[1]
|
Wood, L.D., Canto, M.I., Jaffee, E.M. and Simeone, D.M. (2022) Pancreatic Cancer: Pathogenesis, Screening, Diagnosis, and Treatment. Gastroenterology, 163, 386-402.e1. https://doi.org/10.1053/j.gastro.2022.03.056
|
[2]
|
Thorsen, S.B., Obad, S., Jensen, N.F., Stenvang, J. and Kauppinen, S. (2012) The Therapeutic Potential of MicroRNAs in Cancer. The Cancer Journal, 18, 275-284. https://doi.org/10.1097/ppo.0b013e318258b5d6
|
[3]
|
Luo, Z., Zheng, Y. and Zhang, W. (2018) Pleiotropic Functions of miR107 in Cancer Networks. OncoTargets and Therapy, 11, 4113-4124. https://doi.org/10.2147/ott.s151236
|
[4]
|
Sizemore, G.M., Balakrishnan, S., Thies, K.A., Hammer, A.M., Sizemore, S.T., Trimboli, A.J., et al. (2018) Stromal PTEN Determines Mammary Epithelial Response to Radiotherapy. Nature Communications, 9, Article No. 2783. https://doi.org/10.1038/s41467-018-05266-6
|
[5]
|
Wang, L., Yang, C., Liu, X., Wang, L. and Kang, F. (2018) B7-H4 Overexpression Contributes to Poor Prognosis and Drug-Resistance in Triple-Negative Breast Cancer. Cancer Cell International, 18, Article No. 100. https://doi.org/10.1186/s12935-018-0597-9
|
[6]
|
Pan, H., Peng, H., Dai, Y., Han, B., Yang, G., Jiang, N., et al. (2023) Effects of miR-107 on Breast Cancer Cell Growth and Death via Regulation of the PTEN/AKT Signaling Pathway. Journal of Oncology, 2023, Article ID: 1244067. https://doi.org/10.1155/2023/1244067
|
[7]
|
Zhou, J., Sun, X., Zhang, X., Yang, H., Jiang, Z., Luo, Q., et al. (2022) miR-107 Is Involved in the Regulation of NEDD9-Mediated Invasion and Metastasis in Breast Cancer. BMC Cancer, 22, Article No. 533. https://doi.org/10.1186/s12885-022-09603-3
|
[8]
|
Wei, X., Lei, Y., Li, M., Zhao, G., Zhou, Y., Ye, L., et al. (2020) miR-107 Inhibited Malignant Biological Behavior of Non-Small Cell Lung Cancer Cells by Regulating the STK33/ERK Signaling Pathway in Vivo and Vitro. Journal of Thoracic Disease, 12, 1540-1551. https://doi.org/10.21037/jtd.2020.03.103
|
[9]
|
Tian, S., Yu, Y., Huang, H., Xu, A., Xu, H. and Zhou, Y. (2020) Expression Level and Clinical Significance of NKILA in Human Cancers: A Systematic Review and Meta‐Analysis. BioMed Research International, 2020, Article ID: 4540312. https://doi.org/10.1155/2020/4540312
|
[10]
|
Rezaei, N., Jafari, D., Noorbakhsh, F., Delavari, A., Tavakkoli-Bazzaz, J., Farashi-Bonab, S., et al. (2020) Expression Level of Long Noncoding RNA NKILAmiR103-miR107 Inflammatory Axis and Its Clinical Significance as Potential Biomarker in Patients with Colorectal Cancer. Journal of Research in Medical Sciences, 25, 41. https://doi.org/10.4103/jrms.jrms_943_19
|
[11]
|
Wang, Y., Zhang, B., Zhu, Y., Zhang, Y., Li, L., Shen, T., et al. (2022) hsa_circ_0000523/miR‑let‑7b/METTL3 Axis Regulates Proliferation, Apoptosis and Metastasis in the HCT116 Human Colorectal Cancer Cell Line. Oncology Letters, 23, Article No. 186. https://doi.org/10.3892/ol.2022.13306
|
[12]
|
Chen, H., Lin, Y., Chung, H., Lang, Y., Lin, C., Huang, J., et al. (2012) miR-103/107 Promote Metastasis of Colorectal Cancer by Targeting the Metastasis Suppressors DAPK and KLF4. Cancer Research, 72, 3631-3641. https://doi.org/10.1158/0008-5472.can-12-0667
|
[13]
|
Liu, Q., Huang, J., Yan, W., Liu, Z., Liu, S. and Fang, W. (2023) FGFR Families: Biological Functions and Therapeutic Interventions in Tumors. MedComm, 4, e367. https://doi.org/10.1002/mco2.367
|
[14]
|
Sharma, P., Kaushik, V., Saraya, A. and Sharma, R. (2023) Aberrant Expression of FGFRL1 in Esophageal Cancer and Its Regulation by miR-107. Asian Pacific Journal of Cancer Prevention, 24, 1331-1341. https://doi.org/10.31557/apjcp.2023.24.4.1331
|
[15]
|
Liu, H., Yang, M., Zhang, Y., Yang, Z., Chen, Z., Xie, Y., et al. (2021) The Effect of miR-539 Regulating TRIAP1 on the Apoptosis, Proliferation, Migration and Invasion of Osteosarcoma Cells. Cancer Cell International, 21, Article No. 227. https://doi.org/10.1186/s12935-021-01909-9
|
[16]
|
Na, C., Li, X., Zhang, J., Han, L., Li, Y., Zhang, H., et al. (2019) miR-107 Targets TRIAP1 to Regulate Oral Squamous Cell Carcinoma Proliferation and Migration. International Journal of Clinical and Experimental Pathology, 12, 1820-1825.
|
[17]
|
Yan, J., Dai, L., Yuan, J., Pang, M., Wang, Y., Lin, L., et al. (2022) miR-107 Inhibits the Proliferation of Gastric Cancer Cells in Vivo and in Vitro by Targeting TRIAP1. Frontiers in Genetics, 13, Article 855355. https://doi.org/10.3389/fgene.2022.855355
|
[18]
|
Chen, H., Li, C., Lin, Y., Wang, T., Chen, M., Su, Y., et al. (2021) Hsa-miR-107 Regulates Chemosensitivity and Inhibits Tumor Growth in Hepatocellular Carcinoma Cells. Aging, 13, 12046-12057. https://doi.org/10.18632/aging.202908
|
[19]
|
Han, S., Cao, D., Sha, J., Zhu, X. and Chen, D. (2020) LncRNA ZFPM2‐AS1 Promotes Lung Adenocarcinoma Progression by Interacting with UPF1 to Destabilize ZFPM2. Molecular Oncology, 14, 1074-1088. https://doi.org/10.1002/1878-0261.12631
|
[20]
|
Chen, D., Wang, M., Jiang, X. and Xiong, Z. (2022) Comprehensive Analysis of ZFPM2-AS1 Prognostic Value, Immune Microenvironment, Drug Sensitivity, and Co-Expression Network: From Gastric Adenocarcinoma to Pan-Cancers. Discover Oncology, 13, Article No. 24. https://doi.org/10.1007/s12672-022-00487-0
|
[21]
|
Ghorbanoghli, Z., Nieuwenhuis, M.H., Houwing-Duistermaat, J.J., Jagmohan-Changur, S., Hes, F.J., Tops, C.M., et al. (2016) Colorectal Cancer Risk Variants at 8q23.3 and 11q23.1 Are Associated with Disease Phenotype in APC Mutation Carriers. Familial Cancer, 15, 563-570. https://doi.org/10.1007/s10689-016-9877-5
|
[22]
|
Luo, Y., Wang, X., Ma, L., Ma, Z., Li, S., Fang, X., et al. (2020) Bioinformatics Analyses and Biological Function of LncRNA ZFPM2-AS1 and ZFPM2 Gene in Hepatocellular Carcinoma. Oncology Letters, 19, 3677-3686. https://doi.org/10.3892/ol.2020.11485
|
[23]
|
Ma, T., Cai, X., Wang, Z., Huang, L., Wang, C., Jiang, S., et al. (2017) miR-200c Accelerates Hepatic Stellate Cell-Induced Liver Fibrosis via Targeting the FOG2/PI3K Pathway. BioMed Research International, 2017, Article ID: 2670658. https://doi.org/10.1155/2017/2670658
|
[24]
|
Manuylov, N.L., Smagulova, F.O. and Tevosian, S.G. (2007) Fog2 Excision in Mice Leads to Premature Mammary Gland Involution and Reduced Esr1 Gene Expression. Oncogene, 26, 5204-5213. https://doi.org/10.1038/sj.onc.1210333
|
[25]
|
Qiang, Z., Jubber, I., Lloyd, K., Cumberbatch, M. and Griffin, J. (2023) Gene of the Month: GATA3. Journal of Clinical Pathology, 76, 793-797. https://doi.org/10.1136/jcp-2023-209017
|
[26]
|
Song, Z., Gao, S., Liu, Y.M., et al. (2020) EphA3 Promotes the Proliferation of NPC Cells through Negatively Regulating the Ability of FOG2. European Review for Medical and Pharmacological Sciences, 24, 6735-6743.
|
[27]
|
Yasinjan, F., Xing, Y., Geng, H., Guo, R., Yang, L., Liu, Z., et al. (2023) Immunotherapy: A Promising Approach for Glioma Treatment. Frontiers in Immunology, 14, Article 1255611. https://doi.org/10.3389/fimmu.2023.1255611
|
[28]
|
Tsang, S., Mei, L., Wan, W., Li, J., Li, Y., Zhao, C., et al. (2015) Glioma Association and Balancing Selection of ZFPM2. PLOS ONE, 10, e0133003. https://doi.org/10.1371/journal.pone.0133003
|
[29]
|
丁岩, 王飞, 赵海平. 上皮间充质转化在胰腺疾病中的研究进展[J]. 中国临床研究, 2023, 36(2): 242-246.
|
[30]
|
Mittal, V. (2018) Epithelial Mesenchymal Transition in Tumor Metastasis. Annual Review of Pathology: Mechanisms of Disease, 13, 395-412. https://doi.org/10.1146/annurev-pathol-020117-043854
|
[31]
|
Zheng, X., Carstens, J.L., Kim, J., Scheible, M., Kaye, J., Sugimoto, H., et al. (2015) Epithelial-to-Mesenchymal Transition Is Dispensable for Metastasis but Induces Chemoresistance in Pancreatic Cancer. Nature, 527, 525-530. https://doi.org/10.1038/nature16064
|
[32]
|
Li, J., Lu, R., Yang, K. and Sun, Q. (2022) CircCCT3 Enhances Invasion and Epithelial-Mesenchymal Transition (EMT) of Non-Small-Cell Lung Cancer (NSCLC) via the miR-107/Wnt/FGF7 Axis. Journal of Oncology, 2022, Article ID: 7020774. https://doi.org/10.1155/2022/7020774
|
[33]
|
Yao, J., Yang, Z., Yang, J., Wang, Z. and Zhang, Z. (2021) Long Non-Coding RNA FEZF1-AS1 Promotes the Proliferation and Metastasis of Hepatocellular Carcinoma via Targeting miR-107/Wnt/β-Catenin Axis. Aging, 13, 13726-13738. https://doi.org/10.18632/aging.202960
|
[34]
|
陈思宇, 汪献旺. 靶向PI3K信号通路抑制剂在胰腺癌治疗中的研究进展[J]. 实用医学杂志, 2023, 39(9): 1190-1194.
|
[35]
|
Peng, Y., Wang, Y., Zhou, C., Mei, W. and Zeng, C. (2022) PI3K/Akt/mTOR Pathway and Its Role in Cancer Therapeutics: Are We Making Headway? Frontiers in Oncology, 12, Article 819125. https://doi.org/10.3389/fonc.2022.819128
|
[36]
|
Mehra, S., Deshpande, N. and Nagathihalli, N. (2021) Targeting PI3K Pathway in Pancreatic Ductal Adenocarcinoma: Rationale and Progress. Cancers, 13, Article 4434. https://doi.org/10.3390/cancers13174434
|
[37]
|
Liu, X., Xu, Y., Zhou, Q., Chen, M., Zhang, Y., Liang, H., et al. (2017) PI3K in Cancer: Its Structure, Activation Modes and Role in Shaping Tumor Microenvironment. Future Oncology, 14, 665-674. https://doi.org/10.2217/fon-2017-0588
|
[38]
|
Faes, S. and Dormond, O. (2015) PI3K and AKT: Unfaithful Partners in Cancer. International Journal of Molecular Sciences, 16, 21138-21152. https://doi.org/10.3390/ijms160921138
|
[39]
|
Wiese, W., Barczuk, J., Racinska, O., Siwecka, N., Rozpedek-Kaminska, W., Slupianek, A., et al. (2023) PI3K/Akt/mTOR Signaling Pathway in Blood Malignancies—New Therapeutic Possibilities. Cancers, 15, Article 5297. https://doi.org/10.3390/cancers15215297
|
[40]
|
Ediriweera, M.K., Tennekoon, K.H. and Samarakoon, S.R. (2019) Role of the PI3K/Akt/mTOR Signaling Pathway in Ovarian Cancer: Biological and Therapeutic Significance. Seminars in Cancer Biology, 59, 147-160. https://doi.org/10.1016/j.semcancer.2019.05.012
|
[41]
|
王皓帆. 保守的microRNA-miR-8/miR-200及其靶分子USH/FOG2通过调控PI3K水平控制生长过程[J]. 中国病理生理杂志, 2010, 26(6): 1114.
|
[42]
|
Sorrentino, A., Federico, A., Rienzo, M., Gazzerro, P., Bifulco, M., Ciccodicola, A., et al. (2018) PR/SET Domain Family and Cancer: Novel Insights from the Cancer Genome Atlas. International Journal of Molecular Sciences, 19, Article 3250. https://doi.org/10.3390/ijms19103250
|