工程化干细胞在组织再生领域的应用
Application of Engineered Stem Cells in the Field of Tissue Regeneration
DOI: 10.12677/jcpm.2025.41136, PDF, HTML, XML,    科研立项经费支持
作者: 王 佳, 钟雯婕, 高 翔*:重庆医科大学附属口腔医院,重庆;口腔疾病与生物医学重庆市重点实验室,重庆;重庆市高校市级口腔生物医学工程重点实验室,重庆
关键词: 工程化干细胞干细胞治疗工程化策略组织再生组织工程Engineered Stem Cells Stem Cell Therapy Engineering Strategies Tissue Regeneration Tissue Engineering
摘要: 干细胞具有迁移、分化以及分泌各种治疗因子(如免疫调节因子)等功能,为攻克多种疾病难题提供了全新的思路与方向。当前,干细胞治疗虽已取得阶段性成果,但仍面临细胞存活率欠佳、靶向归巢效率低下、分化精准度不足等问题。为进一步提升干细胞的治疗效能并赋予其全新的功能特性,越来越多的研究致力于工程化干细胞改造,并应用到组织再生领域,且已初步展现出成效。本综述简要回顾干细胞的工程化策略,并重点阐述工程化干细胞在创伤修复、软骨愈合、骨修复、免疫调控等组织再生领域的应用进展。
Abstract: Stem cells possess the abilities of migration, differentiation, and secretion of various therapeutic factors (such as immunomodulatory factors), which provide entirely new ideas and directions for conquering numerous disease challenges. In current clinical practice, although stem cell therapy has achieved phased results, there are still problems such as poor cell survival rate, low targeted homing efficiency, and insufficient differentiation accuracy. To further enhance the therapeutic efficacy of stem cells and endow them with new functional characteristics, an increasing number of studies are dedicated to the modification of engineered stem cells and their application in the field of tissue regeneration, and initial effects have been demonstrated. This review briefly reviews the engineering strategies of stem cells and focuses on elaborating the application progress of engineered stem cells in aspects such as wound repair, cartilage healing, bone repair, and immune regulation in tissue regeneration.
文章引用:王佳, 钟雯婕, 高翔. 工程化干细胞在组织再生领域的应用[J]. 临床个性化医学, 2025, 4(1): 977-984. https://doi.org/10.12677/jcpm.2025.41136

1. 引言

干细胞是一类具有自我复制能力和多向分化潜能的细胞,具有再生各种组织和人体器官的潜能[1] [2]。在临床上,干细胞治疗为诸多疑难病症与器官移植开创全新方向,为神经系统、心血管疾病、血液疾病、糖尿病等疾病治疗领域迎来希望曙光[3]-[6]。在过去的二十年里,许多临床前和早期临床试验为各种干细胞类型的安全性和可行性提供了令人信服的证据,包括诱导多能干细胞[7]、胚胎干细胞[8]、间充质干细胞[9]、造血干细胞[10]等。因此,干细胞治疗已成为一种令人鼓舞的实现组织再生的重要手段。组织再生是指机体对受损组织进行修复和重建的过程。在正常情况下,当组织受损后,身体会启动一系列的修复机制。尽管干细胞治疗在部分疾病治疗中初见成效,但总体的临床研究数据仍不理想[11]。鉴于此,越来越多的研究开始聚焦于工程化干细胞改造,旨在攻克干细胞治疗现存困境,诸如免疫排斥难题、定向分化精准度欠佳以及归巢效率不高等问题[12]。组织再生是指体内细胞或组织在受到损伤后,由邻近正常干细胞分裂增殖,进而对损伤部位进行修补恢复的过程。这是机体对抗局部细胞和组织损伤的一种自然修复机制,也是组织修复主要依赖的方式[13]-[15]

2. 工程化策略

干细胞的工程化策略简要概括如下:

策略

原理

种类

优点

缺点

生物偶联[16]

通过共价分子及非共价键构建连接,使生物分子与其他材料或分子之间形成连接

生化偶联、生物素–亲和素结合、抗体–抗原结合

使修饰物精准偶联到干细胞上,为干细胞相关研究与应用开拓新路径

偶联反应条件苛刻;可能影响生物分子活性;偶联效率较低;存在潜在的免疫原性问题;干扰干细胞正常功能与特性

细胞融合[17] [18]

通过人工方式使两个细胞或原生质体融合

干细胞与癌细胞、免疫细胞与干细胞

创造具有新特性和功能的杂交细胞,有望成为治疗某些疾病的潜在再生疗法

稳定性差;细胞功能可能异常;融合后细胞长期维持理想特性困难;面临复杂的伦理争议

细胞膜包裹[19] [20]

通过超速离心等方法分离出干细胞膜,将其附着到货物上

干细胞膜包裹纳米颗粒;免疫细胞膜包裹干细胞囊泡

模拟干细胞表面特性,在生物相容性、非特异性摄取、循环时间、穿透能力等方面表现更优

细胞膜分离及包裹过程操作复杂,产量有限;包裹后的结构稳定性不足,易脱落

细胞表面涂层[21] [22]

通过静电相互作用、复合物形成机制、聚合反应等使特定膜材料包裹细胞

脂质体涂层、聚合物涂层

赋予细胞在复杂生理环境中全新的功能与特性

涂层材料可能对细胞产生毒性;长期稳定性有待提高;涂层可能影响细胞正常的物质交换等生理功能

细胞内药物装载[23]-[26]

通过物理、化学或生物学手段将药物分子包封于干细胞内部

纳米颗粒(金属纳米颗粒、氧化物纳米颗粒、磁性纳米颗粒)

增强药物稳定性、延长半衰期、提升靶向性、降低毒副作用

装载过程可能损伤干细胞,影响其活性和正常功能;药物释放的精准调控较难实现,存在药物突释风险

水凝胶负载[27]

利用水凝胶的类似细胞外基质的结构和良好的理化性质,调整天然和合成成分比例来提高干细胞活性

天然水凝胶、合成水凝胶

控制干细胞的命运和扩增,为干细胞提供良好的培养和移植环境

机械性能不够理想,可能出现降解过快或过慢问题;其成分可能引发免疫反应

微流控封装[28]

利用微流控技术创建微/纳米结构,作为组织工程和细胞生物学应用的支架

/

精确控制干细胞的封装,创造高度生物启发的局部3D微环境

微流控设备成本较高,技术操作要求熟练掌握,对操作人员专业性依赖强,难以大规模推广应用

3D生物打印[29]

将工程化干细胞与生物相容性材料作为生物墨水打印,通过操纵生物材料的性质来控制生物反应

/

精确控制对支架和干细胞的生物反应,生成复杂的多细胞和多材料结构

生物墨水的选择有限;打印过程中细胞活性可能受损;打印后构建体的血管化等后续生理功能完善较难

基因工程[30]

借助特定病毒或分子工具将外源基因插入宿主细胞基因组,或对特定基因序列进行识别、切割及修饰

病毒整合基因工程、基因编辑基因工程

精准改变宿主细胞基因组成和功能特性,实现对干细胞的定向改造

可能存在脱靶效应,引发不可预期的基因改变;存在潜在的伦理和安全性问题,技术难度高,成本也相对较高

3. 工程化干细胞与创伤修复

创伤修复是一个复杂的过程,需要多种细胞类型和生物分子的协同作用。在自然状态下,内源性干细胞对创伤有着一系列有序的反应,包括从休眠状态中苏醒、从干细胞归巢动员、向受伤部位迁移并发挥多向分化作用来参与修复。然而,这种自然反应有时并不足以完全修复严重创伤,因为长期病理性炎性反应可能会导致干细胞功能失调,使干细胞数量减少,最终导致组织再生失败。工程化干细胞通过对干细胞的改造升级在创伤修复中更具优势,一方面,工程化干细胞的归巢能力增强。Varki A使用了一种特异性岩藻糖基转移酶以及高能岩藻糖供体鸟苷二磷酸岩藻糖来增加细胞表面唾液酸的含量,即“糖基化工程”对人脐带血来源的造血干细胞表面进行修饰,这种糖基化工程方法有效地增强了脐带血来源的造血干细胞与P-选择素和E-选择素的结合,在细胞表面模拟细胞内通常发生的酶促反应,虽然这种细胞表面的变化是暂时的,但足以增强初始归巢和最终的植入[31]。Sarkar等采用磺化生物素-N-羟基琥珀酰亚胺、生物素、链霉亲和素将黏附分子配体唾液酸化的抗原装备到骨髓间充质干细胞表面,成功实现了细胞表面标记,且对细胞活性、增殖、分化功能影响不大,这种标记方法操作技术简单,标记效率可达88%,有望提高骨髓间充质干细胞的归巢率[32]。另一方面,干细胞经过工程化改造后可以调节干细胞增殖和分化,实现定向分化,促进创伤修复的进程。Han等将具有磁感应性的纳米颗粒与干细胞结合后,干细胞可以在外加磁场的诱导下聚集在体内特定部位,并且当具有超声感应性的纳米颗粒被干细胞内化后,在外部超声的干预下改变胞内机械感觉通道,从而定向调控干细胞的分化,来实现在体内氧化应激等不良环境下持续生存,实现创伤修复[33]

4. 工程化干细胞与软骨愈合

工程化干细胞可有效促进软骨愈合,关节软骨损伤后首先释放损伤相关分子激活巨噬细胞,产生炎症介质,加剧软骨基质破坏;接着进入细胞增殖与迁移阶段,骨髓及周围组织的间充质干细胞受趋化因子吸引向损伤部位迁移并增殖,随后在多种生长因子和细胞因子作用下,迁移来的细胞分化为软骨细胞,进入软骨细胞分化与基质合成阶段,软骨特异性基因表达,合成并分泌Ⅱ型胶原蛋白和聚集蛋白聚糖等基质成分,最后是组织重塑与成熟阶段,基质降解和重塑,使修复组织逐渐成熟。工程化干细胞通过影响软骨愈合过程中多个关键过程实现促软骨愈合作用,如工程化干细胞靶向迁移至受损部位,调控愈合相关蛋白表达等[34]-[36]。Wu等将经氧化铜修饰的介孔硅纳米颗粒用于改造间充质干细胞,氧化铜修饰后的介孔硅纳米颗粒可递送SRY-box transcription factor 9 (sox9)质粒DNA与重组蛋白bmp7。sox9是软骨细胞分化关键转录因子,其质粒DNA被递送至间充质干细胞后,能增强细胞内sox9表达,激活下游与软骨细胞分化相关信号通路,促进成软骨标记物(如col2a1、acan、sox9、comp等)表达,提升向软骨细胞分化能力。bmp7可抑制软骨肥大,通过调节相关信号通路,降低肥大标记物(如col10a1、mmp13、runx2等)表达,维持软骨细胞正常表型。更进一步,通过点击化学反应将软骨靶向肽偶联到间充质干细胞表面,显著延长了间充质干细胞对小鼠软骨的靶向能力和驻留时间,使得干细胞的成软骨作用发挥更大[37]。Zhang等通过脂肪干细胞表面工程改性技术给脂肪来源的干细胞穿上了“组织粘附外衣”,用生物素–链霉亲和素放大的邻硝基苄醇光触发小分子让细胞能迅速在目标位置粘附,工程后的脂肪干细胞不仅能在关节腔中长时间留存,在软骨表面也能牢牢附着,而且不影响细胞的活性和分化能力。从而使工程化脂肪干细胞在兔子软骨缺损模型和小鼠骨关节炎模型中的治疗效果比未经改造前更好,这种安全、简便、高效的细胞快速粘附技术,对于提高干细胞治疗的疗效具有重要意义[38]。其次,工程化干细胞可以调控蛋白表达,改善局部微环境,例如,基于甘油脂质的核酸递送系统可作为间充质干细胞基因工程的重要平台。以该平台工程化的间充质干细胞不仅表现出优异的软骨细胞增殖和分化能力,同时实现分泌FGF18蛋白的功能,从而改善体内软骨细胞退行性病变,有望达到治愈骨关节炎的目的[39]。此外,Li等使用微流控技术来创建由明胶降冰片烯(GelNB)和聚乙二醇(PEG)交联剂组成的可见光固化微凝胶。并且在生物相容性良好的条件下对人骨髓源性间充质干细胞进行快速原位微胶囊化,骨髓源性间充质干细胞在具有软骨诱导介质的GelNB微凝胶中表现出异常高的软骨形成程度,特别是朝向透明软骨结构,与体积水凝胶和“金标准”粒培养相比,II型胶原蛋白表达显著上调[40]

5. 工程化干细胞与骨修复

工程化干细胞与骨损伤修复有关,其在骨组织修复过程中的应用涉及多个关键环节与复杂机制。例如工程化干细胞可通过引入特定的生长因子来调控增殖,Lin等人利用杆状病毒基因工程化改造的间充质干细胞可以增加血管内皮生长因子和骨形态发生蛋白的表达,加速了股骨大骨缺损的修复并改善了再生骨的质量[41]。工程化后干细胞定向分化为成骨细胞的能力增强。Feng等利用生物素–亲和素修饰的脂肪来源干细胞组成复合材料组成,该复合材料促使干细胞在实现兔下颌面缺损模型中发挥良好的成骨功能,最终相比对照组有效实现了骨组织的再生修复[42] [43]。此外,工程还干细胞还可以发挥微环境调节能力,例如,Gao等通过脂多糖处理过的巨噬细胞膜包被金纳米笼作为“细胞因子阻滞剂”,并在其中装载“M2极化诱导剂”溶液并由近红外激光照射下触发,共同发挥阻断细胞因子并促进M2巨噬细胞极化,为骨组织修复免疫微环境的调节发挥积极作用[44]

6. 工程化干细胞与免疫调控

工程化干细胞可以有效调控免疫稳态,分泌多种生物活性分子,如细胞外基质成分、生长因子和细胞因子等,这些分子可以调节创伤部位的微环境。在创伤后,局部微环境可能存在炎症反应、细胞外基质破坏等问题。工程化干细胞分泌的抗炎因子可以减轻炎症反应,同时其分泌的细胞外基质成分可以重建受损的组织支架,为细胞的黏附、增殖和分化提供良好的条件。Chen等设计了新型递送载体,通过适体生物正交化学技术改造去核间充质干细胞,利用去核骨髓间充质干细胞的蛋白质翻译和分泌能力,通过转染IL-4mRNA将其作为制造白细胞介素-4的“工厂”,确保白细胞介素-4细胞因子的持续和稳定表达,改善了在伤口局部使用白细胞介素-4蛋白成本高和半衰期短的问题。有效调节了微环境,改善了细胞间通讯[45]。Park,N等通过合成缀合物与脂肪干细胞偶联,产生可追踪的脂肪干细胞。这种接合策略可有效保护干细胞,并允许可视化追踪。工程化的脂肪干细胞在光照射下表现出更强的活力并分泌更多的旁分泌因子,调节炎症微环境,有望成为一种有效且安全地治疗炎症性肠病的生物策略[46]。Ye等通过使用多价抗体DNA模板引导的生物分子对间充质干细胞进行表面工程,在急性炎症和炎症性肠病的雌性小鼠模型中,显示出增强的靶向效率和较好的治疗效果,为改进基于间充质干细胞的再生医学提供了一种策略[47]。You等构建表面拴系的对活性氧响应的胶束“背包”并附着在间充质干细胞上,通过胶束“背包”响应缺血性中风环境中的ROS来提升干细胞活力、调节炎症,旨在发挥缺血性中风疾病治疗中组织再生的作用[48]。Stock AA等通过用特定聚合物为MSC涂层,提升其在体内稳定性与功能。该涂层模拟生理环境,帮助间充质干细胞抵抗免疫系统攻击、维持干性及增强旁分泌效应,促进胰岛组织再生与改善微环境,后续需优化涂层材料提升疗效与安全性、探究长期效果及作用机制,推动临床转化改善患者生活质量[49]。Zhang等开发了一种通过微流体模板化的干细胞微胶囊,用于治疗肺纤维化。将微流体模板化的干细胞微胶囊递送至肺部。微胶囊能够增强供体间充质干细胞在宿主体内的持久性,并驱动间充质干细胞增强其治疗功能,包括免疫调节和基质金属蛋白酶(MMP)介导的细胞外基质重塑,研究结果显示,该方法有效地逆转了炎症和纤维化损伤的进展,为设计纤维化疾病的先进干细胞疗法提供了一种有前景且直接的策略[50]

7. 结论与展望

综上所述,多种工程化策略为攻克传统干细胞治疗困境带来希望,并且在组织再生领域已取得显著进展。工程化干细胞未来发展的关键在于以下两个方面:第一,对干细胞更精准的控制,例如:利用荧光成像、磁共振成像(MRI)等多模态成像技术辅助,实时、精准监测工程化干细胞在体内分布、迁移轨迹和与周围组织的相互作用,为调整治疗方案提供依据;研发对温度、pH、光等外界刺激响应的智能材料,更好配合干细胞在组织再生进程中发挥作用;借助单细胞测序、单细胞蛋白质组学等技术,深入了解单个工程化干细胞的基因表达、蛋白质分泌等特征,精准筛选出具有最佳治疗效果的细胞亚群,实现精细化治疗。并且工程化干细胞在很多领域的突破前景巨大。例如:基因编辑技术领域,持续优化CRISPR/Cas系统,降低脱靶风险,并开发碱基、引导编辑等新工具,可实现更精准基因修饰;人工智能与生物医学深度融合,利用算法分析数据、建立模型,能够优化工程化策略,推动研究加速进展。更多高效、简便、安全的干细胞工程化手段还需要进一步探索和实现。第二,工程化干细胞与免疫调节、个性化治疗等新兴治疗理念的深度融合,依据个体差异精准定制治疗方案,更好地发挥干细胞在疾病治疗中的作用。工程化干细胞治疗临床应用前,还需要克服多重困难,在动物模型和临床试验中仍需进一步研究工程化干细胞在组织修复上的作用机制。此外,这些潜在的治疗方法是否会导致功能改善和副作用也有待观察。

项目基金

重庆医科大学附属口腔医院博士后科研启动金。

参考文献

[1] Blau, H.M. and Daley, G.Q. (2019) Stem Cells in the Treatment of Disease. New England Journal of Medicine, 380, 1748-1760.
https://doi.org/10.1056/nejmra1716145
[2] Kaji, E.H. (2001) Gene and Stem Cell Therapies. Journal of the American Medical Association, 285, 545-550.
https://doi.org/10.1001/jama.285.5.545
[3] Maimaitili, M., Chen, M., Febbraro, F., Ucuncu, E., Kelly, R., Niclis, J.C., et al. (2023) Enhanced Production of Mesencephalic Dopaminergic Neurons from Lineage-Restricted Human Undifferentiated Stem Cells. Nature Communications, 14, Article No. 7871.
https://doi.org/10.1038/s41467-023-43471-0
[4] Ranganath, S.H., Levy, O., Inamdar, M.S. and Karp, J.M. (2012) Harnessing the Mesenchymal Stem Cell Secretome for the Treatment of Cardiovascular Disease. Cell Stem Cell, 10, 244-258.
https://doi.org/10.1016/j.stem.2012.02.005
[5] Lou, Q., Jiang, K., Xu, Q., Yuan, L., Xie, S., Pan, Y., et al. (2022) The RIG-I-NRF2 Axis Regulates the Mesenchymal Stromal Niche for Bone Marrow Transplantation. Blood, 139, 3204-3221.
https://doi.org/10.1182/blood.2021013048
[6] Wang, S., Du, Y., Zhang, B., Meng, G., Liu, Z., Liew, S.Y., et al. (2024) Transplantation of Chemically Induced Pluripotent Stem-Cell-Derived Islets under Abdominal Anterior Rectus Sheath in a Type 1 Diabetes Patient. Cell, 187, 6152-6164.e18.
https://doi.org/10.1016/j.cell.2024.09.004
[7] Li, Y., Tsai, Y., Hsu, C., Erol, D., Yang, J., Wu, W., et al. (2012) Long-Term Safety and Efficacy of Human-Induced Pluripotent Stem Cell (IPS) Grafts in a Preclinical Model of Retinitis Pigmentosa. Molecular Medicine, 18, 1312-1319.
https://doi.org/10.2119/molmed.2012.00242
[8] Kirkeby, A., Nelander, J., Hoban, D.B., Rogelius, N., Bjartmarz, H., Storm, P., et al. (2023) Preclinical Quality, Safety, and Efficacy of a Human Embryonic Stem Cell-Derived Product for the Treatment of Parkinson’s Disease, STEM-PD. Cell Stem Cell, 30, 1299-1314.e9.
https://doi.org/10.1016/j.stem.2023.08.014
[9] Mathur, A., Taurin, S. and Alshammary, S. (2023) The Safety and Efficacy of Mesenchymal Stem Cells in the Treatment of Type 2 Diabetes—A Literature Review. Diabetes, Metabolic Syndrome and Obesity, 16, 769-777.
https://doi.org/10.2147/dmso.s392161
[10] Jayaraj, J.S., Janapala, R.N., Qaseem, A., Usman, N., Fathima, N., Kashif, T., et al. (2019) Efficacy and Safety of Stem Cell Therapy in Advanced Heart Failure Patients: A Systematic Review with a Meta-Analysis of Recent Trials between 2017 and 2019. Cureus, 11, e5585.
https://doi.org/10.7759/cureus.5585
[11] Galipeau, J. and Sensébé, L. (2018) Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities. Cell Stem Cell, 22, 824-833.
https://doi.org/10.1016/j.stem.2018.05.004
[12] Rahimi Darehbagh, R., Seyedoshohadaei, S.A., Ramezani, R. and Rezaei, N. (2024) Stem Cell Therapies for Neurological Disorders: Current Progress, Challenges, and Future Perspectives. European Journal of Medical Research, 29, Article 386.
https://doi.org/10.1186/s40001-024-01987-1
[13] Thurairajah, K., Broadhead, M. and Balogh, Z. (2017) Trauma and Stem Cells: Biology and Potential Therapeutic Implications. International Journal of Molecular Sciences, 18, Article 577.
https://doi.org/10.3390/ijms18030577
[14] Wang, J., Zhang, X., Chen, H., Ren, H., Zhou, M. and Zhao, Y. (2024) Engineered Stem Cells by Emerging Biomedical Stratagems. Science Bulletin, 69, 248-279.
https://doi.org/10.1016/j.scib.2023.12.006
[15] Kimbrel, E.A. and Lanza, R. (2020) Next-Generation Stem Cells—Ushering in a New Era of Cell-Based Therapies. Nature Reviews Drug Discovery, 19, 463-479.
https://doi.org/10.1038/s41573-020-0064-x
[16] Wang, Y., Shi, J., Xin, M., Kahkoska, A.R., Wang, J. and Gu, Z. (2024) Cell-Drug Conjugates. Nature Biomedical Engineering, 8, 1347-1365.
https://doi.org/10.1038/s41551-024-01230-6
[17] Dörnen, J., Myklebost, O. and Dittmar, T. (2020) Cell Fusion of Mesenchymal Stem/Stromal Cells and Breast Cancer Cells Leads to the Formation of Hybrid Cells Exhibiting Diverse and Individual (Stem Cell) Characteristics. International Journal of Molecular Sciences, 21, Article 9636.
https://doi.org/10.3390/ijms21249636
[18] Aguirre, L.A., Montalbán-Hernández, K., Avendaño-Ortiz, J., Marín, E., Lozano, R., Toledano, V., et al. (2020) Tumor Stem Cells Fuse with Monocytes to Form Highly Invasive Tumor-Hybrid Cells. OncoImmunology, 9, Article 1773204.
https://doi.org/10.1080/2162402x.2020.1773204
[19] Jin, H., Zhao, Y., Yao, Y., Fan, S., Luo, R., Shen, X., et al. (2024) Intratracheal Administration of Stem Cell Membrane-Cloaked Naringin-Loaded Biomimetic Nanoparticles Promotes Resolution of Acute Lung Injury. Antioxidants, 13, Article 282.
https://doi.org/10.3390/antiox13030282
[20] Xie, J., Hu, Y., Li, H., Wang, Y., Fan, X., Lu, W., et al. (2023) Targeted Therapy for Peri-Prosthetic Osteolysis Using Macrophage Membrane-Encapsulated Human Urine-Derived Stem Cell Extracellular Vesicles. Acta Biomaterialia, 160, 297-310.
https://doi.org/10.1016/j.actbio.2023.02.003
[21] Husteden, C., Brito Barrera, Y.A., Tegtmeyer, S., Borges, J., Giselbrecht, J., Menzel, M., et al. (2022) Lipoplex-Functionalized Thin-Film Surface Coating Based on Extracellular Matrix Components as Local Gene Delivery System to Control Osteogenic Stem Cell Differentiation. Advanced Healthcare Materials, 12, Article 2201978.
https://doi.org/10.1002/adhm.202201978
[22] Peng, H., Chelvarajan, L., Donahue, R., Gottipati, A., Cahall, C.F., Davis, K.A., et al. (2021) Polymer Cell Surface Coating Enhances Mesenchymal Stem Cell Retention and Cardiac Protection. ACS Applied Bio Materials, 4, 1655-1667.
https://doi.org/10.1021/acsabm.0c01473
[23] Yi, C., Liu, D., Fong, C., Zhang, J. and Yang, M. (2010) Gold Nanoparticles Promote Osteogenic Differentiation of Mesenchymal Stem Cells through P38 MAPK Pathway. ACS Nano, 4, 6439-6448.
https://doi.org/10.1021/nn101373r
[24] Shuai, C., Yang, W., He, C., Peng, S., Gao, C., Yang, Y., et al. (2020) A Magnetic Micro-Environment in Scaffolds for Stimulating Bone Regeneration. Materials & Design, 185, Article 108275.
https://doi.org/10.1016/j.matdes.2019.108275
[25] Martín-Moldes, Z., López Barreiro, D., Buehler, M.J. and Kaplan, D.L. (2021) Effect of the Silica Nanoparticle Size on the Osteoinduction of Biomineralized Silk-Silica Nanocomposites. Acta Biomaterialia, 120, 203-212.
https://doi.org/10.1016/j.actbio.2020.10.043
[26] Wang, Y., Sun, C., Liu, Z., Zhang, S., Gao, K., Yi, F., et al. (2024) Nanoengineered Endocytic Biomaterials for Stem Cell Therapy. Advanced Functional Materials, 34, Article 2410714.
https://doi.org/10.1002/adfm.202410714
[27] Yin, S. and Cao, Y. (2021) Hydrogels for Large-Scale Expansion of Stem Cells. Acta Biomaterialia, 128, 1-20.
https://doi.org/10.1016/j.actbio.2021.03.026
[28] Chen, K. and Knoepfler, P.S. (2016) To Crispr and Beyond: The Evolution of Genome Editing in Stem Cells. Regenerative Medicine, 11, 801-816.
https://doi.org/10.2217/rme-2016-0107
[29] Wang, R., Wang, F., Lu, S., Gao, B., Kan, Y., Yuan, T., et al. (2023) Adipose-Derived Stem Cell/FGF19-Loaded Microfluidic Hydrogel Microspheres for Synergistic Restoration of Critical Ischemic Limb. Bioactive Materials, 27, 394-408.
https://doi.org/10.1016/j.bioactmat.2023.04.006
[30] Fazeli, N., Arefian, E., Irani, S., Ardeshirylajimi, A. and Seyedjafari, E. (2021) 3d-Printed PCL Scaffolds Coated with Nanobioceramics Enhance Osteogenic Differentiation of Stem Cells. ACS Omega, 6, 35284-35296.
https://doi.org/10.1021/acsomega.1c04015
[31] Varki, A. (2004) Glycosylation Engineering Enhances Stem Cell Homing. Blood, 104, 3005-3005.
https://doi.org/10.1182/blood-2004-08-3274
[32] Sarkar, D., Zhao, W., Gupta, A., Loh, W.L., Karnik, R. and Karp, J.M. (2011) Cell Surface Engineering of Mesenchymal Stem Cells. In: Methods in Molecular Biology, Humana Press, 505-523.
https://doi.org/10.1007/978-1-60761-999-4_35
[33] Han, H., Chen, B., Liu, Y., Wang, Y., Xing, L., Wang, H., et al. (2024) Engineered Stem Cell-Based Strategy: A New Paradigm of Next-Generation Stem Cell Product in Regenerative Medicine. Journal of Controlled Release, 365, 981-1003.
https://doi.org/10.1016/j.jconrel.2023.12.024
[34] Nordberg, R.C., Bielajew, B.J., Takahashi, T., et al. (2024) Recent Advancements in Cartilage Tissue Engineering Innovation and Translation. Nature Reviews Rheumatology, 1, 1-22.
[35] Yang, Z., Li, H., Tian, Y., Fu, L., Gao, C., Zhao, T., et al. (2021) Biofunctionalized Structure and Ingredient Mimicking Scaffolds Achieving Recruitment and Chondrogenesis for Staged Cartilage Regeneration. Frontiers in Cell and Developmental Biology, 9, Article 655440.
https://doi.org/10.3389/fcell.2021.655440
[36] Kim, Y.S. and Mikos, A.G. (2021) Emerging Strategies in Reprogramming and Enhancing the Fate of Mesenchymal Stem Cells for Bone and Cartilage Tissue Engineering. Journal of Controlled Release, 330, 565-574.
https://doi.org/10.1016/j.jconrel.2020.12.055
[37] Wu, C., Huang, Z., Chen, J., Li, N., Cai, Y., Chen, J., et al. (2025) Efficiently Directing Differentiation and Homing of Mesenchymal Stem Cells to Boost Cartilage Repair in Osteoarthritis via a Nanoparticle and Peptide Dual-Engineering Strategy. Biomaterials, 312, Article 122720.
https://doi.org/10.1016/j.biomaterials.2024.122720
[38] Zhang, Y., Zhu, Q., Zhang, X., Chen, X., Wu, Z., Wang, J., et al. (2024) Rapid Tissue Adhesive Coat Improves Engraftment Efficiency of Stem Cell Therapy. Cell Reports Physical Science, 5, Article 102080.
https://doi.org/10.1016/j.xcrp.2024.102080
[39] Huang, K., Liu, X., Qin, H., Li, Y., Zhu, J., Yin, B., et al. (2024) FGF18 Encoding Circular mRNA-LNP Based on Glycerolipid Engineering of Mesenchymal Stem Cells for Efficient Amelioration of Osteoarthritis. Biomaterials Science, 12, 4427-4439.
https://doi.org/10.1039/d4bm00668b
[40] Li, F., Truong, V.X., Thissen, H., Frith, J.E. and Forsythe, J.S. (2017) Microfluidic Encapsulation of Human Mesenchymal Stem Cells for Articular Cartilage Tissue Regeneration. ACS Applied Materials & Interfaces, 9, 8589-8601.
https://doi.org/10.1021/acsami.7b00728
[41] Lin, C., Chang, Y., Lin, K., Yen, T., Tai, C., Chen, C., et al. (2010) The Healing of Critical-Sized Femoral Segmental Bone Defects in Rabbits Using Baculovirus-Engineered Mesenchymal Stem Cells. Biomaterials, 31, 3222-3230.
https://doi.org/10.1016/j.biomaterials.2010.01.030
[42] 杨林, 罗富里, 李赟, 等. 利用生物素-链霉亲和素进行骨髓间充质干细胞的表面标记[J]. 中国组织工程研究, 2016, 20(10): 1537-1542.
[43] Feng, Z., Liu, J., Shen, C., Lu, N., Zhang, Y., Yang, Y., et al. (2015) Biotin-Avidin Mediates the Binding of Adipose-Derived Stem Cells to a Porous Β-Tricalcium Phosphate Scaffold: Mandibular Regeneration. Experimental and Therapeutic Medicine, 11, 737-746.
https://doi.org/10.3892/etm.2015.2961
[44] Gao, W. and Xiao, Y. (2022) Advances in Cell Membrane-Encapsulated Biomaterials for Tissue Repair and Regeneration. Applied Materials Today, 26, Article 101389.
https://doi.org/10.1016/j.apmt.2022.101389
[45] Chen, Z., Zou, Y., Sun, H., He, Y., Ye, K., Li, Y., et al. (2024) Engineered Enucleated Mesenchymal Stem Cells Regulating Immune Microenvironment and Promoting Wound Healing. Advanced Materials, 36, Article 2412253.
https://doi.org/10.1002/adma.202412253
[46] Park, N., Kim, K.S., Park, C.G., Jung, H., Park, W. and Na, K. (2024) Adipose-derived Stem Cell-Based Anti-Inflammatory Paracrine Factor Regulation for the Treatment of Inflammatory Bowel Disease. Journal of Controlled Release, 374, 384-399.
https://doi.org/10.1016/j.jconrel.2024.08.027
[47] Ye, T., Liu, X., Zhong, X., Yan, R. and Shi, P. (2023) Nongenetic Surface Engineering of Mesenchymal Stromal Cells with Polyvalent Antibodies to Enhance Targeting Efficiency. Nature Communications, 14, Article No. 5806.
https://doi.org/10.1038/s41467-023-41609-8
[48] You, Y., Liu, Y., Ma, C., Xu, J., Xie, L., Tong, S., et al. (2023) Surface-Tethered Ros-Responsive Micelle Backpacks for Boosting Mesenchymal Stem Cell Vitality and Modulating Inflammation in Ischemic Stroke Treatment. Journal of Controlled Release, 362, 210-224.
https://doi.org/10.1016/j.jconrel.2023.08.039
[49] Stock, A.A., Manzoli, V., De Toni, T., Abreu, M.M., Poh, Y., Ye, L., et al. (2020) Conformal Coating of Stem Cell-Derived Islets for Β Cell Replacement in Type 1 Diabetes. Stem Cell Reports, 14, 91-104.
https://doi.org/10.1016/j.stemcr.2019.11.004
[50] Zhang, Y., Zhao, Y., An, C., Guo, Y., Ma, Y., Shao, F., et al. (2025) Material-Driven Immunomodulation and ECM Remodeling Reverse Pulmonary Fibrosis by Local Delivery of Stem Cell-Laden Microcapsules. Biomaterials, 313, Article 122757.
https://doi.org/10.1016/j.biomaterials.2024.122757