[1]
|
Shimizu, K., Ogura, H., Goto, M., Asahara, T., Nomoto, K., Morotomi, M., et al. (2008) Synbiotics Decrease the Incidence of Septic Complications in Patients with Severe SIRS: A Preliminary Report. Digestive Diseases and Sciences, 54, 1071-1078. https://doi.org/10.1007/s10620-008-0460-2
|
[2]
|
罗欣悦, 邓俊, 杨梓苑, 等. 重症监护室机械通气患者呼吸机相关性肺炎病原菌分布及风险预测模型构建[J]. 现代生物医学进展, 2023, 23(13): 2518-2522.
|
[3]
|
Kharel, S., Bist, A. and Mishra, S.K. (2021) Ventilator-associated Pneumonia among ICU Patients in WHO Southeast Asian Region: A Systematic Review. PLOS ONE, 16, e0247832. https://doi.org/10.1371/journal.pone.0247832
|
[4]
|
Kaur, H. and Ali, S.A. (2022) Probiotics and Gut Microbiota: Mechanistic Insights into Gut Immune Homeostasis through TLR Pathway Regulation. Food & Function, 13, 7423-7447. https://doi.org/10.1039/d2fo00911k
|
[5]
|
Dahiya, D. and Nigam, P.S. (2023) Antibiotic-Therapy-Induced Gut Dysbiosis Affecting Gut Microbiota—Brain Axis and Cognition: Restoration by Intake of Probiotics and Synbiotics. International Journal of Molecular Sciences, 24, Article No. 3074. https://doi.org/10.3390/ijms24043074
|
[6]
|
郑榕, 许若缨, 柯敏辉, 等. 基于“肺与大肠相表里”探讨“肺肠合病”与黏膜免疫的关系[J]. 北京中医药大学学报, 2020, 43(6): 487-491.
|
[7]
|
Zhang, D., Jian, Y., Zhang, Y., Li, Y., Gu, L., Sun, H., et al. (2023) Short-Chain Fatty Acids in Diseases. Cell Communication and Signaling, 21, Article No. 212. https://doi.org/10.1186/s12964-023-01219-9
|
[8]
|
Blaak, E.E., Canfora, E.E., Theis, S., Frost, G., Groen, A.K., Mithieux, G., et al. (2020) Short Chain Fatty Acids in Human Gut and Metabolic Health. Beneficial Microbes, 11, 411-455. https://doi.org/10.3920/bm2020.0057
|
[9]
|
Liu, X., Shao, J., Liao, Y., Wang, L., Jia, Y., Dong, P., et al. (2023) Regulation of Short-Chain Fatty Acids in the Immune System. Frontiers in Immunology, 14, Article ID: 1186892. https://doi.org/10.3389/fimmu.2023.1186892
|
[10]
|
王文静, 周育萍, 黄秋娜, 等. 预防呼吸机相关性肺炎的指南证据总结[J]. 护理学报, 2021, 28(22): 58-63.
|
[11]
|
Shimizu, K., Ogura, H., Asahara, T., Nomoto, K., Morotomi, M., Tasaki, O., et al. (2012) Probiotic/Synbiotic Therapy for Treating Critically Ill Patients from a Gut Microbiota Perspective. Digestive Diseases and Sciences, 58, 23-32. https://doi.org/10.1007/s10620-012-2334-x
|
[12]
|
Johnstone, J., Meade, M., Lauzier, F., Marshall, J., Duan, E., Dionne, J., et al. (2021) Effect of Probiotics on Incident Ventilator-Associated Pneumonia in Critically Ill Patients: A Randomized Clinical Trial. JAMA, 326, 1024-1033. https://doi.org/10.1001/jama.2021.13355
|
[13]
|
Wang, J., Liu, K., Ariani, F., Tao, L., Zhang, J. and Qu, J. (2013) Probiotics for Preventing Ventilator-Associated Pneumonia: A Systematic Review and Meta-Analysis of High-Quality Randomized Controlled Trials. PLOS ONE, 8, e83934. https://doi.org/10.1371/journal.pone.0083934
|
[14]
|
陈正钢, 刘励军. 急诊脓毒症患者早期筛查生物标志物的研究现状与展望[J]. 临床急诊杂志, 2023, 24(2): 99-104.
|
[15]
|
Chen, W., Zhong, K., Guan, Y., Zhang, H.T., Zhang, H., Pan, T., et al. (2022) Evaluation of the Significance of Interleukin-6 in the Diagnosis of Postoperative Pneumonia: A Prospective Study. BMC Cardiovascular Disorders, 22, Article No. 306. https://doi.org/10.1186/s12872-022-02744-0
|
[16]
|
Zhou, Y., Xiang, C., Wang, N., Zhang, X., Xie, Y., Yang, H., et al. (2022) Acinetobacter Baumannii Reinforces the Pathogenesis by Promoting IL-17 Production in a Mouse Pneumonia Model. Medical Microbiology and Immunology, 212, 65-73. https://doi.org/10.1007/s00430-022-00757-2
|
[17]
|
Fusco, W., Lorenzo, M.B., Cintoni, M., Porcari, S., Rinninella, E., Kaitsas, F., et al. (2023) Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients, 15, Article No. 2211. https://doi.org/10.3390/nu15092211
|
[18]
|
Silvester, J.A. (2021) Editorial: No Organ Is an Island: The Role of Gut-Organ Axes in Human Health and Disease. Current Opinion in Gastroenterology, 37, 545-546. https://doi.org/10.1097/mog.0000000000000786
|
[19]
|
Abdalkareem Jasim, S., Jade Catalan Opulencia, M., Alexis Ramírez-Coronel, A., Kamal Abdelbasset, W., Hasan Abed, M., Markov, A., et al. (2022) The Emerging Role of Microbiota-Derived Short-Chain Fatty Acids in Immunometabolism. International Immunopharmacology, 110, Article ID: 108983. https://doi.org/10.1016/j.intimp.2022.108983
|
[20]
|
Kotlyarov, S. (2022) Role of Short-Chain Fatty Acids Produced by Gut Microbiota in Innate Lung Immunity and Pathogenesis of the Heterogeneous Course of Chronic Obstructive Pulmonary Disease. International Journal of Molecular Sciences, 23, Article No. 4768. https://doi.org/10.3390/ijms23094768
|
[21]
|
Bolognini, D., Dedeo, D. and Milligan, G. (2021) Metabolic and Inflammatory Functions of Short-Chain Fatty Acid Receptors. Current Opinion in Endocrine and Metabolic Research, 16, 1-9. https://doi.org/10.1016/j.coemr.2020.06.005
|
[22]
|
王超, 高磊, 赵子健, 等. 益生菌附属发酵剂对切达干酪质构、游离氨基酸和短链脂肪酸的影响[J]. 食品与发酵工业, 2022, 48(8): 136-142.
|
[23]
|
Gai, X., Guo, C., Zhang, L., Zhang, L., Abulikemu, M., Wang, J., et al. (2021) Serum Glycerophospholipid Profile in Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Frontiers in Physiology, 12, Article ID: 646010. https://doi.org/10.3389/fphys.2021.646010
|
[24]
|
Dushianthan, A., Grocott, M.P.W., Murugan, G.S., Wilkinson, T.M.A. and Postle, A.D. (2023) Pulmonary Surfactant in Adult ARDS: Current Perspectives and Future Directions. Diagnostics, 13, Article No. 2964. https://doi.org/10.3390/diagnostics13182964
|
[25]
|
Xue, C., Li, G., Zheng, Q., Gu, X., Shi, Q., Su, Y., et al. (2023) Tryptophan Metabolism in Health and Disease. Cell Metabolism, 35, 1304-1326. https://doi.org/10.1016/j.cmet.2023.06.004
|
[26]
|
Su, X., Gao, Y. and Yang, R. (2022) Gut Microbiota-Derived Tryptophan Metabolites Maintain Gut and Systemic Homeostasis. Cells, 11, Article No. 2296. https://doi.org/10.3390/cells11152296
|
[27]
|
Correia, A.S. and Vale, N. (2022) Tryptophan Metabolism in Depression: A Narrative Review with a Focus on Serotonin and Kynurenine Pathways. International Journal of Molecular Sciences, 23, Article No. 8493. https://doi.org/10.3390/ijms23158493
|
[28]
|
Tanaka, M., Tóth, F., Polyák, H., Szabó, Á., Mándi, Y. and Vécsei, L. (2021) Immune Influencers in Action: Metabolites and Enzymes of the Tryptophan-Kynurenine Metabolic Pathway. Biomedicines, 9, Article No. 734. https://doi.org/10.3390/biomedicines9070734
|
[29]
|
Tsuji, A., Ikeda, Y., Yoshikawa, S., Taniguchi, K., Sawamura, H., Morikawa, S., et al. (2023) The Tryptophan and Kynurenine Pathway Involved in the Development of Immune-Related Diseases. International Journal of Molecular Sciences, 24, Article No. 5742. https://doi.org/10.3390/ijms24065742
|
[30]
|
Fiore, A. and Murray, P.J. (2021) Tryptophan and Indole Metabolism in Immune Regulation. Current Opinion in Immunology, 70, 7-14. https://doi.org/10.1016/j.coi.2020.12.001
|