木犀草素及其衍生物抗癌作用的研究进展
Research Progress on the Anticancer Effects of Luteolin and Its Derivatives
DOI: 10.12677/jcpm.2025.41122, PDF, HTML, XML,    科研立项经费支持
作者: 李 波, 文 茜, 鲁素娜, 杨思冉, 卿 晨*, 张 玲*:昆明医科大学药学院、云南省现代生物医药产业学院,暨云南省天然药物药理重点实验室,云南 昆明;张 磊, 罗梦芸:昆明医科大学第三附属医院、北京大学肿瘤医院云南医院(云南省肿瘤医院)妇科,云南 昆明
关键词: 木犀草素抗肿瘤衍生物生物利用度Luteolin Antitumor Derivatives Bioavailability
摘要: 木犀草素(3',4',5,7-四羟基黄酮)是一种天然的黄酮类化合物,通常以糖苷的形式广泛分布于多种水果和蔬菜中。木犀草素具有显著的抗肿瘤活性,具体作用机制主要包括抑制细胞增殖、促进细胞凋亡、阻止细胞周期进程、抑制细胞迁移与侵袭、抑制血管新生以及诱导自噬等。然而,由于木犀草素的生物利用度较低,这限制了其临床应用。因此,通过化学结构修饰,获得木犀草素的一系列衍生物,提高其生物利用度,保持或增强其原有的抗肿瘤活性已成为研究热点。本文综述了木犀草素及其衍生物的研究进展,旨在探讨其抗肿瘤作用的分子机制,为从天然产物出发进行药物设计和结构优化提供理论依据。
Abstract: Luteolin (3',4',5,7-tetrahydroxyflavones) are naturally occurring flavonoids, usually in the form of glycosides, widely distributed in a variety of fruits and vegetables. Luteolin have significant anti-tumor activity, and the specific mechanism of action mainly includes inhibition of cell proliferation, promotion of apoptosis, blocking cell cycle progression, inhibition of cell migration and invasion, inhibition of vascular neogenesis, and induction of autophagy. However, due to the low bioavailability of luteolin, this limits its clinical application. Therefore, it has become a research hotspot to obtain a series of derivatives of luteolin through chemical structure modification to improve their bioavailability and maintain or enhance their original antitumor activities. This paper reviews the research progress of luteolin and their derivatives, aiming at exploring the molecular mechanism of their antitumor effects and providing theoretical basis for drug design and structure optimization from natural products.
文章引用:李波, 张磊, 文茜, 鲁素娜, 罗梦芸, 杨思冉, 卿晨, 张玲. 木犀草素及其衍生物抗癌作用的研究进展[J]. 临床个性化医学, 2025, 4(1): 866-877. https://doi.org/10.12677/jcpm.2025.41122

1. 介绍

癌症是一种以细胞异常生长和增殖为特征的疾病,是全球死亡的主要原因之一,根据2022年全球癌症统计报告显示,新增癌症患者超过2000万人,死亡人数高达900多万人。其中,乳腺癌、肺癌、结直肠癌、前列腺癌及胃癌等疾病位居发病率前列,癌症作为全球公共卫生领域的一大顽疾,对预期寿命的提升构成了显著阻力[1]。尽管科研人员对癌症生物学的探索深入且广泛,但传统癌症治疗策略——手术、放疗、化疗虽在挽救生命方面发挥着关键作用,但往往伴随较为显著的安全性和有效性问题[2],对患者的生活质量造成了很大影响。因此,为弥补现有治疗方案的不足,寻找和开发新型、高效且无毒的治疗药物和/或辅助用药已成为全球医学研究领域的紧迫任务。

几个世纪以来,植物王国一直是天然疗法的重要来源,其中草药提取物被用于治疗多种疾病,包括良性和恶性肿瘤。在众多植物源性生物活性化合物中,黄酮类化合物尤为突出。由于其强大的抗氧化能力,黄酮类化合物能够有效减少由氧化应激引起的DNA损伤,因此在抗肿瘤活性的研究中备受关注。木犀草素(3',4',5,7-四羟基黄酮)是一种天然黄酮类化合物[3],具有C6-C3-C6结构,含有2个苯环(A, B),1个含氧杂环(C)以及2-3位碳双键,在碳5,7,3'和4'的每个位置上均具有羟基(图1)其中羟基部分和2~3位碳双键是木犀草素的关键结构特征,与其生化和生物活性相关[4]。木犀草素在自然界中分布广泛,常见于多种植物体内,主要以糖苷形式存在。它丰富存在于诸如西兰花、芹菜、辣椒、胡萝卜、辣椒、卷心菜、

Figure 1. Structure of luteolin

1. 木犀草素结构

苹果皮以及菊花等多种蔬菜和水果之中[5]-[7]。研究发现,木犀草素不仅具有抗菌[8]、抗炎[8] [9]、抗氧化[8]、心血管保护[10],改善和治疗阿尔茨海默病[11]等作用。尤其值得注意的是,木犀草素在肿瘤防治方面的潜力。研究指出,该化合物能够抑制多种恶性肿瘤的发生和发展,如肺癌、乳腺癌、膀胱癌、结直肠癌、胃癌、肝癌等[12],其抗癌机制涉及多个方面,包括抑制增殖、促进凋亡、阻滞细胞周期、抑制迁移侵袭、抑制血管生成和促进自噬等。

尽管木犀草素展现了广泛的生物活性和潜在的治疗价值,但其临床应用仍受到明显限制,主要原因是其生物利用度低。由于其属于多酚类化合物,具有复杂的立体结构,阻碍了其穿越类脂质细胞膜的能力。此外,较差的水溶性限制了其吸收进入到体循环中,难以达到治疗作用所需的血浆浓度水平。更为棘手的是,木犀草素容易遭受体内代谢酶的快速转化。其中尿苷二磷酸葡萄糖醛酸转移酶1A (UGT1As)等酶系倾向于对其进行葡萄糖醛酸化修饰,这一过程加速了其从体内排出的速度,进而影响了其临床疗效和应用范围[13]

因此,研究者们试图通过各种方法设计和合成许多新的木犀草素衍生物,以提升其生物利用度,主要包括对羟基进行修饰以生成醚和酯类化合物[14]-[23],以及对羰基进行修饰以产生羰基氧被取代的产物[24]-[28]。此外,还涉及对木犀草素A环和B环的化学改造[29] [30]。通过这些修饰手段,可以获得溶解性更佳、生物利用度更高、活性显著提升且药理作用增强的木犀草素衍生物[31],其中羟基修饰和生物磷酸化这两种策略在提高木犀草素的生物利用度方面最为有效,而羰基氧修饰则在赋予木犀草素额外的生物活性上展现了广阔的前景。此外,配位反应和聚合反应也为探索多功能化合物提供了新的思路。未来的研究应集中在优化这些修饰策略,以期获得更加高效且安全的药物候选物。本文将全面分析回顾这些木犀草素衍生物的结构特点与其生物活性之间的关系(表1),并对木犀草素及其衍生物的抗癌特性的作用和分子机制进行综述,旨在为其深入研究、产品开发与实际应用提供坚实的理论依据和实践指导。

Table 1. Structure and biological activity of luteolin derivatives

1. 木犀草素衍生物的结构及其生物活性

修饰部位

衍生物结构

生物活性

参考文献

-OH

亲脂性与生物利用度明显增加,抗肿瘤细胞增殖活性高于木犀草素,1 g对HCT116细胞和MDA-MB-231细胞的IC50值最低分别为(6.17 ± 0.92)、(4.87 ± 0.23) µM (木犀草素的IC50值 > 10 µM)。

[14]

2e对HepG2细胞的IC50值是15.7 µM,木犀草素的IC50值34.7 µM。并且诱导HepG2细胞阻滞在G2/M期,诱导HepG2细胞早期凋亡。

[15]

3a~3c对UV-A、UV-B和UV-C有较好的吸收。

[16]

生物磷酸化增强了其溶解度,4b的纳米颗粒具有独特的抗真菌与抗孢子作用,且在水中的溶解度是木犀草素的297倍。4c~4d可溶于水。

[17] [18]

5d、5e对转基因CHO细胞具有很强的多巴胺转运体(DAT)激动剂活性,5d的DAT激动剂活性是木犀草素的32倍。

[19]

6c具有很强的DAT激动剂活性。

[19]

具有抑制小鼠黑色素瘤B16细胞的增殖的活性,化合物7f的活性最高,在6.25 µM时对黑色素细胞合成的抑制率为34%。

[20]

部分衍生物表现出较强的体外抗菌活性,其中化合物8 m对枯草杆菌、金黄色葡萄球菌、荧光假单胞菌和大肠杆菌的最小抑制浓度分别为1.562、3.125、3.125、6.25 mg/mL。

[21]

能抑制α-葡萄糖苷酶的活性,与参比药物阿卡波糖、脱氧诺吉霉素IC50值分别为(563.60 ± 24.39)、(226.91 ± 12.57) µM相比,三个衍生物的糖苷酶抑制活性(IC50 < 40.49) µM均显著高于参比药物,其中化合物10c的抑制作用最强,IC50值为(5.18 ± 0.45) µM。

[22]

化合物(10a, b, c, d, f)的水溶性都强于木犀草素,10e的血管活性最好但水溶性接近木犀草素。

[23]

羰基氧

对人乳腺癌MCF-7细胞表现出显著的抗增殖活性,其IC50值为21.6 ± 0.87 µM,木犀草素的IC50值是(27.3 ± 1.55) µM。

[24]

能明显减轻小鼠耳部和足部的肿胀程度,抑制急性炎症的产生。

[25]

是流感核酸内切酶抑制剂,其抑制效力优于木犀草素,如13d的IC50值为(1.54 ± 0.09) µM,木犀草素的IC50值为(18.73 ± 0.03) µM。

[26]

部分化合物(对于K562细胞,14h的IC50值为4 µM)抗癌活性优于木犀草素(IC50值为61 µM)和5-氟尿嘧啶(IC50值为45 µM)。通过线粒体途径在14小时内抑制SGC-7901细胞增殖,从而诱导细胞凋亡。

[27]

所有化合物均表现出一定的抗炎活性,其中15e、15g和15j能够显著减轻由二甲苯引起的小鼠耳廓炎症反应。这些化合物的肿胀程度与阴性对照组相比有显著差异,并且其抗炎效果优于木犀草素。

[28]

配位反应

两个化合物通过改善胰岛素功能指数,调节血清和肝脏生化指标,修复受损组织,调节磷脂酰肌醇3-激酶/蛋白激酶B1信号通路,增加肠道有益微生物的相对丰度和粪便中短链脂肪酸的含量,从而改善二型糖尿病小鼠的高血糖。

[29]

与木犀草素相比,化合物17的抗氧化、抗菌和降血糖活性更强,且化合物17抑制黄嘌呤氧化酶的活性的能力强于木犀草素。

[32]

对MDA-MB-231细胞的活性抑制作用(IC50值为70 µM)高于配体,对人肺癌A549细胞的抑制作用(IC50值为6 µM)比木犀草(IC50值为6.8 µM)素稍高。

[30]

2. 木犀草素的抗癌作用机制

2.1. 抑制肿瘤细胞的生长

2.1.1. 抑制细胞增殖

癌变细胞的无限增殖是肿瘤细胞的首要表征。木犀草素展现出强大的抑制细胞增殖的能力,通过不同的机制,对不同类型的癌细胞均表现出较好的抑制效果。针对乳腺癌的治疗研究表明,木犀草素以剂量依赖的形式促进OPCML (一种与抑制癌细胞增殖有关的基因)的mRNA和蛋白质表达,降低OPCML基因启动子区的甲基化水平,提高非甲基化的OPCML水平,从而抑制人乳腺癌细胞(MDA-MB-231)的增殖[33]。对于另一种乳腺癌细胞BT-20,木犀草素通过下调AKT/mTOR信号通路诱导的H3K27Ac和H3K56Ac这两种组蛋白修饰水平,从而调节基质金属蛋白酶9 (MMP9)的表达,进而抑制三阴性乳腺癌(TNBC)细胞的增殖和转移[34]。另外,木犀草素还能通过调控PI3K/AKT信号通路,剂量依赖性抑制黑色素瘤A375细胞的增殖[35]。同时,在胃癌的研究中,发现木犀草素不仅能在体外抑制胃癌细胞(SGC-7901)的增殖,还能与化疗药物奥沙利铂合用,显著增强对肿瘤细胞增殖的抑制能力[36]

2.1.2. 阻滞细胞周期

持续不断的细胞分裂是癌症的核心特征之一。这种异常的分裂状态主要源自抑制细胞凋亡机制以及阻止细胞周期正常终止的突变,而不仅仅是简单地加速细胞周期的过程[37]。研究表明,木犀草素可将部分肿瘤细胞周期阻滞在G0/G1期。在对人类黑色素瘤细胞(OCM-1)的研究发现,木犀草素中B环的3'-位置的羟基与G1期阻滞有关[38]。在乳腺癌细胞(MDA-MB-231)中,木犀草素能够抑制NF-κB抑制因子α (IκBα)及其下游靶标c-Myc的磷酸化,从而抑制人端粒酶逆转录酶(human telomerase reverse transcriptase, hTERT)的表达,它是调节端粒酶活性的关键因子,与细胞周期调控密切相关,进而编码端粒酶的催化亚基,从而调控细胞周期进程[39]。此外,针对不同结直肠癌细胞的研究发现,木犀草素能既能将肿瘤细胞阻滞在G0/G1期,也能将细胞阻滞在G2/M期。通过对结直肠癌细胞(HT-29)的研究发现,木犀草素还能以浓度依赖性的方式减少DNA合成,抑制CDK2和CDK4的活性,导致细胞周期阻滞在G1期,同时伴随着视网膜母细胞瘤蛋白(Rb蛋白)磷酸化的减少[40]。而结肠癌细胞(LOVO)则表现为Cyclin B1及细胞分裂周期蛋白2 (cdc2)失活,细胞周期停滞在G2/M期[41]

2.2. 促进肿瘤细胞死亡

2.2.1. 促进凋亡

阻止细胞程序性凋亡是肿瘤细胞的重要特征之一。而这一复杂过程涉及一组关键酶——半胱氨酸天冬氨酸蛋白酶(caspases)的级联激活,它们可经由外源性(死亡受体介导)或内源性(线粒体介导)途径被激活[42]。研究发现[43],木犀草素的抗胃癌作用与内在细胞凋亡途径相关。它能通过破坏线粒体膜电位、下调线粒体电子传递链复合物(主要是复合物I、III和V)的活性以及不平衡B细胞淋巴瘤-2家族成员蛋白的表达来损害线粒体完整性和功能,最终导致胃癌细胞(HGC-27、MFC和MKN-45)凋亡。木犀草素通过升高半胱天冬酶-3、半胱天冬酶-9和细胞色素c的水平,并调节B细胞淋巴瘤Bcl-2相关X蛋白(Bax)与Bcl-2的比例关系,通过内在途径诱导胃癌细胞系BGC-823细胞凋亡。木犀草素通过抑制MAPK信号通路中细胞外信号调节激酶(ERK)的磷酸化,以及PI3K/AKT信号通路中AKT和雷帕霉素靶点(mTOR)的磷酸化,从而发挥作用。以上研究表明[44],木犀草素通过对MAPK和PI3K信号通路的双重抑制作用,从而促进胃癌细胞的凋亡。木犀草素可降低激活的PI3K/AKT/mTOR信号通路的水平[45],木犀草素和PI3K、AKT或mTOR抑制剂联合治疗时可协同增加他莫昔芬耐药ER阳性乳腺癌细胞的凋亡。通过升高细胞内活性氧(ROS)水平,木犀草素能诱导胶质母细胞瘤细胞中内质网应激反应和线粒体功能障碍诱导凋亡[46]

2.2.2. 促进铁死亡

铁死亡是近年来发现的一种新的细胞程序性死亡方式,主要表现为铁代谢的紊乱以及脂质过氧化的不断增加[47]。研究显示,通过诱导癌细胞的铁死亡,可以有效抑制其增殖和扩散。已有证据表明,木犀草素能够促进肾透明细胞癌中线粒体膜电位的失衡,从而触发铁死亡的显著标志,如加速活性氧(ROS)的生成和脂质过氧化的累积,这一过程可通过铁离子螯合剂得以阻断[48]。类似地,在针对结直肠癌的研究中也观察到了相似的现象。通过诱导铁死亡,可以减少谷胱甘肽过氧化物酶4 (GPX4)的合成,并提高HIC1基因的高甲基化表达,进而增强结直肠癌细胞对铁死亡诱导剂erastin的敏感度[49]。此外,木犀草素还能通过促进转录因子EB (TFEB)的核定位及增加铁蛋白的吞噬作用,促使前列腺癌细胞经历铁死亡。当TFEB被敲除时,木犀草素对铁蛋白溶酶体降解的抑制效应消失[50]

这些研究不仅阐明了木犀草素通过激活铁死亡途径发挥抗癌作用的具体机制,还为基于铁死亡的新型抗癌治疗策略的开发提供了坚实的理论基础和实验依据。

2.2.3. 诱导自噬

自噬是一个高度保守的生理过程,这一过程包括降解和循环细胞内的多余成分,例如蛋白质和受损的细胞器,以维持一个平衡的细胞微环境[51]。自噬在癌症中参与多种生理和病理活动。据报道,木犀草素能够增加自噬蛋白Beclin 1、自噬相关蛋白5 (Autophagy related protein 5, Atg5)以及微管相关蛋白1A/1B轻链3β-I/II (LC3-I/II)的表达。Beclin 1和Atg5在自噬体的形成和肿瘤抑制中起着关键作用,而LC3-I向LC3-II的转换则是自噬活动的一个重要标志[52]。进一步的研究表明,木犀草素能够诱导前列腺癌(PCa)细胞DU145和PC-3细胞中的自噬[50]。氧化应激和内质网(ER)应激已被证实可以激活p53依赖的自噬。研究表明,木犀草素在p53缺失的人肝癌Hep3B细胞中比在p53野生型的HepG2细胞中引发了更强的细胞毒性[53],这一机制涉及增加氧化应激和内质网应激相关的自噬。总的来说,木犀草素诱导的自噬在癌症的管理和治疗方面具有重要意义,因为其靶向自噬的作用在抑制癌细胞的活力和增殖方面具有巨大的潜力。

2.3. 抑制肿瘤细胞侵袭与转移

恶性肿瘤细胞通常通过直接浸润血液、淋巴管或其他邻近结构而扩散和定植于远处组织或器官,这一特性导致绝大多数患者死于肿瘤转移。在肺癌A549细胞中,20~40 μM的木犀草素在24h以浓度依赖性方式显著抑制细胞迁移、侵袭和丝状伪足的形成,其机制研究表明木犀草素降低了磷酸化黏着斑激酶(pFAK)、磷酸化非受体酪氨酸激酶(pSrc)、Ras相关C3肉毒杆菌毒素底物1 (Rac1)、细胞分裂控制蛋白42 (Cdc42)和Ras同源基因家族成员A (RhoA)的表达[54]。木犀草素是一种抑制乳腺癌侵袭转移的潜在分子,具有广阔的临床应用前景。研究发现[55],木犀草素可以抑制在B16F10小鼠异种移植模型中肿瘤的转移,同时木犀草素治疗后从荷瘤裸鼠中分离出的肺组织中MMP-9、MMP-2和CXCR4水平显著降低。用木犀草素处理大鼠Ehrlich实体瘤(ESC)升高E-钙粘蛋白的表达,并下调Wnt、β-catenin和SMAD4,从而导致肿瘤细胞侵袭和转移减少[56]。木犀草素通过MAPK/ERKs和PI3K-Akt通路抑制了肝细胞生长因子HGF诱导的肝癌HepG2细胞侵袭[57]

2.4. 抑制肿瘤新生血管

在肿瘤环境中,血管生成通常被激活,这主要是因为血管生成刺激因子(如血管内皮生长因子VEGF)的表达增加,以及缺氧诱导因子HIF的上调。木犀草素通过抑制VEGFR2介导的血管生成,从而抑制人前列腺肿瘤的生长[58]。进一步的研究发现,木犀草素通过抑制Notch1的表达,减少VEGF的分泌,从而抑制胃癌中的血管生成及血管生成模拟物的形成[59]。而对于常见的呼吸系统肿瘤喉鳞状细胞癌(LSCC),木犀草素通过降低VEGFA的表达,抑制人喉癌细胞FaDu (FH0297)的生长。并且在动物实验中,进一步表明,木犀草素能下调整合素β1,并在辐射过程中加强了肿瘤抑制和抗血管生成,增强喉癌的放疗敏感性[60]

3. 木犀草素衍生物的抗癌作用机制

木犀草素分子在植物中广泛分布,主要作为没有糖部分的糖苷分子和具有糖部分的糖苷分子(木犀草素的糖苷形式称为LUT-7-O-葡萄糖苷或LUT-7G),葡萄糖是与其结合的主要糖基[61]。LUT-7-O-葡萄糖苷是最常见的木犀草素化合物,存在于饮食中,包括基于植物和饮料的食物,如绿茶、咖啡、坚果、苹果、橙子、石榴[62]。鼻咽癌(NPC)是一种不明显的恶性肿瘤,具有很高的淋巴转移可能性,研究发现[63],LUT7G可显著降低NPC细胞系(NPC-039和NPC-BM)的增殖、诱导S和G2/M细胞周期停滞、染色质凝聚和凋亡。参线粒体膜电位随着LUT7G浓度的增加而去极化参,参与凋亡的外在和内源途径,添加PI3K/AKT抑制剂增强了聚ADP-核糖聚合酶(PARP)的激活并减弱了细胞活力。上述结果表明,在LUT7G调控下,NPC细胞的凋亡可能先于线粒体去极化、细胞周期阻滞、外源性和内在凋亡通路激活以及AKT信号调节。LUT7G以剂量依赖性方式阻滞肝癌HepG2细胞于G2/M期[64]。LUT7G还通过减少p38磷酸化和下调基质金属蛋白酶(MMP)-2的表达来减少口腔鳞状细胞癌的迁移和侵袭[65]

4. 木犀草素的临床应用

木犀草素在细胞和动物实验中显示出了显著的药理活性,同时通过ClinicalTrials.gov网站检索发现,共有19项关于木犀草素的临床试验正在进行或已完成,这些试验覆盖了多种疾病领域,包括舌鳞状细胞癌、COVID-19感染、骨关节炎、2型糖尿病、脑损伤修复、过敏性鼻炎、视力保护、精神分裂症、认知功能障碍(如记忆力减退)、额颞叶痴呆、自闭症谱系障碍以及嗅觉功能障碍等。在针对舌鳞状细胞癌的研究中,研究人员通过对细胞凋亡情况的比较分析,评估了木犀草素在肿瘤方面的潜在治疗作用。而在其他的研究中显示木犀草素通过强大的抗氧化和抗炎活性,从而改善患者的认知功能障碍和自闭症谱系障碍(ASD)的受试者的症状。后续应继续探索木犀草素在其他未被充分研究领域的可能性,例如心血管疾病、神经系统疾病和其他慢性炎症性疾病。并优化给药途径,寻找除口服外的其他给药方式,比如局部应用、吸入式给药或者静脉注射等方式,以提升疗效并减少全身副作用。继续挖掘木犀草素与其他治疗方法结合使用的潜力,例如与化疗药物联用对抗癌症,或与抗炎药物一起使用增强抗炎效果等。总而言之,虽然现有的一些初步研究表明木犀草素具有潜在的应用价值,同时还需更多高质量的随机对照试验(RCT)来进一步验证其安全性和有效性。

5. 展望

作为一种广泛存在于蔬菜和水果中的黄酮类化合物,在各种癌症类型中具有强大的抗癌特性,因而得到了广泛的研究。木犀草素的抗癌机制包括抑制细胞增殖、促进细胞凋亡、阻滞细胞周期、抑制细胞迁移与侵袭、抑制新的血管生成以及诱导自噬等。然而,由于木犀草素的生物利用度较低,其潜在的临床应用受到了限制。为了克服生物利用度低这一障碍,研究人员通过结构修饰设计并合成了一系列木犀草素衍生物。这些化学修饰旨在提高其活性或改善体内吸收率,此类研究有望在抗癌药物开发领域实现新的进展。

基金项目

云南省科技厅重点研发项目202302AA310026;云南省应用基础研究计划项目(联合专项);202401AY070001-209;昆明医科大学研究生创新基金2024S202。

NOTES

*通讯作者。

参考文献

[1] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[2] Wang, J.J., Lei, K.F. and Han, F. (2018) Tumor Microenvironment: Recent Advances in Various Cancer Treatments. European Review for Medical and Pharmacological Sciences, 22, 3855-3864.
[3] Ross, J.A. and Kasum, C.M. (2002) Dietary Flavonoids: Bioavailability, Metabolic Effects, and Safety. Annual Review of Nutrition, 22, 19-34.
https://doi.org/10.1146/annurev.nutr.22.111401.144957
[4] Chan, T.S., Galati, G., Pannala, A.S., Rice-Evans, C. and O'Brien, P.J. (2003) Simultaneous Detection of the Antioxidant and Pro-Oxidant Activity of Dietary Polyphenolics in a Peroxidase System. Free Radical Research, 37, 787-794.
https://doi.org/10.1080/1071576031000094899
[5] Neuhouser, M.L. (2004) Review: Dietary Flavonoids and Cancer Risk: Evidence from Human Population Studies. Nutrition and Cancer, 50, 1-7.
https://doi.org/10.1207/s15327914nc5001_1
[6] Miean, K.H. and Mohamed, S. (2001) Flavonoid (Myricetin, Quercetin, Kaempferol, Luteolin, and Apigenin) Content of Edible Tropical Plants. Journal of Agricultural and Food Chemistry, 49, 3106-3112.
https://doi.org/10.1021/jf000892m
[7] Mencherini, T., Picerno, P., Scesa, C. and Aquino, R. (2007) Triterpene, Antioxidant, and Antimicrobial Compounds from Melissa officinalis. Journal of Natural Products, 70, 1889-1894.
https://doi.org/10.1021/np070351s
[8] Chagas, M.d.S.S., Behrens, M.D., Moragas-Tellis, C.J., Penedo, G.X.M., Silva, A.R. and Gonçalves-de-Albuquerque, C.F. (2022) Flavonols and Flavones as Potential Anti-Inflammatory, Antioxidant, and Antibacterial Compounds. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 9966750.
https://doi.org/10.1155/2022/9966750
[9] Aziz, N., Kim, M. and Cho, J.Y. (2018) Anti-Inflammatory Effects of Luteolin: A Review of in vitro, in vivo, and in Silico Studies. Journal of Ethnopharmacology, 225, 342-358.
https://doi.org/10.1016/j.jep.2018.05.019
[10] Wang, I., Lin, J., Lee, W., Liu, C., Lin, T. and Yang, K. (2023) Baicalein and Luteolin Inhibit Ischemia/Reperfusion-Induced Ferroptosis in Rat Cardiomyocytes. International Journal of Cardiology, 375, 74-86.
https://doi.org/10.1016/j.ijcard.2022.12.018
[11] Kou, J., Shi, J., He, Y., Hao, J., Zhang, H., Luo, D., et al. (2021) Luteolin Alleviates Cognitive Impairment in Alzheimer’s Disease Mouse Model via Inhibiting Endoplasmic Reticulum Stress-Dependent Neuroinflammation. Acta Pharmacologica Sinica, 43, 840-849.
https://doi.org/10.1038/s41401-021-00702-8
[12] Çetinkaya, M. and Baran, Y. (2023) Therapeutic Potential of Luteolin on Cancer. Vaccines, 11, Article 554.
https://pubmed.ncbi.nlm.nih.gov/36992138/

https://doi.org/10.3390/vaccines11030554
[13] Wu, W., Li, K., Zhao, C., Ran, X., Zhang, Y. and Zhang, T. (2022) A Rapid HPLC-MS/MS Method for the Simultaneous Determination of Luteolin, Resveratrol and Their Metabolites in Rat Plasma and Its Application to Pharmacokinetic Interaction Studies. Journal of Chromatography B, 1191, Article 123118.
https://doi.org/10.1016/j.jchromb.2022.123118
[14] Lo, S., Leung, E., Fedrizzi, B. and Barker, D. (2021) Syntheses of Mono-Acylated Luteolin Derivatives, Evaluation of Their Antiproliferative and Radical Scavenging Activities and Implications on Their Oral Bioavailability. Scientific Reports, 11, Article No. 12595.
https://doi.org/10.1038/s41598-021-92135-w
[15] Li, Y., Yang, F., Wang, L., Cao, Z., Han, T., Duan, Z., et al. (2016) Phosphoramidate Protides of Five Flavones and Their Antiproliferative Activity against HepG2 and L-O2 Cell Lines. European Journal of Medicinal Chemistry, 112, 196-208.
https://doi.org/10.1016/j.ejmech.2016.02.012
[16] Fischer, F., Zufferey, E., Bourgeois, J., Héritier, J. and Micaux, F. (2011) UV-ABC Screens of Luteolin Derivatives Compared to Edelweiss Extract. Journal of Photochemistry and Photobiology B: Biology, 103, 8-15.
https://doi.org/10.1016/j.jphotobiol.2011.01.005
[17] Tsai, H., Chen, M., Hsu, C., Kuan, K., Chang, C., Wang, C., et al. (2022) Luteolin Phosphate Derivatives Generated by Cultivating Bacillus subtilis var. Natto BCRC 80517 with Luteolin. Journal of Agricultural and Food Chemistry, 70, 8738-8745.
https://doi.org/10.1021/acs.jafc.2c03524
[18] Osonga, F.J., Le, P., Luther, D., Sakhaee, L. and Sadik, O.A. (2018) Water-Based Synthesis of Gold and Silver Nanoparticles with Cuboidal and Spherical Shapes Using Luteolin Tetraphosphate at Room Temperature. Environmental Science: Nano, 5, 917-932.
https://doi.org/10.1039/c8en00042e
[19] Zhang, J., Liu, X., Lei, X., Wang, L., Guo, L., Zhao, G., et al. (2010) Discovery and Synthesis of Novel Luteolin Derivatives as DAT Agonists. Bioorganic & Medicinal Chemistry, 18, 7842-7848.
https://doi.org/10.1016/j.bmc.2010.09.049
[20] Yamauchi, K., Fujieda, A. and Mitsunaga, T. (2018) Selective Synthesis of 7-O-Substituted Luteolin Derivatives and Their Melanonenesis and Proliferation Inhibitory Activity in B16 Melanoma Cells. Bioorganic & Medicinal Chemistry Letters, 28, 2518-2522.
https://doi.org/10.1016/j.bmcl.2018.05.051
[21] Lv, P., Li, H., Xue, J., Shi, L. and Zhu, H. (2009) Synthesis and Biological Evaluation of Novel Luteolin Derivatives as Antibacterial Agents. European Journal of Medicinal Chemistry, 44, 908-914.
https://doi.org/10.1016/j.ejmech.2008.01.013
[22] Cheng, N., Yi, W., Wang, Q., Peng, S. and Zou, X. (2014) Synthesis and Α-Glucosidase Inhibitory Activity of Chrysin, Diosmetin, Apigenin, and Luteolin Derivatives. Chinese Chemical Letters, 25, 1094-1098.
https://doi.org/10.1016/j.cclet.2014.05.021
[23] 杨为民, 李鲜, 翁稚颖, 等. 一类3′-氨烷氧基-木犀草素衍生物及其制备方法和应用[P]. 中国专利, CN201811575228.8. 2020-12-08
[24] Ravishankar, D., Watson, K.A., Boateng, S.Y., Green, R.J., Greco, F. and Osborn, H.M.I. (2015) Exploring Quercetin and Luteolin Derivatives as Antiangiogenic Agents. European Journal of Medicinal Chemistry, 97, 259-274.
https://doi.org/10.1016/j.ejmech.2015.04.056
[25] Li, J.F., Wang, L.S., Bai, H.Q., Yang, B. and Chen, Z.G. (2010) Synthesis and Structure Characterization of Novel Luteolin Derivatives. Chemistry of Natural Compounds, 46, 716-718.
https://doi.org/10.1007/s10600-010-9723-1
[26] Reiberger, R., Radilová, K., Kráľ, M., Zima, V., Majer, P., Brynda, J., et al. (2021) Synthesis and in vitro Evaluation of C-7 and C-8 Luteolin Derivatives as Influenza Endonuclease Inhibitors. International Journal of Molecular Sciences, 22, Article 7735.
https://doi.org/10.3390/ijms22147735
[27] 任杰, 潘莎莎, 程虹, 等. 木犀草素Mannich碱衍生物的合成及其抗癌活性[J]. 中国新药杂志, 2011, 20(8): 743-747.
[28] 周美荣, 李颖, 窦后松, 等. 8-氨甲基取代木犀草素衍生物的合成和抗炎活性研究[J]. 化学研究与应用, 2008, 20(1): 10-15.
[29] Ge, X., He, X., Lin, Z., Zhu, Y., Jiang, X., Zhao, L., et al. (2022) 6,8-(1,3-Diaminoguanidine) Luteolin and Its Cr Complex Show Hypoglycemic Activities and Alter Intestinal Microbiota Composition in Type 2 Diabetes Mice. Food & Function, 13, 3572-3589.
https://doi.org/10.1039/d2fo00021k
[30] Naso, L.G., Lezama, L., Valcarcel, M., Salado, C., Villacé, P., Kortazar, D., et al. (2016) Bovine Serum Albumin Binding, Antioxidant and Anticancer Properties of an Oxidovanadium(IV) Complex with Luteolin. Journal of Inorganic Biochemistry, 157, 80-93.
https://doi.org/10.1016/j.jinorgbio.2016.01.021
[31] Juszczak, A.M., Wöelfle, U., Končić, M.Z. and Tomczyk, M. (2022) Skin Cancer, Including Related Pathways and Therapy and the Role of Luteolin Derivatives as Potential Therapeutics. Medicinal Research Reviews, 42, 1423-1462.
https://doi.org/10.1002/med.21880
[32] Dong, H., Yang, X., He, J., Cai, S., Xiao, K. and Zhu, L. (2017) Enhanced Antioxidant Activity, Antibacterial Activity and Hypoglycemic Effect of Luteolin by Complexation with Manganese(II) and Its Inhibition Kinetics on Xanthine Oxidase. RSC Advances, 7, 53385-53395.
https://doi.org/10.1039/c7ra11036g
[33] Dong, X., Zheng, T., Zhang, Z., et al. (2020) Luteolin Reverses OPCML Methylation to Inhibit Proliferation of Breast Cancer MDA-MB-231 Cells. Journal of Southern Medical University, 40, 550-555.
[34] Wu, H., Lin, J., Liu, Y., Chen, H., Hsu, K., Lin, S., et al. (2021) Luteolin Suppresses Androgen Receptor-Positive Triple-Negative Breast Cancer Cell Proliferation and Metastasis by Epigenetic Regulation of MMP9 Expression via the Akt/mTOR Signaling Pathway. Phytomedicine, 81, Article 153437.
https://doi.org/10.1016/j.phymed.2020.153437
[35] Yao, X., Jiang, W., Yu, D. and Yan, Z. (2019) Luteolin Inhibits Proliferation and Induces Apoptosis of Human Melanoma Cells in vivo and in vitro by Suppressing MMP-2 and MMP-9 through the PI3K/AKT Pathway. Food & Function, 10, 703-712.
https://doi.org/10.1039/c8fo02013b
[36] Ren, L., Li, Q. and Zhang, Y. (2020) Luteolin Suppresses the Proliferation of Gastric Cancer Cells and Acts in Synergy with Oxaliplatin. BioMed Research International, 2020, Article ID: 9396512.
https://doi.org/10.1155/2020/9396512
[37] Matthews, H.K., Bertoli, C. and de Bruin, R.A.M. (2021) Cell Cycle Control in Cancer. Nature Reviews Molecular Cell Biology, 23, 74-88.
https://doi.org/10.1038/s41580-021-00404-3
[38] Casagrande, F. and Darbon, J. (2001) Effects of Structurally Related Flavonoids on Cell Cycle Progression of Human Melanoma Cells: Regulation of Cyclin-Dependent Kinases CDK2 and CDK1. Biochemical Pharmacology, 61, 1205-1215.
https://doi.org/10.1016/s0006-2952(01)00583-4
[39] Huang, L., Jin, K. and Lan, H. (2019) Luteolin Inhibits Cell Cycle Progression and Induces Apoptosis of Breast Cancer Cells through Downregulation of Human Telomerase Reverse Transcriptase. Oncology Letters, 17, 3842-3850.
https://doi.org/10.3892/ol.2019.10052
[40] Lim, D.Y., Jeong, Y., Tyner, A.L. and Park, J.H.Y. (2007) Induction of Cell Cycle Arrest and Apoptosis in HT-29 Human Colon Cancer Cells by the Dietary Compound Luteolin. American Journal of Physiology-Gastrointestinal and Liver Physiology, 292, G66-G75.
https://doi.org/10.1152/ajpgi.00248.2006
[41] Chen, Z., Zhang, B., Gao, F. and Shi, R. (2017) Modulation of G2/M Cell Cycle Arrest and Apoptosis by Luteolin in Human Colon Cancer Cells and Xenografts. Oncology Letters, 15, 1559-1565.
https://doi.org/10.3892/ol.2017.7475
[42] Tuli, H.S., Tuorkey, M.J., Thakral, F., Sak, K., Kumar, M., Sharma, A.K., et al. (2019) Molecular Mechanisms of Action of Genistein in Cancer: Recent Advances. Frontiers in Pharmacology, 10, Article 1336.
https://doi.org/10.3389/fphar.2019.01336
[43] Ma, J., Pan, Z., Du, H., Chen, X., Zhu, X., Hao, W., et al. (2023) Luteolin Induces Apoptosis by Impairing Mitochondrial Function and Targeting the Intrinsic Apoptosis Pathway in Gastric Cancer Cells. Oncology Letters, 26, Article No. 327.
https://doi.org/10.3892/ol.2023.13913
[44] Lu, X., Li, Y., Li, X. and Aisa, H.A. (2017) Luteolin Induces Apoptosis in vitro through Suppressing the MAPK and PI3K Signaling Pathways in Gastric Cancer. Oncology Letters, 14, 1993-2000.
https://doi.org/10.3892/ol.2017.6380
[45] Wu, H., Liu, Y., Hsu, K., Wang, Y., Chan, Y., Chen, Y., et al. (2020) MLL3 Induced by Luteolin Causes Apoptosis in Tamoxifen-Resistant Breast Cancer Cells through H3K4 Monomethylation and Suppression of the PI3K/AKT/mTOR Pathway. The American Journal of Chinese Medicine, 48, 1221-1241.
https://doi.org/10.1142/s0192415x20500603
[46] Wang, Q., Wang, H., Jia, Y., Pan, H. and Ding, H. (2017) Luteolin Induces Apoptosis by ROS/ER Stress and Mitochondrial Dysfunction in Gliomablastoma. Cancer Chemotherapy and Pharmacology, 79, 1031-1041.
https://doi.org/10.1007/s00280-017-3299-4
[47] Na, X., Li, L., Liu, D., He, J., Zhang, L. and Zhou, Y. (2024) Natural Products Targeting Ferroptosis Pathways in Cancer Therapy (Review). Oncology Reports, 52, Article No. 123.
https://doi.org/10.3892/or.2024.8782
[48] Han, S., Lin, F., Qi, Y., Liu, C., Zhou, L., Xia, Y., et al. (2022) HO-1 Contributes to Luteolin-Triggered Ferroptosis in Clear Cell Renal Cell Carcinoma via Increasing the Labile Iron Pool and Promoting Lipid Peroxidation. Oxidative Medicine and Cellular Longevity, 2022, Article No. 3846217.
https://doi.org/10.1155/2022/3846217
[49] Zheng, Y., Li, L., Chen, H., Zheng, Y., Tan, X., Zhang, G., et al. (2023) Luteolin Exhibits Synergistic Therapeutic Efficacy with Erastin to Induce Ferroptosis in Colon Cancer Cells through the HIC1-Mediated Inhibition of GPX4 Expression. Free Radical Biology and Medicine, 208, 530-544.
https://doi.org/10.1016/j.freeradbiomed.2023.09.014
[50] Fu, W., Xu, L., Chen, Y., Zhang, Z., Chen, S., Li, Q., et al. (2023) Luteolin Induces Ferroptosis in Prostate Cancer Cells by Promoting TFEB Nuclear Translocation and Increasing Ferritinophagy. The Prostate, 84, 223-236.
https://doi.org/10.1002/pros.24642
[51] Parzych, K.R. and Klionsky, D.J. (2014) An Overview of Autophagy: Morphology, Mechanism, and Regulation. Antioxidants & Redox Signaling, 20, 460-473.
https://doi.org/10.1089/ars.2013.5371
[52] Potočnjak, I., Šimić, L., Gobin, I., Vukelić, I. and Domitrović, R. (2020) Antitumor Activity of Luteolin in Human Colon Cancer SW620 Cells Is Mediated by the ERK/FOXO3a Signaling Pathway. Toxicology in vitro, 66, Article 104852.
https://doi.org/10.1016/j.tiv.2020.104852
[53] Lee, Y. and Kwon, Y.H. (2019) Regulation of Apoptosis and Autophagy by Luteolin in Human Hepatocellular Cancer Hep3B Cells. Biochemical and Biophysical Research Communications, 517, 617-622.
https://doi.org/10.1016/j.bbrc.2019.07.073
[54] Masraksa, W., Tanasawet, S., Hutamekalin, P., Wongtawatchai, T. and Sukketsiri, W. (2020) Luteolin Attenuates Migration and Invasion of Lung Cancer Cells via Suppressing Focal Adhesion Kinase and Non-Receptor Tyrosine Kinase Signaling Pathway. Nutrition Research and Practice, 14, 127-133.
https://doi.org/10.4162/nrp.2020.14.2.127
[55] Feng, J., Zheng, T., Hou, Z., Lv, C., Xue, A., Han, T., et al. (2020) Luteolin, an Aryl Hydrocarbon Receptor Ligand, Suppresses Tumor Metastasis in vitro and in vivo. Oncology Reports, 44, 2231-2240.
https://doi.org/10.3892/or.2020.7781
[56] Aljohani, H., Khodier, A.E. and Al-Gayyar, M.M. (2023) Antitumor Activity of Luteolin against Ehrlich Solid Carcinoma in Rats via Blocking Wnt/β-Catenin/SMAD4 Pathway. Cureus, 15, e39789.
https://doi.org/10.7759/cureus.39789
[57] Lee, W., Wu, L., Chen, W., Wang, C. and Tseng, T. (2006) Inhibitory Effect of Luteolin on Hepatocyte Growth Factor/Scatter Factor-Induced HepG2 Cell Invasion Involving Both MAPK/ERKs and PI3K-AKT Pathways. Chemico-Biological Interactions, 160, 123-133.
https://doi.org/10.1016/j.cbi.2006.01.002
[58] Pratheeshkumar, P., Son, Y., Budhraja, A., Wang, X., Ding, S., Wang, L., et al. (2012) Luteolin Inhibits Human Prostate Tumor Growth by Suppressing Vascular Endothelial Growth Factor Receptor 2-Mediated Angiogenesis. PLOS ONE, 7, e52279.
https://doi.org/10.1371/journal.pone.0052279
[59] Zang, M., Hu, L., Zhang, B., Zhu, Z., Li, J., Zhu, Z., et al. (2017) Luteolin Suppresses Angiogenesis and Vasculogenic Mimicry Formation through Inhibiting Notch1-VEGF Signaling in Gastric Cancer. Biochemical and Biophysical Research Communications, 490, 913-919.
https://doi.org/10.1016/j.bbrc.2017.06.140
[60] Li, Z., Ge, H., Xie, Y., Zhang, Y., Zhao, X., Sun, W., et al. (2023) Luteolin Inhibits Angiogenesis and Enhances Radiotherapy Sensitivity of Laryngeal Cancer via Downregulating Integrin Β1. Tissue and Cell, 85, Article 102235.
https://doi.org/10.1016/j.tice.2023.102235
[61] Lopez-Lazaro, M. (2009) Distribution and Biological Activities of the Flavonoid Luteolin. Mini-Reviews in Medicinal Chemistry, 9, 31-59.
https://doi.org/10.2174/138955709787001712
[62] Caporali, S., De Stefano, A., Calabrese, C., Giovannelli, A., Pieri, M., Savini, I., et al. (2022) Anti-Inflammatory and Active Biological Properties of the Plant-Derived Bioactive Compounds Luteolin and Luteolin 7-Glucoside. Nutrients, 14, Article 1155.
https://doi.org/10.3390/nu14061155
[63] Ho, H., Chen, P., Lo, Y., Lin, C., Chuang, Y., Hsieh, M., et al. (2021) Luteolin‐7‐O‐Glucoside Inhibits Cell Proliferation and Modulates Apoptosis through the AKT Signaling Pathway in Human Nasopharyngeal Carcinoma. Environmental Toxicology, 36, 2013-2024.
https://doi.org/10.1002/tox.23319
[64] Hwang, Y., Lee, E., Kim, H. and Hwang, K. (2013) Molecular Mechanisms of Luteolin-7-O-Glucoside-Induced Growth Inhibition on Human Liver Cancer Cells: G2/M Cell Cycle Arrest and Caspase-Independent Apoptotic Signaling Pathways. BMB Reports, 46, 611-616.
https://doi.org/10.5483/bmbrep.2013.46.12.133
[65] Velmurugan, B.K., Lin, J., Mahalakshmi, B., Chuang, Y., Lin, C., Lo, Y., et al. (2020) Luteolin-7-O-Glucoside Inhibits Oral Cancer Cell Migration and Invasion by Regulating Matrix Metalloproteinase-2 Expression and Extracellular Signal-Regulated Kinase Pathway. Biomolecules, 10, Article 502.
https://doi.org/10.3390/biom10040502