of Action of Genistein in Cancer: Recent Advances. Frontiers in Pharmacology, 10, Article 1336. https://doi.org/10.3389/fphar.2019.01336
|
[43]
|
Ma, J., Pan, Z., Du, H., Chen, X., Zhu, X., Hao, W., et al. (2023) Luteolin Induces Apoptosis by Impairing Mitochondrial Function and Targeting the Intrinsic Apoptosis Pathway in Gastric Cancer Cells. Oncology Letters, 26, Article No. 327. https://doi.org/10.3892/ol.2023.13913
|
[44]
|
Lu, X., Li, Y., Li, X. and Aisa, H.A. (2017) Luteolin Induces Apoptosis in vitro through Suppressing the MAPK and PI3K Signaling Pathways in Gastric Cancer. Oncology Letters, 14, 1993-2000. https://doi.org/10.3892/ol.2017.6380
|
[45]
|
Wu, H., Liu, Y., Hsu, K., Wang, Y., Chan, Y., Chen, Y., et al. (2020) MLL3 Induced by Luteolin Causes Apoptosis in Tamoxifen-Resistant Breast Cancer Cells through H3K4 Monomethylation and Suppression of the PI3K/AKT/mTOR Pathway. The American Journal of Chinese Medicine, 48, 1221-1241. https://doi.org/10.1142/s0192415x20500603
|
[46]
|
Wang, Q., Wang, H., Jia, Y., Pan, H. and Ding, H. (2017) Luteolin Induces Apoptosis by ROS/ER Stress and Mitochondrial Dysfunction in Gliomablastoma. Cancer Chemotherapy and Pharmacology, 79, 1031-1041. https://doi.org/10.1007/s00280-017-3299-4
|
[47]
|
Na, X., Li, L., Liu, D., He, J., Zhang, L. and Zhou, Y. (2024) Natural Products Targeting Ferroptosis Pathways in Cancer Therapy (Review). Oncology Reports, 52, Article No. 123. https://doi.org/10.3892/or.2024.8782
|
[48]
|
Han, S., Lin, F., Qi, Y., Liu, C., Zhou, L., Xia, Y., et al. (2022) HO-1 Contributes to Luteolin-Triggered Ferroptosis in Clear Cell Renal Cell Carcinoma via Increasing the Labile Iron Pool and Promoting Lipid Peroxidation. Oxidative Medicine and Cellular Longevity, 2022, Article No. 3846217. https://doi.org/10.1155/2022/3846217
|
[49]
|
Zheng, Y., Li, L., Chen, H., Zheng, Y., Tan, X., Zhang, G., et al. (2023) Luteolin Exhibits Synergistic Therapeutic Efficacy with Erastin to Induce Ferroptosis in Colon Cancer Cells through the HIC1-Mediated Inhibition of GPX4 Expression. Free Radical Biology and Medicine, 208, 530-544. https://doi.org/10.1016/j.freeradbiomed.2023.09.014
|
[50]
|
Fu, W., Xu, L., Chen, Y., Zhang, Z., Chen, S., Li, Q., et al. (2023) Luteolin Induces Ferroptosis in Prostate Cancer Cells by Promoting TFEB Nuclear Translocation and Increasing Ferritinophagy. The Prostate, 84, 223-236. https://doi.org/10.1002/pros.24642
|
[51]
|
Parzych, K.R. and Klionsky, D.J. (2014) An Overview of Autophagy: Morphology, Mechanism, and Regulation. Antioxidants & Redox Signaling, 20, 460-473. https://doi.org/10.1089/ars.2013.5371
|
[52]
|
Potočnjak, I., Šimić, L., Gobin, I., Vukelić, I. and Domitrović, R. (2020) Antitumor Activity of Luteolin in Human Colon Cancer SW620 Cells Is Mediated by the ERK/FOXO3a Signaling Pathway. Toxicology in vitro, 66, Article 104852. https://doi.org/10.1016/j.tiv.2020.104852
|
[53]
|
Lee, Y. and Kwon, Y.H. (2019) Regulation of Apoptosis and Autophagy by Luteolin in Human Hepatocellular Cancer Hep3B Cells. Biochemical and Biophysical Research Communications, 517, 617-622. https://doi.org/10.1016/j.bbrc.2019.07.073
|
[54]
|
Masraksa, W., Tanasawet, S., Hutamekalin, P., Wongtawatchai, T. and Sukketsiri, W. (2020) Luteolin Attenuates Migration and Invasion of Lung Cancer Cells via Suppressing Focal Adhesion Kinase and Non-Receptor Tyrosine Kinase Signaling Pathway. Nutrition Research and Practice, 14, 127-133. https://doi.org/10.4162/nrp.2020.14.2.127
|
[55]
|
Feng, J., Zheng, T., Hou, Z., Lv, C., Xue, A., Han, T., et al. (2020) Luteolin, an Aryl Hydrocarbon Receptor Ligand, Suppresses Tumor Metastasis in vitro and in vivo. Oncology Reports, 44, 2231-2240. https://doi.org/10.3892/or.2020.7781
|
[56]
|
Aljohani, H., Khodier, A.E. and Al-Gayyar, M.M. (2023) Antitumor Activity of Luteolin against Ehrlich Solid Carcinoma in Rats via Blocking Wnt/β-Catenin/SMAD4 Pathway. Cureus, 15, e39789. https://doi.org/10.7759/cureus.39789
|
[57]
|
Lee, W., Wu, L., Chen, W., Wang, C. and Tseng, T. (2006) Inhibitory Effect of Luteolin on Hepatocyte Growth Factor/Scatter Factor-Induced HepG2 Cell Invasion Involving Both MAPK/ERKs and PI3K-AKT Pathways. Chemico-Biological Interactions, 160, 123-133. https://doi.org/10.1016/j.cbi.2006.01.002
|
[58]
|
Pratheeshkumar, P., Son, Y., Budhraja, A., Wang, X., Ding, S., Wang, L., et al. (2012) Luteolin Inhibits Human Prostate Tumor Growth by Suppressing Vascular Endothelial Growth Factor Receptor 2-Mediated Angiogenesis. PLOS ONE, 7, e52279. https://doi.org/10.1371/journal.pone.0052279
|
[59]
|
Zang, M., Hu, L., Zhang, B., Zhu, Z., Li, J., Zhu, Z., et al. (2017) Luteolin Suppresses Angiogenesis and Vasculogenic Mimicry Formation through Inhibiting Notch1-VEGF Signaling in Gastric Cancer. Biochemical and Biophysical Research Communications, 490, 913-919. https://doi.org/10.1016/j.bbrc.2017.06.140
|
[60]
|
Li, Z., Ge, H., Xie, Y., Zhang, Y., Zhao, X., Sun, W., et al. (2023) Luteolin Inhibits Angiogenesis and Enhances Radiotherapy Sensitivity of Laryngeal Cancer via Downregulating Integrin Β1. Tissue and Cell, 85, Article 102235. https://doi.org/10.1016/j.tice.2023.102235
|
[61]
|
Lopez-Lazaro, M. (2009) Distribution and Biological Activities of the Flavonoid Luteolin. Mini-Reviews in Medicinal Chemistry, 9, 31-59. https://doi.org/10.2174/138955709787001712
|
[62]
|
Caporali, S., De Stefano, A., Calabrese, C., Giovannelli, A., Pieri, M., Savini, I., et al. (2022) Anti-Inflammatory and Active Biological Properties of the Plant-Derived Bioactive Compounds Luteolin and Luteolin 7-Glucoside. Nutrients, 14, Article 1155. https://doi.org/10.3390/nu14061155
|
[63]
|
Ho, H., Chen, P., Lo, Y., Lin, C., Chuang, Y., Hsieh, M., et al. (2021) Luteolin‐7‐O‐Glucoside Inhibits Cell Proliferation and Modulates Apoptosis through the AKT Signaling Pathway in Human Nasopharyngeal Carcinoma. Environmental Toxicology, 36, 2013-2024. https://doi.org/10.1002/tox.23319
|
[64]
|
Hwang, Y., Lee, E., Kim, H. and Hwang, K. (2013) Molecular Mechanisms of Luteolin-7-O-Glucoside-Induced Growth Inhibition on Human Liver Cancer Cells: G2/M Cell Cycle Arrest and Caspase-Independent Apoptotic Signaling Pathways. BMB Reports, 46, 611-616. https://doi.org/10.5483/bmbrep.2013.46.12.133
|
[65]
|
Velmurugan, B.K., Lin, J., Mahalakshmi, B., Chuang, Y., Lin, C., Lo, Y., et al. (2020) Luteolin-7-O-Glucoside Inhibits Oral Cancer Cell Migration and Invasion by Regulating Matrix Metalloproteinase-2 Expression and Extracellular Signal-Regulated Kinase Pathway. Biomolecules, 10, Article 502. https://doi.org/10.3390/biom10040502
|