|
[1]
|
Ayerbe, L., Ayis, S., Wolfe, C.D.A. and Rudd, A.G. (2013) Natural History, Predictors and Outcomes of Depression after Stroke: Systematic Review and Meta-Analysis. British Journal of Psychiatry, 202, 14-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Ormstad, H., Aass, H.C.D., Amthor, K., Lund-Sørensen, N. and Sandvik, L. (2012) Serum Levels of Cytokines, Glucose, and Hemoglobin as Possible Predictors of Poststroke Depression, and Association with Poststroke Fatigue. International Journal of Neuroscience, 122, 682-690. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Capes, S.E., Hunt, D., Malmberg, K., Pathak, P. and Gerstein, H.C. (2001) Stress Hyperglycemia and Prognosis of Stroke in Nondiabetic and Diabetic Patients: A Systematic Overview. Stroke, 32, 2426-2432. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Xiao, M., Wang, Q., Ren, W., Zhang, Z., Wu, X., Wang, Z., et al. (2018) Impact of Prediabetes on Poststroke Depression in Chinese Patients with Acute Ischemic Stroke. International Journal of Geriatric Psychiatry, 33, 956-963. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Zhang, Y., He, J., Liang, H., Lu, W., Yang, G., Liu, J., et al. (2017) Diabetes Mellitus Is Associated with Late-Onset Post-Stroke Depression. Journal of Affective Disorders, 221, 222-226. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
van Dooren, F.E.P., Schram, M.T., Schalkwijk, C.G., Stehouwer, C.D.A., Henry, R.M.A., Dagnelie, P.C., et al. (2016) Associations of Low Grade Inflammation and Endothelial Dysfunction with Depression—The Maastricht Study. Brain, Behavior, and Immunity, 56, 390-396. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Jang, W.Y., Lee, B., Jeong, J., Sung, Y., Choi, M., Song, P., et al. (2017) Overexpression of Serum Amyloid a 1 Induces Depressive-Like Behavior in Mice. Brain Research, 1654, 55-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Loubinoux, I., Kronenberg, G., Endres, M., Schumann‐Bard, P., Freret, T., Filipkowski, R.K., et al. (2012) Post‐Stroke Depression: Mechanisms, Translation and Therapy. Journal of Cellular and Molecular Medicine, 16, 1961-1969. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Wang, X., Bao, W., Liu, J., OuYang, Y., Wang, D., Rong, S., et al. (2012) Inflammatory Markers and Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. Diabetes Care, 36, 166-175. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Li, W., Ling, S., Yang, Y., Hu, Z., Davies, H. and Fang, M. (2014) Systematic Hypothesis for Post-Stroke Depression Caused Inflammation and Neurotransmission and Resultant on Possible Treatments. Neuro Enocrinology Letters, 35, 104-109.
|
|
[11]
|
Collins, S.M., Surette, M. and Bercik, P. (2012) The Interplay between the Intestinal Microbiota and the Brain. Nature Reviews Microbiology, 10, 735-742. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Mayer, E.A., Nance, K. and Chen, S. (2022) The Gut-Brain Axis. Annual Review of Medicine, 73, 439-453. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Tran, S.M. and Mohajeri, M.H. (2021) The Role of Gut Bacterial Metabolites in Brain Development, Aging and Disease. Nutrients, 13, Article No. 732. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ling, Y., Gu, Q., Zhang, J., Gong, T., Weng, X., Liu, J., et al. (2020) Structural Change of Gut Microbiota in Patients with Post-Stroke Comorbid Cognitive Impairment and Depression and Its Correlation with Clinical Features. Journal of Alzheimer’s Disease, 77, 1595-1608. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kelly, J.R., Borre, Y., O’ Brien, C., Patterson, E., El Aidy, S., Deane, J., et al. (2016) Transferring the Blues: Depression-Associated Gut Microbiota Induces Neurobehavioural Changes in the Rat. Journal of Psychiatric Research, 82, 109-118. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Valvassori, S., Resende, W., Budni, J., Dal-Pont, G., Bavaresco, D., Reus, G., et al. (2015) Sodium Butyrate, a Histone Deacetylase Inhibitor, Reverses Behavioral and Mitochondrial Alterations in Animal Models of Depression Induced by Early-or Late-Life Stress. Current Neurovascular Research, 12, 312-320. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Valvassori, S., Varela, R., Arent, C., Dal-Pont, G., Bobsin, T., Budni, J., et al. (2014) Sodium Butyrate Functions as an Antidepressant and Improves Cognition with Enhanced Neurotrophic Expression in Models of Maternal Deprivation and Chronic Mild Stress. Current Neurovascular Research, 11, 359-366. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Müller, B., Rasmusson, A.J., Just, D., Jayarathna, S., Moazzami, A., Novicic, Z.K., et al. (2021) Fecal Short-Chain Fatty Acid Ratios as Related to Gastrointestinal and Depressive Symptoms in Young Adults. Psychosomatic Medicine, 83, 693-699. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Luo, F. and Fang, C. (2022) Association between Gut Microbiota and Post-Stroke Depression in Chinese Population: A Meta-Analysis. Heliyon, 8, e12605. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Karlsson, F.H., Tremaroli, V., Nookaew, I., Bergström, G., Behre, C.J., Fagerberg, B., et al. (2013) Gut Metagenome in European Women with Normal, Impaired and Diabetic Glucose Control. Nature, 498, 99-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wu, X., Ma, C., Han, L., Nawaz, M., Gao, F., Zhang, X., et al. (2010) Molecular Characterisation of the Faecal Microbiota in Patients with Type II Diabetes. Current Microbiology, 61, 69-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Grant, M.C. and Baker, J.S. (2016) An Overview of the Effect of Probiotics and Exercise on Mood and Associated Health Conditions. Critical Reviews in Food Science and Nutrition, 57, 3887-3893. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Angelucci, F., Brenè, S. and Mathé, A.A. (2005) BDNF in Schizophrenia, Depression and Corresponding Animal Models. Molecular Psychiatry, 10, 345-352. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Suwa, M., Kishimoto, H., Nofuji, Y., Nakano, H., Sasaki, H., Radak, Z., et al. (2006) Serum Brain-Derived Neurotrophic Factor Level Is Increased and Associated with Obesity in Newly Diagnosed Female Patients with Type 2 Diabetes Mellitus. Metabolism, 55, 852-857. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Guo, W., Nagappan, G. and Lu, B. (2018) Differential Effects of Transient and Sustained Activation of BDNF-TrkB Signaling. Developmental Neurobiology, 78, 647-659. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Yang, L., Zhang, Z., Sun, D., Xu, Z., Yuan, Y., Zhang, X., et al. (2010) Low Serum BDNF May Indicate the Development of PSD in Patients with Acute Ischemic Stroke. International Journal of Geriatric Psychiatry, 26, 495-502. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Fulgenzi, G., Hong, Z., Tomassoni-Ardori, F., Barella, L.F., Becker, J., Barrick, C., et al. (2020) Novel Metabolic Role for BDNF in Pancreatic Β-Cell Insulin Secretion. Nature Communications, 11, Article No. 1950. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Patas, K., Penninx, B.W.J.H., Bus, B.A.A., Vogelzangs, N., Molendijk, M.L., Elzinga, B.M., et al. (2014) Association between Serum Brain-Derived Neurotrophic Factor and Plasma Interleukin-6 in Major Depressive Disorder with Melancholic Features. Brain, Behavior, and Immunity, 36, 71-79. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Cryer, M.J., Horani, T. and DiPette, D.J. (2015) Diabetes and Hypertension: A Comparative Review of Current Guidelines. The Journal of Clinical Hypertension, 18, 95-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Chae, W.R., Baumert, J., Nübel, J., Brasanac, J., Gold, S.M., Hapke, U., et al. (2023) Associations between Individual Depressive Symptoms and Immunometabolic Characteristics in Major Depression. European Neuropsychopharmacology, 71, 25-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Fernandes, B.S., Salagre, E., Enduru, N., Grande, I., Vieta, E. and Zhao, Z. (2022) Insulin Resistance in Depression: A Large Meta-Analysis of Metabolic Parameters and Variation. Neuroscience & Biobehavioral Reviews, 139, Article ID: 104758. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
He, Y., Tong, L., Guo, F., Zhao, S., Zhang, J., Guo, X., et al. (2022) Depression Status and Insulin Resistance in Adults with Obesity: A Cross-Sectional Study. Journal of Psychosomatic Research, 163, Article ID: 111049. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Martin, H., Bullich, S., Martinat, M., Chataigner, M., Di Miceli, M., Simon, V., et al. (2022) Insulin Modulates Emotional Behavior through a Serotonin-Dependent Mechanism. Molecular Psychiatry, 29, 1610-1619. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Yang, J., Zhang, Z., Xie, Z., Bai, L., Xiong, P., Chen, F., et al. (2022) Metformin Modulates Microbiota-Derived Inosine and Ameliorates Methamphetamine-Induced Anxiety and Depression-Like Withdrawal Symptoms in Mice. Biomedicine & Pharmacotherapy, 149, Article ID: 112837. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Ji, S., Wang, L. and Li, L. (2019) Effect of Metformin on Short-Term High-Fat Diet-Induced Weight Gain and Anxiety-Like Behavior and the Gut Microbiota. Frontiers in Endocrinology, 10, Article No. 704. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Keshavarzi, S., Kermanshahi, S., Karami, L., Motaghinejad, M., Motevalian, M. and Sadr, S. (2019) Protective Role of Metformin against Methamphetamine Induced Anxiety, Depression, Cognition Impairment and Neurodegeneration in Rat: The Role of CREB/BDNF and Akt/GSK3 Signaling Pathways. NeuroToxicology, 72, 74-84. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Calkin, C.V., Chengappa, K.N.R., Cairns, K., Cookey, J., Gannon, J., Alda, M., et al. (2022) Treating Insulin Resistance with Metformin as a Strategy to Improve Clinical Outcomes in Treatment-Resistant Bipolar Depression (The TRIO-BD Study): A Randomized, Quadruple-Masked, Placebo-Controlled Clinical Trial. The Journal of Clinical Psychiatry, 83, 21m14022. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Sheth, K.N., Elm, J.J., Beslow, L.A., Sze, G.K. and Kimberly, W.T. (2015) Glyburide Advantage in Malignant Edema and Stroke (GAMES-RP) Trial: Rationale and Design. Neurocritical Care, 24, 132-139. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Sheth, K.N., Kimberly, W.T., Elm, J.J., Kent, T.A., Mandava, P., Yoo, A.J., et al. (2014) Pilot Study of Intravenous Glyburide in Patients with a Large Ischemic Stroke. Stroke, 45, 281-283. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Simard, J.M., Woo, S.K., Tsymbalyuk, N., Voloshyn, O., Yurovsky, V., Ivanova, S., et al. (2012) Glibenclamide—10-h Treatment Window in a Clinically Relevant Model of Stroke. Translational Stroke Research, 3, 286-295. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Ortega, F.J., Jolkkonen, J., Mahy, N. and Rodríguez, M.J. (2012) Glibenclamide Enhances Neurogenesis and Improves Long-Term Functional Recovery after Transient Focal Cerebral Ischemia. Journal of Cerebral Blood Flow & Metabolism, 33, 356-364. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Su, W., Peng, W., Gong, H., Liu, Y., Zhang, Y., Lian, Y., et al. (2017) Antidiabetic Drug Glyburide Modulates Depressive-Like Behavior Comorbid with Insulin Resistance. Journal of Neuroinflammation, 14, Article No. 210. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Esmaeili, M.H., Bahari, B. and Salari, A. (2018) ATP-Sensitive Potassium-Channel Inhibitor Glibenclamide Attenuates HPA Axis Hyperactivity, Depression-and Anxiety-Related Symptoms in a Rat Model of Alzheimer’s Disease. Brain Research Bulletin, 137, 265-276. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
McClean, P.L. and Hölscher, C. (2014) Liraglutide Can Reverse Memory Impairment, Synaptic Loss and Reduce Plaque Load in Aged APP/PS1 Mice, a Model of Alzheimer’s Disease. Neuropharmacology, 76, 57-67. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Sato, K., Kameda, M., Yasuhara, T., Agari, T., Baba, T., Wang, F., et al. (2013) Neuroprotective Effects of Liraglutide for Stroke Model of Rats. International Journal of Molecular Sciences, 14, 21513-21524. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Weina, H., Yuhu, N., Christian, H., Birong, L., Feiyu, S. and Le, W. (2018) Liraglutide Attenuates the Depressive-and Anxiety-Like Behaviour in the Corticosterone Induced Depression Model via Improving Hippocampal Neural Plasticity. Brain Research, 1694, 55-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
McGovern, S.F.J., Hunter, K. and Hölscher, C. (2012) Effects of the Glucagon-Like Polypeptide-1 Analogue (Val8)GLP-1 on Learning, Progenitor Cell Proliferation and Neurogenesis in the C57B/16 Mouse Brain. Brain Research, 1473, 204-213. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Anderberg, R.H., Richard, J.E., Hansson, C., Nissbrandt, H., Bergquist, F. and Skibicka, K.P. (2016) GLP-1 Is both Anxiogenic and Antidepressant; Divergent Effects of Acute and Chronic GLP-1 on Emotionality. Psychoneuroendocrinology, 65, 54-66. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Ji, C., Xue, G., Lijun, C., Feng, P., Li, D., Li, L., et al. (2016) A Novel Dual GLP-1 and GIP Receptor Agonist Is Neuroprotective in the MPTP Mouse Model of Parkinson’s Disease by Increasing Expression of BNDF. Brain Research, 1634, 1-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Sharma, A.N., Ligade, S.S., Sharma, J.N., Shukla, P., Elased, K.M. and Lucot, J.B. (2014) GLP-1 Receptor Agonist Liraglutide Reverses Long-Term Atypical Antipsychotic Treatment Associated Behavioral Depression and Metabolic Abnormalities in Rats. Metabolic Brain Disease, 30, 519-527. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Moulton, C.D., Pickup, J.C., Amiel, S.A., Winkley, K. and Ismail, K. (2016) Investigating Incretin-Based Therapies as a Novel Treatment for Depression in Type 2 Diabetes: Findings from the South London Diabetes (SOUL-D) Study. Primary Care Diabetes, 10, 156-159. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Li, J., Cao, J., Wei, J. and Geng, W. (2023) Case Report: Semaglutide-Associated Depression: A Report of Two Cases. Frontiers in Psychiatry, 14, Article ID: 1238353. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Kornelius, E., Huang, J., Lo, S., Huang, C. and Yang, Y. (2024) The Risk of Depression, Anxiety, and Suicidal Behavior in Patients with Obesity on Glucagon Like Peptide-1 Receptor Agonist Therapy. Scientific Reports, 14, Article No. 24433. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Steyn, S.F., Harvey, B.H. and Brink, C.B. (2018) Immediate and Long-Term Antidepressive-Like Effects of Pre-Pubertal Escitalopram and Omega-3 Supplementation Combination in Young Adult Stress-Sensitive Rats. Behavioural Brain Research, 351, 49-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Nakata, N., Kato, H. and Kogure, K. (1992) Protective Effects of Serotonin Reuptake Inhibitors, Citalopram and Clomipramine, against Hippocampal CA1 Neuronal Damage Following Transient Ischemia in the Gerbil. Brain Research, 590, 48-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Gupta, S., Upadhayay, D., Sharma, U., Jagannathan, N.R. and Gupta, Y.K. (2018) Citalopram Attenuated Neurobehavioral, Biochemical, and Metabolic Alterations in Transient Middle Cerebral Artery Occlusion Model of Stroke in Male Wistar Rats. Journal of Neuroscience Research, 96, 1277-1293. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Rantamäki, T., Hendolin, P., Kankaanpää, A., Mijatovic, J., Piepponen, P., Domenici, E., et al. (2007) Pharmacologically Diverse Antidepressants Rapidly Activate Brain-Derived Neurotrophic Factor Receptor Trkb and Induce Phospholipase-Cγ Signaling Pathways in Mouse Brain. Neuropsychopharmacology, 32, 2152-2162. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Savadi Oskouie, D., Sharifipour, E., Sadeghi Bazargani, H., Hashemilar, M., Nikanfar, M., Ghazanfari Amlashi, S., et al. (2017) Efficacy of Citalopram on Acute Ischemic Stroke Outcome: A Randomized Clinical Trial. Neurorehabilitation and Neural Repair, 31, 638-647. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Holmäng, A. and Björntorp, P. (1992) The Effects of Cortisol on Insulin Sensitivity in Muscle. Acta Physiologica Scandinavica, 144, 425-431. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Buhl, C.S., Stødkilde-Jørgensen, H., Videbech, P., Vaag, A., Møller, N., Lund, S., et al. (2017) Escitalopram Ameliorates Hypercortisolemia and Insulin Resistance in Low Birth Weight Men with Limbic Brain Alterations. The Journal of Clinical Endocrinology & Metabolism, 103, 115-124. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Gagnon, J., Lussier, M., MacGibbon, B., Daskalopoulou, S.S. and Bartlett, G. (2018) The Impact of Antidepressant Therapy on Glycemic Control in Canadian Primary Care Patients with Diabetes Mellitus. Frontiers in Nutrition, 5, Article No. 47. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Lim, C., Kim, S., Park, J., Kim, C., Yoon, S.H. and Lee, J. (2008) Fluoxetine Affords Robust Neuroprotection in the Postischemic Brain via Its Anti‐Inflammatory Effect. Journal of Neuroscience Research, 87, 1037-1045. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Lee, H.J., Kim, J.W., Yim, S.V., Kim, M.J., Kim, S.A., Kim, Y.J., et al. (2001) Increase in Cell Proliferation in Dentate Gyrus Following Fluoxetine Treatment in Rat Maternal Separation Model. Molecular Psychiatry, 6, 610. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Li, W., Cai, H., Wang, B., Chen, L., Zhou, Q., Luo, C., et al. (2008) Chronic Fluoxetine Treatment Improves Ischemia‐induced Spatial Cognitive Deficits through Increasing Hippocampal Neurogenesis after Stroke. Journal of Neuroscience Research, 87, 112-122. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Tian, M., Yang, M., Li, Z., Wang, Y., Chen, W., Yang, L., et al. (2019) Fluoxetine Suppresses Inflammatory Reaction in Microglia under OGD/R Challenge via Modulation of NF-κB Signaling. Bioscience Reports, 39, BSR20181584. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Liu, G., Yang, X., Xue, T., Chen, S., Wu, X., Yan, Z., et al. (2021) Is Fluoxetine Good for Subacute Stroke? A Meta-Analysis Evidenced from Randomized Controlled Trials. Frontiers in Neurology, 12, Article ID: 633781. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Ghaeli, P., Shahsavand, E., Mesbahi, M., Kamkar, M., Sadeghi, M. and Dashti-Khavidaki, S. (2004) Comparing the Effects of 8-Week Treatment with Fluoxetine and Imipramine on Fasting Blood Glucose of Patients with Major Depressive Disorder. Journal of Clinical Psychopharmacology, 24, 386-388. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Asmaro, K., Elzib, H., Pawloski, J. and Ding, Y. (2019) Antidepressant Pharmacotherapy and Poststroke Motor Rehabilitation: A Review of Neurophysiologic Mechanisms and Clinical Relevance. Brain Circulation, 5, 62-67. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Gaur, V. and Kumar, A. (2010) Behavioral, Biochemical and Cellular Correlates in the Protective Effect of Sertraline against Transient Global Ischemia Induced Behavioral Despair: Possible Involvement of Nitric Oxide-Cyclic Guanosine Monophosphate Study Pathway. Brain Research Bulletin, 82, 57-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Kumar, P. and Kumar, A. (2009) Possible Role of Sertraline against 3-Nitropropionic Acid Induced Behavioral, Oxidative Stress and Mitochondrial Dysfunctions in Rat Brain. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33, 100-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Stuckart, I., Siepmann, T., Hartmann, C., Pallesen, L., Sedghi, A., Barlinn, J., et al. (2021) Sertraline for Functional Recovery after Acute Ischemic Stroke: A Prospective Observational Study. Frontiers in Neurology, 12, Article ID: 734170. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Rachdi, C., Damak, R., Fekih Romdhane, F., Ouertani, H. and Cheour, M. (2019) Impact of Sertraline on Weight, Waist Circumference and Glycemic Control: A Prospective Clinical Trial on Depressive Diabetic Type 2 Patients. Primary Care Diabetes, 13, 57-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Silverstein-Metzler, M.G., Shively, C.A., Clarkson, T.B., Appt, S.E., Carr, J.J., Kritchevsky, S.B., et al. (2016) Sertraline Inhibits Increases in Body Fat and Carbohydrate Dysregulation in Adult Female Cynomolgus Monkeys. Psychoneuroendocrinology, 68, 29-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Lustman, P.J., Williams, M.M., Sayuk, G.S., Nix, B.D. and Clouse, R.E. (2007) Factors Influencing Glycemic Control in Type 2 Diabetes during Acute-and Maintenance-Phase Treatment of Major Depressive Disorder with Bupropion. Diabetes Care, 30, 459-466. [Google Scholar] [CrossRef] [PubMed]
|