|
[1]
|
McGurk, K.A. and Halliday, B.P. (2022) Dilated Cardiomyopathy—Details Make the Difference. European Journal of Heart Failure, 24, 1197-1199. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Di Marco, A., Brown, P.F., Bradley, J., Nucifora, G., Claver, E., de Frutos, F., et al. (2021) Improved Risk Stratification for Ventricular Arrhythmias and Sudden Death in Patients with Nonischemic Dilated Cardiomyopathy. Journal of the American College of Cardiology, 77, 2890-2905. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Halliday, B.P., Gulati, A., Ali, A., Newsome, S., Lota, A., Tayal, U., et al. (2018) Sex and Age-Based Differences in the Natural History and Outcome of Dilated Cardiomyopathy. European Journal of Heart Failure, 20, 1392-1400. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Caviedes, B.P., Cordova, F.T., Larrain, V.M., et al. (2018) Dilated Cardiomyopathy and Severe Heart Failure. An Update for Pediatricians. Archivos Argentinos de Pediatria, 116, e421-e428.
|
|
[5]
|
Pietra, B.A., Kantor, P.F., Bartlett, H.L., Chin, C., Canter, C.E., Larsen, R.L., et al. (2012) Early Predictors of Survival to and after Heart Transplantation in Children with Dilated Cardiomyopathy. Circulation, 126, 1079-1086. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Japp, A.G., Gulati, A., Cook, S.A., Cowie, M.R. and Prasad, S.K. (2016) The Diagnosis and Evaluation of Dilated Cardiomyopathy. Journal of the American College of Cardiology, 67, 2996-3010. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
McNally, E.M. and Mestroni, L. (2017) Dilated Cardiomyopathy. Circulation Research, 121, 731-748. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Orphanou, N., Papatheodorou, E. and Anastasakis, A. (2021) Dilated Cardiomyopathy in the Era of Precision Medicine: Latest Concepts and Developments. Heart Failure Reviews, 27, 1173-1191. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Paldino, A., Dal Ferro, M., Stolfo, D., Gandin, I., Medo, K., Graw, S., et al. (2022) Prognostic Prediction of Genotype vs Phenotype in Genetic Cardiomyopathies. Journal of the American College of Cardiology, 80, 1981-1994. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Towbin, J.A., McKenna, W.J., Abrams, D.J., Ackerman, M.J., Calkins, H., Darrieux, F.C.C., et al. (2019) 2019 HRS Expert Consensus Statement on Evaluation, Risk Stratification, and Management of Arrhythmogenic Cardiomyopathy: Executive Summary. Heart Rhythm, 16, e373-e407. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Roudijk, R.W., Taha, K., Bourfiss, M., Loh, P., van den Heuvel, L., Boonstra, M.J., et al. (2021) Risk Stratification and Subclinical Phenotyping of Dilated and/or Arrhythmogenic Cardiomyopathy Mutation-Positive Relatives: CVON eDETECT Consortium. Netherlands Heart Journal, 29, 301-308. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Moeinafshar, A., Yazdanpanah, N. and Rezaei, N. (2021) Diagnostic Biomarkers of Dilated Cardiomyopathy. Immunobiology, 226, Article 152153. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Katsanis, S.H. and Katsanis, N. (2013) Molecular Genetic Testing and the Future of Clinical Genomics. Nature Reviews Genetics, 14, 415-426. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Payne, D.A., Baluchova, K., Peoc'h, K.H., van Schaik, R.H.N., Chan, K.C.A., Maekawa, M., et al. (2017) Pre-Examination Factors Affecting Molecular Diagnostic Test Results and Interpretation: A Case-Based Approach. Clinica Chimica Acta, 467, 59-69. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhou, L., Liu, C., Zou, Y. and Chen, Z. (2022) Development and Verification of the Nomogram for Dilated Cardiomyopathy Gene Diagnosis. Scientific Reports, 12, Article No. 8908. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Liu, C., Liu, J., Wu, D., Luo, S., Li, W., Chen, L., et al. (2022) Construction of Immune-Related ceRNA Network in Dilated Cardiomyopathy: Based on Sex Differences. Frontiers in Genetics, 13, Article 882324. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Newman, A.M., Liu, C.L., Green, M.R., Gentles, A.J., Feng, W., Xu, Y., et al. (2015) Robust Enumeration of Cell Subsets from Tissue Expression Profiles. Nature Methods, 12, 453-457. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Friedman, J., Hastie, T. and Tibshirani, R. (2010) Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 33, 1-22. [Google Scholar] [CrossRef]
|
|
[19]
|
Yu, G., Wang, L., Han, Y. and He, Q. (2012) Clusterprofiler: An R Package for Comparing Biological Themes among Gene Clusters. OMICS: A Journal of Integrative Biology, 16, 284-287. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Willighagen, E.L., O’Boyle, N.M., Gopalakrishnan, H., Jiao, D., Guha, R., Steinbeck, C., et al. (2007) Userscripts for the Life Sciences. BMC Bioinformatics, 8, Article No. 487. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Sinagra, G., Carriere, C., Clemenza, F., Minà, C., Bandera, F., Zaffalon, D., et al. (2020) Risk Stratification in Cardiomyopathy. European Journal of Preventive Cardiology, 27, 52-58. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Dagenais, G.R., Leong, D.P., Rangarajan, S., Lanas, F., Lopez-Jaramillo, P., Gupta, R., et al. (2020) Variations in Common Diseases, Hospital Admissions, and Deaths in Middle-Aged Adults in 21 Countries from Five Continents (PURE): A Prospective Cohort Study. The Lancet, 395, 785-794. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Porcari, A., De Angelis, G., Romani, S., Paldino, A., Artico, J., Cannatà, A., et al. (2018) Current Diagnostic Strategies for Dilated Cardiomyopathy: A Comparison of Imaging Techniques. Expert Review of Cardiovascular Therapy, 17, 53-63. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Gouveia, R., Andrade, M., Aguiar, C. and Ramos, S. (2021) Endomyocardial Biopsy: A 21st Century Diagnostic Tool. Polish Journal of Pathology, 72, 356-357. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ammirati, E., Buono, A., Moroni, F., Gigli, L., Power, J.R., Ciabatti, M., et al. (2022) State-of-the-Art of Endomyocardial Biopsy on Acute Myocarditis and Chronic Inflammatory Cardiomyopathy. Current Cardiology Reports, 24, 597-609. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Smith, J.G. (2017) Molecular Epidemiology of Heart Failure. JACC: Basic to Translational Science, 2, 757-769. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Verdonschot, J.A.J., Vanhoutte, E.K., Claes, G.R.F., Helderman-van den Enden, A.T.J.M., Hoeijmakers, J.G.J., Hellebrekers, D.M.E.I., et al. (2020) A Mutation Update for the FLNC Gene in Myopathies and Cardiomyopathies. Human Mutation, 41, 1091-1111. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Sweet, M.E., Cocciolo, A., Slavov, D., Jones, K.L., Sweet, J.R., Graw, S.L., et al. (2018) Transcriptome Analysis of Human Heart Failure Reveals Dysregulated Cell Adhesion in Dilated Cardiomyopathy and Activated Immune Pathways in Ischemic Heart Failure. BMC Genomics, 19, Article No. 812. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Pistulli, R., König, S., Drobnik, S., Kretzschmar, D., Rohm, I., Lichtenauer, M., et al. (2013) Decrease in Dendritic Cells in Endomyocardial Biopsies of Human Dilated Cardiomyopathy. European Journal of Heart Failure, 15, 974-985. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ni, S., Xu, J., Sun, S., Li, Y., Zhou, Z., Li, H., et al. (2021) Single-Cell Transcriptomic Analyses of Cardiac Immune Cells Reveal That Rel-Driven CD72-Positive Macrophages Induce Cardiomyocyte Injury. Cardiovascular Research, 118, 1303-1320. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Asada, N. (2018) Tubular Immaturity Causes Erythropoietin-Deficiency Anemia of Prematurity in Preterm Neonates. Scientific Reports, 8, Article No. 4448. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Caforio, A.L.P., Marcolongo, R., Jahns, R., Fu, M., Felix, S.B. and Iliceto, S. (2012) Immune-Mediated and Autoimmune Myocarditis: Clinical Presentation, Diagnosis and Management. Heart Failure Reviews, 18, 715-732. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Efthimiadis, I., Skendros, P., Sarantopoulos, A., et al. CD4+/CD25+ T-Lymphocytes and Th1/Th2 Regulation in Dilated Cardiomyopathy. Hippokratia, 15, 335-342.
|
|
[34]
|
Ueno, A., Murasaki, K., Hagiwara, N. and Kasanuki, H. (2007) Increases in Circulating T Lymphocytes Expressing HLA-DR and CD40 Ligand in Patients with Dilated Cardiomyophthy. Heart and Vessels, 22, 316-321. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Born, W., Cady, C., Jones-Carson, J., Mukasa, A., Lahn, M. and O’brien, R. (1998) Immunoregulatory Functions of Γδ T Cells. In: Advances in Immunology, Elsevier, 77-144. [Google Scholar] [CrossRef]
|
|
[36]
|
Nanno, M., Shiohara, T., Yamamoto, H., Kawakami, K. and Ishikawa, H. (2007) Γδ T Cells: Firefighters or Fire Boosters in the Front Lines of Inflammatory Responses. Immunological Reviews, 215, 103-113. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Ganassi, M. and Zammit, P.S. (2022) Involvement of Muscle Satellite Cell Dysfunction in Neuromuscular Disorders: Expanding the Portfolio of Satellite Cell-Opathies. European Journal of Translational Myology, 32, Article No. 4448. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Shichi, D., Kikkawa, E.F., Ota, M., Katsuyama, Y., Kimura, A., Matsumori, A., et al. (2005) The Haplotype Block, NFKBIL1-ATP6V1G2-BAT1-MICB-MICA, within the Class III-Class I Boundary Region of the Human Major Histocompatibility Complex May Control Susceptibility to Hepatitis C Virus-Associated Dilated Cardiomyopathy. Tissue Antigens, 66, 200-208. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Roumaud, P. and Martin, L.J. (2019) Transcriptomic Analysis of Overexpressed SOX4 and SOX8 in TM4 Sertoli Cells with Emphasis on Cell-to-Cell Interactions. Biochemical and Biophysical Research Communications, 512, 678-683. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Liu, C., Ni, Y., Thachil, V., Morley, M., Moravec, C.S. and Tang, W.H.W. (2022) Differential Expression of Members of SOX Family of Transcription Factors in Failing Human Hearts. Translational Research, 242, 66-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Peng, Y., Zhou, B., Wang, Y., Chen, Y., Li, H., Song, Y., et al. (2011) Association between Polymorphisms in the Signal Transducer and Activator of Transcription and Dilated Cardiomyopathy in the Chinese Han Population. Molecular and Cellular Biochemistry, 360, 197-203. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Hershberger, R.E., Hedges, D.J. and Morales, A. (2013) Dilated Cardiomyopathy: The Complexity of a Diverse Genetic Architecture. Nature Reviews Cardiology, 10, 531-547. [Google Scholar] [CrossRef] [PubMed]
|