|
[1]
|
Valdes, A.M., Walter, J., Segal, E. and Spector, T.D. (2018) Role of the Gut Microbiota in Nutrition and Health. British Medical Journal, 361, k2179. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Keku, T.O., Dulal, S., Deveaux, A., Jovov, B. and Han, X. (2015) The Gastrointestinal Microbiota and Colorectal Cancer. American Journal of Physiology-Gastrointestinal and Liver Physiology, 308, G351-G363. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Wu, G., Xu, T., Zhao, N., Lam, Y.Y., Ding, X., Wei, D., et al. (2024) A Core Microbiome Signature as an Indicator of Health. Cell, 187, 6550-6565.e11. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
张静, 王肖枭, 周怡, 等. 肠道菌群与疾病相关性的研究进展[J]. 基础医学与临床, 2020, 40(2): 243-247.
|
|
[5]
|
Stephens, R.W., Arhire, L. and Covasa, M. (2018) Gut Microbiota: From Microorganisms to Metabolic Organ Influencing Obesity. Obesity, 26, 801-809. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Campbell, C., Kandalgaonkar, M.R., Golonka, R.M., Yeoh, B.S., Vijay-Kumar, M. and Saha, P. (2023) Crosstalk between Gut Microbiota and Host Immunity: Impact on Inflammation and Immunotherapy. Biomedicines, 11, Article 294. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
辜柏源, 丁永年. 结直肠息肉相关危险因素研究现状[J]. 齐齐哈尔医学院学报, 2024, 45(14): 1382-1386.
|
|
[8]
|
Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., et al. (2010) A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing. Nature, 464, 59-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Chen, Y., Zhou, J. and Wang, L. (2021) Role and Mechanism of Gut Microbiota in Human Disease. Frontiers in Cellular and Infection Microbiology, 11, Article 625913. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
李惠, 赵菊梅, 师长宏. 基于肠道菌群的免疫调节策略用于结直肠癌联合治疗研究的进展[J]. 中国实验动物学报, 2022, 30(3): 436-443.
|
|
[11]
|
Sun, T., Liu, S., Zhou, Y., Yao, Z., Zhang, D., Cao, S., et al. (2016) Evolutionary Biologic Changes of Gut Microbiota in an ‘Adenoma-Carcinoma Sequence’ Mouse Colorectal Cancer Model Induced by 1, 2-Dimethylhydrazine. Oncotarget, 8, 444-457. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Hale, V.L., Chen, J., Johnson, S., Harrington, S.C., Yab, T.C., Smyrk, T.C., et al. (2017) Shifts in the Fecal Microbiota Associated with Adenomatous Polyps. Cancer Epidemiology, Biomarkers & Prevention, 26, 85-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhang, Z., Tang, H., Chen, P., Xie, H. and Tao, Y. (2019) Demystifying the Manipulation of Host Immunity, Metabolism, and Extraintestinal Tumors by the Gut Microbiome. Signal Transduction and Targeted Therapy, 4, Article No. 41. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
徐艳丽, 尹霞, 常英. 肠道菌群失衡在结直肠癌发病过程中的作用[J]. 国际消化病杂志, 2014, 34(2): 124-127.
|
|
[15]
|
陈辞言, 杜艳. 肠道菌群及其代谢产物与结肠腺瘤性息肉相关性的研究进展[J]. 中国微生态学杂志, 2019, 31(9): 1092-1096.
|
|
[16]
|
Huyghe, J.R., Bien, S.A., Harrison, T.A., Kang, H.M., Chen, S., Schmit, S.L., et al. (2018) Discovery of Common and Rare Genetic Risk Variants for Colorectal Cancer. Nature Genetics, 51, 76-87. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Qu, R., Zhang, Y., Ma, Y., Zhou, X., Sun, L., Jiang, C., et al. (2023) Role of the Gut Microbiota and Its Metabolites in Tumorigenesis or Development of Colorectal Cancer. Advanced Science, 10, Article 2205563. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
DeGruttola, A.K., Low, D., Mizoguchi, A. and Mizoguchi, E. (2016) Current Understanding of Dysbiosis in Disease in Human and Animal Models. Inflammatory Bowel Diseases, 22, 1137-1150. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Cotillard, A., Kennedy, S.P., Kong, L.C., Prifti, E., Pons, N., Le Chatelier, E., et al. (2013) Dietary Intervention Impact on Gut Microbial Gene Richness. Nature, 500, 585-588. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D.R., et al. (2011) Enterotypes of the Human Gut Microbiome. Nature, 473, 174-180. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Goedert, J.J., Gong, Y., Hua, X., Zhong, H., He, Y., Peng, P., et al. (2015) Fecal Microbiota Characteristics of Patients with Colorectal Adenoma Detected by Screening: A Population-Based Study. EBioMedicine, 2, 597-603. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hussan, H., Clinton, S.K., Roberts, K. and Bailey, M.T. (2017) fusobacterium’s Link to Colorectal Neoplasia Sequenced: A Systematic Review and Future Insights. World Journal of Gastroenterology, 23, 8626-8650. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Guo, S., Li, L., Xu, B., Li, M., Zeng, Q., Xiao, H., et al. (2018) A Simple and Novel Fecal Biomarker for Colorectal Cancer: Ratio of Fusobacterium Nucleatum to Probiotics Populations, Based on Their Antagonistic Effect. Clinical Chemistry, 64, 1327-1337. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Kim, M., Vogtmann, E., Ahlquist, D.A., Devens, M.E., Kisiel, J.B., Taylor, W.R., et al. (2020) Fecal Metabolomic Signatures in Colorectal Adenoma Patients Are Associated with Gut Microbiota and Early Events of Colorectal Cancer Pathogenesis. mBio, 11, 16. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Saeed, M., Shoaib, A., Kandimalla, R., Javed, S., Almatroudi, A., Gupta, R., et al. (2022) Microbe-Based Therapies for Colorectal Cancer: Advantages and Limitations. Seminars in Cancer Biology, 86, 652-665. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Lou, Y., Song, M., Han, M., Zhong, J., Tian, X., Ren, Y., et al. (2022) Tumor Necrosis Factor-Α-Induced Protein 8-Like 2 Fosters Tumor-Associated Microbiota to Promote the Development of Colorectal Cancer. Cancer Immunology Research, 10, 354-367. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Peters, B.A., Dominianni, C., Shapiro, J.A., Church, T.R., Wu, J., Miller, G., et al. (2016) The Gut Microbiota in Conventional and Serrated Precursors of Colorectal Cancer. Microbiome, 4, Article No. 69. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Watson, K.M., Gardner, I.H., Anand, S., Siemens, K.N., Sharpton, T.J., Kasschau, K.D., et al. (2021) Colonic Microbial Abundances Predict Adenoma Formers. Annals of Surgery, 277, e817-e824. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
尹莉莉. 菌群失调参与远端结直肠息肉复发的机制研究[D]: [硕士学位论文]. 南昌: 南昌大学, 2024.
|
|
[30]
|
Li, J., Zhu, Y., Yang, L. and Wang, Z. (2022) Effect of Gut Microbiota in the Colorectal Cancer and Potential Target Therapy. Discover Oncology, 13, Article No. 51. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Barna, I., Nyúl, D., Szentes, T. and Schwab, R. (2018) A bélmikrobiom, a metabolikus betegségek és a hypertonia kapcsolatának irodalmi áttekintése. Orvosi Hetilap, 159, 346-351. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Pop, O.L., Vodnar, D.C., Diaconeasa, Z., Istrati, M., Bințințan, A., Bințințan, V.V., et al. (2020) An Overview of Gut Microbiota and Colon Diseases with a Focus on Adenomatous Colon Polyps. International Journal of Molecular Sciences, 21, Article 7359. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Jass, J.R. (2006) Classification of Colorectal Cancer Based on Correlation of Clinical, Morphological and Molecular Features. Histopathology, 50, 113-130. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hu, H., Gong, X., Xu, K., Luo, S., Gao, W., Li, B., et al. (2023) Risk Factor Analysis of Malignant Adenomas Detected during Colonoscopy. Frontiers in Medicine, 10, Article 1106272. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Burrows, M.P., Volchkov, P., Kobayashi, K.S. and Chervonsky, A.V. (2015) Microbiota Regulates Type 1 Diabetes through Toll-Like Receptors. Proceedings of the National Academy of Sciences, 112, 9973-9977. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
杨丽萍, 马臻棋, 王学红, 等. 肠道菌群与结肠息肉的关系研究进展[J]. 中国医刊, 2022, 57(2): 139-141.
|
|
[37]
|
Gao, M., Zhong, A., Patel, N., Alur, C. and Vyas, D. (2017) High Throughput RNA Sequencing Utility for Diagnosis and Prognosis in Colon Diseases. World Journal of Gastroenterology, 23, 2819-2825. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Rezasoltani, S., Ghanbari, R., Looha, M.A., Mojarad, E.N., Yadegar, A., Stewart, D., et al. (2020) Expression of Main Toll-Like Receptors in Patients with Different Types of Colorectal Polyps and Their Relationship with Gut Microbiota. International Journal of Molecular Sciences, 21, Article 8968. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Dai, Z., Zhang, J., Wu, Q., Chen, J., Liu, J., Wang, L., et al. (2019) The Role of Microbiota in the Development of Colorectal Cancer. International Journal of Cancer, 145, 2032-2041. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Brennan, C.A. and Garrett, W.S. (2016) Gut Microbiota, Inflammation, and Colorectal Cancer. Annual Review of Microbiology, 70, 395-411. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Morrison, D.J. and Preston, T. (2016) Formation of Short Chain Fatty Acids by the Gut Microbiota and Their Impact on Human Metabolism. Gut Microbes, 7, 189-200. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Tailford, L.E., Crost, E.H., Kavanaugh, D. and Juge, N. (2015) Mucin Glycan Foraging in the Human Gut Microbiome. Frontiers in Genetics, 6, Article 81. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Oh, T.J., Sul, W.J., Oh, H.N., Lee, Y., Lim, H.L., Choi, S.H., et al. (2019) Butyrate Attenuated Fat Gain through Gut Microbiota Modulation in Db/Db Mice Following Dapagliflozin Treatment. Scientific Reports, 9, Article No. 20300. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Abu-Ghazaleh, N., Chua, W.J. and Gopalan, V. (2020) Intestinal Microbiota and Its Association with Colon Cancer and Red/Processed Meat Consumption. Journal of Gastroenterology and Hepatology, 36, 75-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Elinav, E., Strowig, T., Kau, A.L., Henao-Mejia, J., Thaiss, C.A., Booth, C.J., et al. (2011) NLRP6 Inflammasome Regulates Colonic Microbial Ecology and Risk for Colitis. Cell, 145, 745-757. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Bonder, M.J., Kurilshikov, A., Tigchelaar, E.F., Mujagic, Z., Imhann, F., Vila, A.V., et al. (2016) The Effect of Host Genetics on the Gut Microbiome. Nature Genetics, 48, 1407-1412. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Cremon, C., Barbaro, M.R., Ventura, M. and Barbara, G. (2018) Pre and Probiotic Overview. Current Opinion in Pharmacology, 43, 87-92. [Google Scholar] [CrossRef] [PubMed]
|