口服双歧杆菌四联活菌片对机械通气患者血清非靶向代谢组学的影响
The Effects of Oral Quadruple Live Bifidobacterium Tablets on the Serum Non-Targeted Metabolomics of Mechanically Ventilated Patients
DOI: 10.12677/jcpm.2025.41126, PDF, HTML, XML,    科研立项经费支持
作者: 孙 文, 马 鑫:江苏大学附属句容医院重症医学科,江苏 镇江;许静雯:江苏大学附属句容医院心内科,江苏 镇江;和佳鸳:镇江市疾病预防控制中心检验科,江苏 镇江;吴 亮*:江苏大学医学院医学检验系,江苏 镇江
关键词: 机械通气益生菌黏膜免疫力代谢组学Mechanical Ventilation Probiotics Mucosal Immunity Metabolomics
摘要: 目的:分析口服双歧杆菌四联活菌片对临床机械通气患者血清非靶向代谢组学和短链脂肪酸生成的影响,探讨双歧杆菌四联活菌片增强患者黏膜免疫力机制。方法:10例重症患者在给予常规治疗的同时口服双歧杆菌四联活菌片。治疗14天后收集血清用于降钙素原(PCT)、IL-6、IL-17、IgA水平检测,粪便用于3种主要短链脂肪酸(乙酸、丙酸和丁酸)浓度检测,采用超高效液相色谱–四极杆–飞行时间质谱(UPLC-Q-TOF/MS)技术分析患者血清非靶向代谢组学变化。结果:益生菌疗法处理后患者血清中PCT和IL-17水平较处理前显著降低,IgA浓度明显升高(P < 0.05),但粪便中3种短链脂肪酸浓度变化不显著(P > 0.05)。益生菌疗法可以显著影响患者亚油酸代谢、甘油磷脂代谢和色氨酸代谢。结论:口服双歧杆菌四联活菌片可以明显抑制患者体内炎症反应并增加IgA表达量,并且可以显著影响血清非靶向代谢组学。益生菌疗法可能通过亚油酸代谢、甘油磷脂代谢和色氨酸代谢途径抑制炎症并增强黏膜免疫力。
Abstract: Objective: To analyze the effects of oral quadruple live bifidobacterium tablets on the serum non-targeted metabolomics and short-chain fatty acids production in clinical mechanically ventilated patients, and explore the mechanism by which probiotics enhance mucosal immune function in patients. Methods: Ten critically ill patients were given oral quadruple live bifidobacterium tablets while receiving routine treatment. After 14 days of treatment, serum was collected for measurement of procalcitonin (PCT), IL-6, IL-17, and IgA levels, and feces were collected for measurement of concentrations of three main short-chain fatty acids (acetic acid, propionic acid, and butyric acid). Ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry (UPLC-Q-TOF/MS) technology was used to analyze changes in the serum non-targeted metabolomics of the patients. Results: After probiotic therapy, the levels of PCT and IL-17 in the serum of patients were significantly reduced compared to before treatment, while IgA concentration significantly increased (P < 0.05), but the concentrations of the three short-chain fatty acids in the feces did not change significantly (P > 0.05). Probiotic therapy significantly affected the metabolism of arachidonic acid, glycerophospholipids, and tryptophan in patients. Conclusion: oral quadruple live bifidobacterium tablets can significantly inhibit inflammation in the body and increase IgA expression levels in patients, and can significantly affect serum non-targeted metabolomics. Probiotic therapy may inhibit inflammation and enhance mucosal immunity through the pathways of arachidonic acid metabolism, glycerophospholipid metabolism, and tryptophan metabolism.
文章引用:孙文, 许静雯, 马鑫, 和佳鸳, 吴亮. 口服双歧杆菌四联活菌片对机械通气患者血清非靶向代谢组学的影响[J]. 临床个性化医学, 2025, 4(1): 895-905. https://doi.org/10.12677/jcpm.2025.41126

1. 引言

呼吸机相关性肺炎(ventilator associated pneumonia, VAP)是重症患者机械通气治疗48小时以上时常见并发症[1] [2]。VAP的发生会显著增加患者住院时间并且导致死亡率升高,目前尚无有效方法预防VAP的发生[1] [3]。近年来通过益生菌改善患者肠道微生态紊乱,预防和治疗医院内获得性感染的治疗手段已成为临床关注的热点,越来越多的临床试验研究结果也证实益生菌可以改善肠道菌群并治疗胃肠道感染(如抗生素相关性腹泻等) [4] [5],但应用益生菌预防和治疗肺部感染仍鲜有研究报道。

“肺与大肠相表里”是中医基础理论之一,该理论在基础研究和临床实践中均具有重要指导意义。随着肠道菌群和代谢组学技术的发展,人们对“肺与大肠相表里”的理解也日趋深入[6]。短链脂肪酸(short-chain fatty acids, SCFAs)是结肠内细菌的有益代谢产物,是一类碳原子少于6个的有机饱和脂肪酸,具有水解率高、水溶性强和分子量小等特点,因此SCFAs较其他脂肪酸更容易被吸收[7] [8]。SCFAs可以穿过肠黏膜屏障经肠上皮主动吸收,通过门静脉和肠道淋巴管进入血液循环,抵达人体的各个细胞、组织及远端器官,并作为“肠–肺轴”的重要媒介影响着肺部免疫功能[9]

本研究拟给予我院重症病房患者口服双歧杆菌四联活菌片,通过靶向/非靶向代谢组学技术检测受试者血清中差异代谢产物,探讨益生菌疗法通过调控肠道菌群代谢产物增强呼吸道黏膜免疫力机制,为临床预防和治疗VAP的发生提供新思路。

2. 资料与方法

2.1. 一般资料

本研究连续性纳入2023年1月至2023年12月在江苏大学附属句容医院ICU病房住院治疗的10例重症患者,整个治疗过程中均未发生VAP。入选标准:① 受试者年龄不低于20岁,入住ICU病房需要机械通气治疗,且治疗时间大于48 h;② 进行机械通气12 h内可以接受益生菌鼻饲治疗。排除标准:① 年龄小于18岁或大于80岁者;② 患者存在严重多器官功能障碍,APACHE Ⅱ评分大于30分;③ 转入ICU病房前已进行了机械通气治疗的患者;④ 不适合进行益生菌治疗患者;⑤ 免疫力低下患者,包括接受免疫抑制剂者或存在免疫抑制性疾病者;⑥ 妊娠或哺乳期妇女。本研究通过江苏大学附属句容医院伦理委员会审核,所有受试者均充分知情并签署知情同意书。

本研究中受试者一般情况如下,包括男性6例,女性4例,年龄32~69 (48.23 ± 9.15)岁,入院时APACHE Ⅱ评分15~24 (19.73 ± 5.12)分(表1)。

Table 1. General information of subjects

1. 受试者一般情况

原发病/基础病

益生菌组(AS)

性别(男/女,例)

-

6/4

年龄(岁)

-

32~69

(48.23 ± 9.15)

APACHE Ⅱ评分

-

15~24

(19.73 ± 5.12)

原发病

肺内(例)

3

肺外(例)

7

基础病

高血压(例)

2

糖尿病(例)

2

吸烟(例)

3

2.2. 益生菌干预治疗

本研究所有患者均胃管置入,患者在接受常规治疗的同时经鼻饲给予双歧杆菌四联活菌片(杭州龙达新科生物制药有限公司,国药准字S20060010),每片重0.5克,每日3次,每次3片。干预时间为14天。双歧杆菌四联活菌片为复方制剂,包括婴儿双歧杆菌、嗜酸乳杆菌、粪肠球菌和蜡样芽孢杆菌,其中婴儿双歧杆菌、嗜酸乳杆菌和粪肠球菌分别应不低于0.5 × 106 CFU,蜡样芽孢杆菌应不低于0.5 × 105 CFU。干预治疗前(BS)和治疗14天(AS)时收集患者粪便和血清。粪便样本用于3种短链脂肪酸检测,血清样本用于降钙素原(PCT)、IL-6、IL-17和IgA浓度检测以及非靶向代谢组学检测。

2.3. 血清中炎性因子和黏膜免疫力指标检测

采用江苏酶免公司ELISA试剂盒(盐城,中国)检测患者血清中降钙素原(PCT)、IL-6、IL-17和IgA浓度。检测操作严格按照试剂盒说明书进行。

2.4. 患者粪便中3种短链脂肪酸检测

采用本课题自建柱前衍生化–超高效液相色谱串联质谱法(UPLC-MS/MS法)检测患者粪便中3种主要短链脂肪酸浓度,包括乙酸、丙酸和丁酸。色谱柱:Waters BEH C18柱(2.1 × 100 mm, 1.7 μm);柱温:40℃;进样体积:5 μL;流动相A:0.1 %甲酸5 mmol/L甲酸铵溶液;流动相B:甲醇。电离模式:ESI+;喷雾电压:5500 V;离子源温度:550℃;碰撞气:Medium;气帘气:30 psi;雾化气:50 psi;辅助加热气:60 psi。于检测前准确称取冷冻干燥的粪便样本100 mg,并加入2 mL稀盐酸(1 mol/L)充分混合,吸取上清60 μL加入12 μL内标溶液和288 μL甲醇,涡旋1 min混匀,于4℃以116,000 × g离心10 min,吸取上清液270 μL,依次加入50 μL 0.2 mol/L的3-NPH,12 μL含6%吡啶溶液的1 mol/L的EDC,最后加68 μL甲醇,于40℃烘箱中反应30 min,取出后加400 μL甲醇稀释混匀后采用UPLC-MS/MS测定。

2.5. 患者血清非靶向代谢组学检测

患者血清与质谱提取液(甲醇:乙腈 = 1:1)经涡旋混合后,离心取上清用于非靶向代谢组学检测。血清非靶向代谢组学检测由深圳微科盟公司完成,使用UPLC-Q-Orbitrap-MS HSS T3色谱柱(100 mm × 2.1 mm, 1.8 µm; Thermo Fisher Scientific, Waltham, MA, USA)进行色谱分离。流动相为0.1%甲酸(流动相A)和0.1%乙腈(流动相B)。首先以0.3 mL/min的流速开始洗脱:0~2 min,95% A;2~12 min,5% A;12~15 min,5% A;15~17,95% A。负离子模式喷射电压为3.2 kV,毛细管温度为350℃,加热器温度为300℃,气流为45 Arb。

通过Compound Discoverer 2.1软件提取并预处理LC/MS数据,并导出质量、保留时间和峰强度。使用SMICA-P软件(V16.0.2)对小鼠血清样品进行主成分分析(principal component analysis, PCA)和正交偏最小二乘判别分析(orthogonal partial least squares-discriminant analysis, OPLS-DA)。通过搜索人类代谢组数据库(human metabolome database, HMDB)和京都基因与基因组百科全书数据库(kyoto encyclopedia of genes and genomes, KEGG),并依据精确质量和产物离子谱来识别代谢物。MetaboAnalyst 4.0在线平台用于代谢途径分析。

2.6. 统计学方法

采用SPAA 22.0统计软件对所得数据进行统计学分析。计量资料以均数 ± 标准差( x ¯ ±s )形式表示,数据比较采用两独立样本均数t检验,P < 0.05为差异有统计学意义。

3. 结果

3.1. 益生菌抑制受试者炎性因子表达并促进IgA表达量

益生菌疗法干预后(AS组),患者血清PCT和IL-17水平较干预前(BS组)显著降低(P < 0.05),但IL-6水平无显著变化(P > 0.05)。经益生菌干预后(AS组),患者黏膜免疫力指标IgA水平较干预前(BS组)显著升高(P < 0.05) (图1)。

3.2. 益生菌疗法干预后受试者粪便中3种主要SCFAs生成量无明显变化

采用UPLC-MS/MS法检测益生菌疗法干预前(AS组)和干预后(BS组)患者粪便中乙酸、丙酸和丁酸含量。结果表明,干预前和后患者粪便中3种主要SCFAs浓度无显著性差异(P > 0.05) (图2)。

(a) PCT, (b) IL-6, (c) IL-17, (d) IgA. *P < 0.05.

Figure 1. Serum PCT, IL-6, IL-17 and IgA levels

1. 受试者血清PCT、IL-6、IL-17和IgA水平

(a) 乙酸;(b) 丙酸;(c) 丁酸。

Figure 2. The content of acetic acid, propionic acid and butyric acid in stool of patients was detected by UPLC-MS/MS method

2. UPLC-MS/MS法检测患者粪便中乙酸、丙酸和丁酸含量

3.3. 患者血清非靶向代谢组学分析

血清非靶向代谢组学结果可见,治疗前(BS组)和治疗后(AS组)样本明显分离且各自聚类,表明益生菌疗法干预后患者血清代谢产物出现明显变化(图3(a))。进一步通过OPLS-DA模型对两组样本进行分析可以得到变量重要性值(variable importance in the projection, VIP) (图3(b))。VIP值反应各种代谢产物对组间差异的贡献大小。根据VIP > 1和P < 0.05规则筛选差异代谢产物(表2图3(c)图3(d)),可见多种与亚油酸代谢、甘油磷脂代谢和色氨酸代谢相关代谢产物浓度发生明显变化(图3E)。与干预前(BS组)比较,干预后(AS组)患者血清中PE (15:0/16:0)、PE (15:1(9Z)/20:1(11Z))、PC (12:0/16:0)、PC (17:2(9Z,12Z)/20:0)、PC (O-14:0/18:1(9Z))、胆固醇葡糖苷酸(cholesterol glucuronide)等浓度显著升高,色氨酸(tryptophan)等浓度显著降低(表2)。

(a) (b)

(c)

(d)

(e)

(a) 主成分分析(PCA);(b) 正交偏最小二乘判别分析(OPLS-DA);(c) 百分比堆积图;(d) 聚类热图;(e) 代谢通路富集图。

Figure 3. Serum non-targeted metabolomics results

3. 血清非靶向代谢组学结果

Table 2. Differential metabolites in serum of patients before and after treatment with bifidobacterium tetrad tablets

2. 双歧杆菌四联活菌片治疗前和后患者血清中差异代谢产物

序号

化合物

结构式

文库号

质核比

停留时间

BS vs. AS

1

PE (15:0/16:0)

C36H72NO8P

HMDB13246

678.5067497

13.1699

2

Phytosphingosine

C18H39NO3

HMDB04610

318.3011264

7.858733333

3

Sphinganine

C18H39NO2

HMDB00269

302.3061313

9.072283333

4

PE (15:1(9Z)/20:1(11Z))

C40H76NO8P

LMGP02010494

730.5413412

16.23451667

5

PC (12:0/16:0)

C36H72NO8P

LMGP01010435

678.5093013

16.23451667

6

Cholesterol glucuronide

C33H54O7

LMFA11000168

601.3516084

13.27055

7

Aniline

C6H7N

LMGP06010275

94.0648729

13.75331667

8

PA (13:0/20:3(8Z,11Z,14Z))

C36H65O8P

HMDB03012

679.4320533

13.85396667

9

Sphingofungin A

C40H78O5

LMGP01010858

661.5723656

12.88846667

10

Allodsmosine

C30H27NO7

HMDB36223

536.1673098

12.92201667

11

PC (17:2(9Z,12Z)/20:0)

C45H86NO8P

LMGP01020016

800.6136254

12.92201667

12

PI (O-16:0/20:5 (5Z,8Z,11Z,14Z,17Z))

C45H79O12P

HMDB15522

865.5234858

12.88846667

13

PC (O-14:0/18:1(9Z))

C40H80NO7P

LMGP01011115

718.5749624

12.92201667

14

tryptophan

C11H12N2O2

HMDB00929

575.4974488

12.17085

注:“↑”与干预前比较,浓度上升;“↓”与干预前比较,浓度下降。

4. 讨论

VAP是机械通气患者最常见并发症,影响着5%~40%机械通气患者[10]。VAP发病机制复杂,目前仍无有效防治VAP的方法。益生菌疗法已在临床用于抗肿瘤、增强肠道黏膜免疫力和调节免疫紊乱等。Shimizu等[1]采用短双歧杆菌和干酪乳杆菌治疗了29例全身炎症反应综合征患者,上述患者在接受益生菌治疗期间腹泻发生次数明显减少;益生菌疗法还可以明显增强危重患者免疫力,减少肠道继发性感染[11]。但是益生菌疗法预防机械通气患者VAP发生的效果仍存在争议[12] [13]

本研究发现,经双歧杆菌四联活菌片治疗后患者血清中IgA水平显著升高,即黏膜免疫力增强,而炎性因子PCT和IL-17水平明显隆低。PCT是评估VAP发生的常规生物标志物,患者血清中PCT水平升高时伴随着VAP发生率显著增加[14]。IL-6是诊断肺炎的有效生物标志物,在感染早期血清IL-6浓度即可显著升高,且其上升水平与感染严重程度相关[15]。IL-17在肺部感染中起着双刃剑的作用,包括促进宿主对感染的免疫防御反应和促进肺部病理性炎症。在鲍曼不动杆菌、白色念珠菌等病原体感染早期,IL-17介导的中性粒细胞相关炎症有利于宿主抵抗病原体。但在某些情况下,IL-17会将中性粒细胞募集到感染部位,而不会改善病原体清除,最终导致炎症和组织免疫病理失调。此外,IL-17可以促进创伤或脓毒症引起的急性肺损伤的病理过程[16]。本研究中双歧杆菌四联活菌片抑制机械通气患者体内炎性因子表达并增加IgA表达量,可以有效地维持黏膜免疫屏障,有助于防止VAP发生。

为进一步研究双歧杆菌四联活菌片抑制炎症反应并增加黏膜免疫力机制,基于“肺和大肠相表里”的原理,我们采用非靶向代谢组学技术筛选受试者血清中差异代谢产物以探讨益生菌作用机制[15] [16],并采用靶向代谢组学检测了粪便中3种主要SCFAs浓度[17] [18]。SCFAs是由肠道微生物群发酵人体无法消化的膳食纤维和抗性淀粉所产生的一类有机酸,其碳原子数不多于6个,在维持人体健康中发挥着重要作用[17],是“肠–肺轴”的关键调控介质[18] [19]。SCFAs已被证明具有抗炎、抗菌和抗肿瘤的作用,可以保持肠黏膜屏障完整性[20] [21]。双歧杆菌四联活菌片含有婴儿双歧杆菌、嗜酸乳杆菌、粪肠球菌和蜡样芽孢杆菌,可以有效地改善肠道菌群并增加肠道中SCFAs生成量[1] [22]。但本研究中未发现益生菌治疗前后粪便中SCFAs浓度明显变化,我们推测这可能与益生菌疗法干预时间较短有关,肠道中SCFAs浓度较低导致变化不显著。在下一阶段我们将尝试延长益生菌疗法干预时间后再检测粪便中SCFAs浓度。

非靶向代谢组学研究发现,益生菌可以干预患者亚油酸代谢、甘油磷脂代谢和色氨酸代谢等。PC (12:0/16:0)、PC (17:2(9Z,12Z)/20:0)和PC (O-14:0/18:1(9Z))均属于甘油磷脂代谢产物,是肺表面活性物质的主要成份,可以降低肺气–液面张力并维持肺内环境稳定,并在呼吸道防御和免疫调节中发挥重要作用[23] [24]。本研究中受试者经益生菌治疗后,血液中多种甘油磷脂代谢产物水平显著增加。该结果提示益生菌疗法可以维持肺内环境稳定并增强黏膜免疫力,这有利于减少VAP的发生。

本研究还发现益生菌可以显著影响受试者体内色氨酸代谢,益生菌干预后患者体内色氨酸水平显著降低。色氨酸是所有生命体内蛋白质合成和各种重要代谢功能所必须的氨基酸,但人类无法自身合成色氨酸,需从食物中摄取。近年来色氨酸代谢的免疫调控功能已成为研究热点[25] [26]。内源性色氨酸代谢需要依靠宿主肠道内微生物分解肠道中色氨酸以生成一系列代谢产物,主要是5-羟色胺(5-HT)和犬尿氨酸等,其中95%色氨酸分流至犬尿氨酸途径[27]。研究表明,犬尿氨酸代谢途径的色氨酸分解代谢涉及多种免疫细胞的活化,因为该途径中色氨酸分解酶存在于多种免疫细胞中,包括巨噬细胞和树突状细胞中的限速酶吲哚胺2,3-双加氧酶(IDO) [28] [29]。色氨酸分解代谢与体内炎症水平密切相关,但其与黏膜免疫力相关性研究仍少见,有待于进一步研究[29] [30]

综上所述,本研究结果表明,口服双歧杆菌四联活菌片可以增强重症患者黏膜免疫力,减轻体内炎症反应水平。本研究为预防机械通气患者VAP发生提供了一条新思路,但仍需深入研究。

声 明

该病例报道已获得病人的知情同意。

基金项目

镇江市重点研发计划–社会发展项目(SH2023073)和江苏省中医药科技发展计划项目(MS2022126)。

NOTES

*通讯作者。

参考文献

[1] Shimizu, K., Ogura, H., Goto, M., Asahara, T., Nomoto, K., Morotomi, M., et al. (2008) Synbiotics Decrease the Incidence of Septic Complications in Patients with Severe SIRS: A Preliminary Report. Digestive Diseases and Sciences, 54, 1071-1078.
https://doi.org/10.1007/s10620-008-0460-2
[2] 罗欣悦, 邓俊, 杨梓苑, 等. 重症监护室机械通气患者呼吸机相关性肺炎病原菌分布及风险预测模型构建[J]. 现代生物医学进展, 2023, 23(13): 2518-2522.
[3] Kharel, S., Bist, A. and Mishra, S.K. (2021) Ventilator-associated Pneumonia among ICU Patients in WHO Southeast Asian Region: A Systematic Review. PLOS ONE, 16, e0247832.
https://doi.org/10.1371/journal.pone.0247832
[4] Kaur, H. and Ali, S.A. (2022) Probiotics and Gut Microbiota: Mechanistic Insights into Gut Immune Homeostasis through TLR Pathway Regulation. Food & Function, 13, 7423-7447.
https://doi.org/10.1039/d2fo00911k
[5] Dahiya, D. and Nigam, P.S. (2023) Antibiotic-Therapy-Induced Gut Dysbiosis Affecting Gut Microbiota—Brain Axis and Cognition: Restoration by Intake of Probiotics and Synbiotics. International Journal of Molecular Sciences, 24, Article No. 3074.
https://doi.org/10.3390/ijms24043074
[6] 郑榕, 许若缨, 柯敏辉, 等. 基于“肺与大肠相表里”探讨“肺肠合病”与黏膜免疫的关系[J]. 北京中医药大学学报, 2020, 43(6): 487-491.
[7] Zhang, D., Jian, Y., Zhang, Y., Li, Y., Gu, L., Sun, H., et al. (2023) Short-Chain Fatty Acids in Diseases. Cell Communication and Signaling, 21, Article No. 212.
https://doi.org/10.1186/s12964-023-01219-9
[8] Blaak, E.E., Canfora, E.E., Theis, S., Frost, G., Groen, A.K., Mithieux, G., et al. (2020) Short Chain Fatty Acids in Human Gut and Metabolic Health. Beneficial Microbes, 11, 411-455.
https://doi.org/10.3920/bm2020.0057
[9] Liu, X., Shao, J., Liao, Y., Wang, L., Jia, Y., Dong, P., et al. (2023) Regulation of Short-Chain Fatty Acids in the Immune System. Frontiers in Immunology, 14, Article ID: 1186892.
https://doi.org/10.3389/fimmu.2023.1186892
[10] 王文静, 周育萍, 黄秋娜, 等. 预防呼吸机相关性肺炎的指南证据总结[J]. 护理学报, 2021, 28(22): 58-63.
[11] Shimizu, K., Ogura, H., Asahara, T., Nomoto, K., Morotomi, M., Tasaki, O., et al. (2012) Probiotic/Synbiotic Therapy for Treating Critically Ill Patients from a Gut Microbiota Perspective. Digestive Diseases and Sciences, 58, 23-32.
https://doi.org/10.1007/s10620-012-2334-x
[12] Johnstone, J., Meade, M., Lauzier, F., Marshall, J., Duan, E., Dionne, J., et al. (2021) Effect of Probiotics on Incident Ventilator-Associated Pneumonia in Critically Ill Patients: A Randomized Clinical Trial. JAMA, 326, 1024-1033.
https://doi.org/10.1001/jama.2021.13355
[13] Wang, J., Liu, K., Ariani, F., Tao, L., Zhang, J. and Qu, J. (2013) Probiotics for Preventing Ventilator-Associated Pneumonia: A Systematic Review and Meta-Analysis of High-Quality Randomized Controlled Trials. PLOS ONE, 8, e83934.
https://doi.org/10.1371/journal.pone.0083934
[14] 陈正钢, 刘励军. 急诊脓毒症患者早期筛查生物标志物的研究现状与展望[J]. 临床急诊杂志, 2023, 24(2): 99-104.
[15] Chen, W., Zhong, K., Guan, Y., Zhang, H.T., Zhang, H., Pan, T., et al. (2022) Evaluation of the Significance of Interleukin-6 in the Diagnosis of Postoperative Pneumonia: A Prospective Study. BMC Cardiovascular Disorders, 22, Article No. 306.
https://doi.org/10.1186/s12872-022-02744-0
[16] Zhou, Y., Xiang, C., Wang, N., Zhang, X., Xie, Y., Yang, H., et al. (2022) Acinetobacter Baumannii Reinforces the Pathogenesis by Promoting IL-17 Production in a Mouse Pneumonia Model. Medical Microbiology and Immunology, 212, 65-73.
https://doi.org/10.1007/s00430-022-00757-2
[17] Fusco, W., Lorenzo, M.B., Cintoni, M., Porcari, S., Rinninella, E., Kaitsas, F., et al. (2023) Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients, 15, Article No. 2211.
https://doi.org/10.3390/nu15092211
[18] Silvester, J.A. (2021) Editorial: No Organ Is an Island: The Role of Gut-Organ Axes in Human Health and Disease. Current Opinion in Gastroenterology, 37, 545-546.
https://doi.org/10.1097/mog.0000000000000786
[19] Abdalkareem Jasim, S., Jade Catalan Opulencia, M., Alexis Ramírez-Coronel, A., Kamal Abdelbasset, W., Hasan Abed, M., Markov, A., et al. (2022) The Emerging Role of Microbiota-Derived Short-Chain Fatty Acids in Immunometabolism. International Immunopharmacology, 110, Article ID: 108983.
https://doi.org/10.1016/j.intimp.2022.108983
[20] Kotlyarov, S. (2022) Role of Short-Chain Fatty Acids Produced by Gut Microbiota in Innate Lung Immunity and Pathogenesis of the Heterogeneous Course of Chronic Obstructive Pulmonary Disease. International Journal of Molecular Sciences, 23, Article No. 4768.
https://doi.org/10.3390/ijms23094768
[21] Bolognini, D., Dedeo, D. and Milligan, G. (2021) Metabolic and Inflammatory Functions of Short-Chain Fatty Acid Receptors. Current Opinion in Endocrine and Metabolic Research, 16, 1-9.
https://doi.org/10.1016/j.coemr.2020.06.005
[22] 王超, 高磊, 赵子健, 等. 益生菌附属发酵剂对切达干酪质构、游离氨基酸和短链脂肪酸的影响[J]. 食品与发酵工业, 2022, 48(8): 136-142.
[23] Gai, X., Guo, C., Zhang, L., Zhang, L., Abulikemu, M., Wang, J., et al. (2021) Serum Glycerophospholipid Profile in Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Frontiers in Physiology, 12, Article ID: 646010.
https://doi.org/10.3389/fphys.2021.646010
[24] Dushianthan, A., Grocott, M.P.W., Murugan, G.S., Wilkinson, T.M.A. and Postle, A.D. (2023) Pulmonary Surfactant in Adult ARDS: Current Perspectives and Future Directions. Diagnostics, 13, Article No. 2964.
https://doi.org/10.3390/diagnostics13182964
[25] Xue, C., Li, G., Zheng, Q., Gu, X., Shi, Q., Su, Y., et al. (2023) Tryptophan Metabolism in Health and Disease. Cell Metabolism, 35, 1304-1326.
https://doi.org/10.1016/j.cmet.2023.06.004
[26] Su, X., Gao, Y. and Yang, R. (2022) Gut Microbiota-Derived Tryptophan Metabolites Maintain Gut and Systemic Homeostasis. Cells, 11, Article No. 2296.
https://doi.org/10.3390/cells11152296
[27] Correia, A.S. and Vale, N. (2022) Tryptophan Metabolism in Depression: A Narrative Review with a Focus on Serotonin and Kynurenine Pathways. International Journal of Molecular Sciences, 23, Article No. 8493.
https://doi.org/10.3390/ijms23158493
[28] Tanaka, M., Tóth, F., Polyák, H., Szabó, Á., Mándi, Y. and Vécsei, L. (2021) Immune Influencers in Action: Metabolites and Enzymes of the Tryptophan-Kynurenine Metabolic Pathway. Biomedicines, 9, Article No. 734.
https://doi.org/10.3390/biomedicines9070734
[29] Tsuji, A., Ikeda, Y., Yoshikawa, S., Taniguchi, K., Sawamura, H., Morikawa, S., et al. (2023) The Tryptophan and Kynurenine Pathway Involved in the Development of Immune-Related Diseases. International Journal of Molecular Sciences, 24, Article No. 5742.
https://doi.org/10.3390/ijms24065742
[30] Fiore, A. and Murray, P.J. (2021) Tryptophan and Indole Metabolism in Immune Regulation. Current Opinion in Immunology, 70, 7-14.
https://doi.org/10.1016/j.coi.2020.12.001