[1]
|
Mansoor, J., Ellahi, I., Junaid, Z., Habib, A. and Ilyas, U. (2013) Clinical Evaluation of Improvised Gauze‐Based Negative Pressure Wound Therapy in Military Wounds. International Wound Journal, 12, 559-563. https://doi.org/10.1111/iwj.12164
|
[2]
|
Raffl, A.B. (1952) The Use of Negative Pressure under Skin Flaps after Radical Mastectomy. Annals of Surgery, 136, 1048. https://doi.org/10.1097/00000658-195212000-00022
|
[3]
|
Fleischmann, W., Strecker, W., Bombelli, M. and Kinzl, L. (1993) Vakuumversiegelung zur Behandlung des Weichteils-chadens bei of-fenen Frakturen. Der Unfallchirurg. 96, 488-492.
|
[4]
|
Argenta, L.C. and Morykwas, M.J. (1997) Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience. Annals of Plastic Surgery, 38, 563-577. https://doi.org/10.1097/00000637-199706000-00002
|
[5]
|
Kantak, N.A., Mistry, R., Varon, D.E. and Halvorson, E.G. (2017) Negative Pressure Wound Therapy for Burns. Clinics in Plastic Surgery, 44, 671-677. https://doi.org/10.1016/j.cps.2017.02.023
|
[6]
|
Anghel, E.L. and Kim, P.J. (2016) Negative-Pressure Wound Therapy: A Comprehensive Review of the Evidence. Plastic & Reconstructive Surgery, 138, 129S-137S. https://doi.org/10.1097/prs.0000000000002645
|
[7]
|
Kairinos, N., Solomons, M. and Hudson, D.A. (2009) Negative-Pressure Wound Therapy I: The Paradox of Negative-Pressure Wound Therapy. Plastic and Reconstructive Surgery, 123, 589-598. https://doi.org/10.1097/prs.0b013e3181956551
|
[8]
|
Fraccalvieri, M., Zingarelli, E., Ruka, E., Antoniotti, U., Coda, R., Sarno, A., et al. (2011) Negative Pressure Wound Therapy Using Gauze and Foam: Histological, Immunohistochemical and Ultrasonography Morphological Analysis of the Granulation Tissue and Scar Tissue. Preliminary Report of a Clinical Study. International Wound Journal, 8, 355-364. https://doi.org/10.1111/j.1742-481x.2011.00798.x
|
[9]
|
Malmsjö, M. and Ingemansson, R. (2011) Green Foam, Black Foam or Gauze for NWPT: Effects on Granulation Tissue Formation. Journal of Wound Care, 20, 294-299. https://doi.org/10.12968/jowc.2011.20.6.294
|
[10]
|
Chariker, M.E., Jeter, K.F., Tintle, T.E., Bottsford, J.E., et al. (1989) Effective Management of Incisional and Cutaneous Fistulae with Closed Suction Wound Drainage. Contemporary Neurosurgery, 34, 59-63.
|
[11]
|
Malmsjö, M. and Ingemansson, R. (2011) Effects of Green Foam, Black Foam and Gauze on Contraction, Blood Flow and Pressure Delivery to the Wound Bed in Negative Pressure Wound Therapy. Journal of Plastic, Reconstructive & Aesthetic Surgery, 64, e289-e296. https://doi.org/10.1016/j.bjps.2011.06.023
|
[12]
|
Paglinawan, R., Colic, M. and Simon, M.A. (2008) Comparative Study of the Influence of Different Pressure Levels Combined with Various Wound Dressings on Negative Pressure Wound Therapy Driven Wound Healing. European Tissue Repair Society, Malta.
|
[13]
|
Morykwas, M.J., Argenta, L.C., Shelton-Brown, E.I. and McGuirt, W. (1997) Vacuum-Assisted Closure: A New Method for Wound Control and Treatment. Annals of Plastic Surgery, 38, 553-562. https://doi.org/10.1097/00000637-199706000-00001
|
[14]
|
Morykwas, M.J., Faler, B.J., Pearce, D.J. and Argenta, L.C. (2001) Effects of Varying Levels of Subatmospheric Pressure on the Rate of Granulation Tissue Formation in Experimental Wounds in Swine. Annals of Plastic Surgery, 47, 547-551. https://doi.org/10.1097/00000637-200111000-00013
|
[15]
|
Borgquist, O., Gustafson, L., Ingemansson, R. and Malmsjo, M. (2009) Tissue Ingrowth into Foam but not into Gauze during Negative Pressure Wound Therapy. Wounds, 21, 302-309.
|
[16]
|
Torbrand, C., Anesäter, E., Borgquist, O. and Malmsjö, M. (2017) Mechanical Effects of Negative Pressure Wound Therapy on Abdominal Wounds—Effects of Different Pressures and Wound Fillers. International Wound Journal, 15, 24-28. https://doi.org/10.1111/iwj.12810
|
[17]
|
Fraccalvieri, M., Ruka, E., Bocchiotti, M.A., Zingarelli, E. and Bruschi, S. (2011) Patient’s Pain Feedback Using Negative Pressure Wound Therapy with Foam and Gauze. International Wound Journal, 8, 492-499. https://doi.org/10.1111/j.1742-481x.2011.00821.x
|
[18]
|
Hurd, T., Chadwick, P., Cote, J., Cockwill, J., Mole, T.R. and Smith, J.M. (2010) Impact of Gauze‐Based NPWT on the Patient and Nursing Experience in the Treatment of Challenging Wounds. International Wound Journal, 7, 448-455. https://doi.org/10.1111/j.1742-481x.2010.00714.x
|
[19]
|
Wagstaff, M.J.D., Driver, S., Coghlan, P. and Greenwood, J.E. (2014) A Randomized, Controlled Trial of Negative Pressure Wound Therapy of Pressure Ulcers via a Novel Polyurethane Foam. Wound Repair and Regeneration, 22, 205-211. https://doi.org/10.1111/wrr.12146
|
[20]
|
Borgquist, O., Ingemansson, R., Lindstedt, S. and Malmsjö, M. (2011) Undertrycksbehandling av sår: Kunskap om verkningsmekanis-mer och komplikationer ger nya möjligheter. Lakartidningen, 108, 2372-2375.
|
[21]
|
Vig, S., Dowsett, C., Berg, L., Caravaggi, C., Rome, P., Birke-Sorensen, H., et al. (2011) Evidence-Based Recommendations for the Use of Negative Pressure Wound Therapy in Chronic Wounds: Steps Towards an International Consensus. Journal of Tissue Viability, 20, S1-S18. https://doi.org/10.1016/j.jtv.2011.07.002
|
[22]
|
Mussi, C. and Salvioli, G. (2004) Clinical Evaluation of Sorbact (Bacteria Absorbing Dressing) in the Treatment of Infected Pressure Sores. Acta Vulnologica, 2, 9-11.
|
[23]
|
Malmsjö, M., Ingemansson, R., Lindstedt, S. and Gustafsson, L. (2012) Comparison of Bacteria and Fungus‐Binding Mesh, Foam and Gauze as Fillers in Negative Pressure Wound Therapy—Pressure Transduction, Wound Edge Contraction, Microvascular Blood Flow and Fluid Retention. International Wound Journal, 10, 597-605. https://doi.org/10.1111/j.1742-481x.2012.01029.x
|
[24]
|
Malmsjö, M., Lindstedt, S., Ingemansson, R. and Gustafsson, L. (2014) Use of Bacteria-and Fungus-Binding Mesh in Negative Pressure Wound Therapy Provides Significant Granulation Tissue without Tissue Ingrowth. Eplasty, 14, e3.
|
[25]
|
Jeffery, S.L. (2018) The Use of an Antimicrobial Primary Wound Contact Layer as Liner and Filler with NPWT. Journal of Wound Care, 23, S3-S14. https://doi.org/10.12968/jowc.2014.23.sup8.s1
|
[26]
|
Weed, T., Ratliff, C. and Drake, D.B. (2004) Quantifying Bacterial Bioburden during Negative Pressure Wound Therapy: Does the Wound VAC Enhance Bacterial Clearance? Annals of Plastic Surgery, 52, 276-279. https://doi.org/10.1097/01.sap.0000111861.75927.4d
|
[27]
|
Stinner, D.J., Waterman, S.M., Masini, B.D. and Wenke, J.C. (2011) Silver Dressings Augment the Ability of Negative Pressure Wound Therapy to Reduce Bacteria in a Contaminated Open Fracture Model. Journal of Trauma: Injury, Infection & Critical Care, 71, S147-S150. https://doi.org/10.1097/ta.0b013e318221944a
|
[28]
|
Hahn, H.M., Lee, I.J., Woo, K. and Park, B.Y. (2019) Silver-Impregnated Negative-Pressure Wound Therapy for the Treatment of Lower-Extremity Open Wounds: A Prospective Randomized Clinical Study. Advances in Skin & Wound Care, 32, 370-377. https://doi.org/10.1097/01.asw.0000569116.59534.a6
|
[29]
|
Rawson, K.B., Neuberger, T., Smith, T., Reddy, H.R.K., Haussener, T.J., Sebahar, P.R., et al. (2022) Antibiofilm Potential of a Negative Pressure Wound Therapy Foam Loaded with a First‐in‐Class Tri‐Alkyl Norspermidine‐Biaryl Antibiotic. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 110, 1780-1788. https://doi.org/10.1002/jbm.b.35035
|
[30]
|
Rawson, K.B., Neuberger, T., Smith, T.B., Bell, I.J., Looper, R.E., Sebahar, P.R., et al. (2023) Ex Vivo Comparison of V.A.C.® Granufoam Silver™ and V.A.C.® Granufoam™ Loaded with a First-in-Class Bis-Dialkylnorspermidine-Terphenyl Antibiofilm Agent. Biofilm, 6, Article 100142. https://doi.org/10.1016/j.bioflm.2023.100142
|
[31]
|
Hughes, G. and McLean, N.R. (1988) Zinc Oxide Tape: A Useful Dressing for the Recalcitrant Finger-Tip and Soft-Tissue Injury. Emergency Medicine Journal, 5, 223-227. https://doi.org/10.1136/emj.5.4.223
|
[32]
|
Monteiro-Riviere, N.A., Wiench, K., Landsiedel, R., Schulte, S., Inman, A.O. and Riviere, J.E. (2011) Safety Evaluation of Sunscreen Formulations Containing Titanium Dioxide and Zinc Oxide Nanoparticles in UVB Sunburned Skin: An in Vitro and in Vivo Study. Toxicological Sciences, 123, 264-280. https://doi.org/10.1093/toxsci/kfr148
|
[33]
|
Oberleas, D., Seymour, J.K., Lenaghan, R., Hovanesian, J., Wilson, R.F. and Prasad, A.S. (1971) Effect of Zinc Deficiency on Wound-Healing in Rats. The American Journal of Surgery, 121, 566-568. https://doi.org/10.1016/0002-9610(71)90140-1
|
[34]
|
Ozdemir, G. and Inanc, F. (2005) Zinc May Protect Remote Ocular Injury Caused by Intestinal Ischemia Reperfusion in Rats. The Tohoku Journal of Experimental Medicine, 206, 247-251. https://doi.org/10.1620/tjem.206.247
|
[35]
|
Lim, Y., Levy, M. and Bray, T.M. (2004) Dietary Zinc Alters Early Inflammatory Responses during Cutaneous Wound Healing in Weanling CD-1 Mice. The Journal of Nutrition, 134, 811-816. https://doi.org/10.1093/jn/134.4.811
|
[36]
|
Ashfaq, M., Verma, N. and Khan, S. (2016) Copper/Zinc Bimetal Nanoparticles-Dispersed Carbon Nanofibers: A Novel Potential Antibiotic Material. Materials Science and Engineering: C, 59, 938-947. https://doi.org/10.1016/j.msec.2015.10.079
|
[37]
|
Mohandas, A., Kumar PT, S., Raja, B., Lakshmanan, V. and Jayakumar, R. (2019) Exploration of Alginate Hydrogel/ Nano Zinc Oxide Composite Bandages for Infected Wounds [Corrigendum]. International Journal of Nanomedicine, 14, 2607-2608. https://doi.org/10.2147/ijn.s208590
|
[38]
|
Aydoğdu, O., Tuncel, U., Gümüş, M., Kurt, A., Oztürk, N., Aksakal, I.A., Çelik, U.R., Güzel, N. and Erkorkmaz, U. (2016) Zinc-Coated Foam with Negative Pressure Wound Therapy in the Treatment of Challenging Wounds: A New Alternative Interface Material. Wounds.
|
[39]
|
Heidenau, F., Mittelmeier, W., Detsch, R., Haenle, M., Stenzel, F., Ziegler, G., et al. (2005) A Novel Antibacterial Titania Coating: Metal Ion Toxicity and in Vitro Surface Colonization. Journal of Materials Science: Materials in Medicine, 16, 883-888. https://doi.org/10.1007/s10856-005-4422-3
|
[40]
|
Borkow, G., Gabbay, J., Dardik, R., Eidelman, A.I., Lavie, Y., Grunfeld, Y., et al. (2010) Molecular Mechanisms of Enhanced Wound Healing by Copper Oxide-Impregnated Dressings. Wound Repair and Regeneration, 18, 266-275. https://doi.org/10.1111/j.1524-475x.2010.00573.x
|
[41]
|
Ellenrieder, M., Redanz, S., Bader, R., Mittelmeier, W. and Podbielski, A. (2015) Influence of Antimicrobial Coatings of Vacuum-Assisted Closure Dressings on Methicillin-Resistant Staphylococcus aureus Growth Kinetics: An in Vitro Study. Surgical Infections, 16, 139-145. https://doi.org/10.1089/sur.2013.268
|
[42]
|
Morris, C., Emsley, P., Marland, E., Meuleneire, F. and White, R. (2009) Use of Wound Dressings with Soft Silicone Adhesive Technology. Paediatric Care, 21, 38-43. https://doi.org/10.7748/paed2009.04.21.3.38.c7037
|
[43]
|
White, R. and Morris, C. (2009) Mepitel: A Non-Adherent Wound Dressing with Safetac Technology. British Journal of Nursing, 18, 58-64. https://doi.org/10.12968/bjon.2009.18.1.93582
|
[44]
|
Davies, P. and Rippon, M. (2008) Evidence Review: The Clinical Benefits of Safetac® Technology in Wound Care. Journal of Wound Care, 17, 3-31.
|
[45]
|
Losi, P., Briganti, E., Costa, M., Sanguinetti, E. and Soldani, G. (2012) Silicone-Coated Non-Woven Polyester Dressing Enhances Reepithelialisation in a Sheep Model of Dermal Wounds. Journal of Materials Science: Materials in Medicine, 23, 2235-2243. https://doi.org/10.1007/s10856-012-4701-8
|
[46]
|
Warner, H.J. and Wagner, W.D. (2017) Fabrication of Biodegradable Foams for Deep Tissue Negative Pressure Treatments. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106, 1998-2007. https://doi.org/10.1002/jbm.b.34007
|
[47]
|
Liu, J., Morykwas, M.J., Argenta, L.C. and Wagner, W.D. (2011) Development of a Biodegradable Foam for Use in Negative Pressure Wound Therapy. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 98, 316-322. https://doi.org/10.1002/jbm.b.31854
|
[48]
|
Sun, H., Mei, L., Song, C., Cui, X. and Wang, P. (2006) The in Vivo Degradation, Absorption and Excretion of PCL-Based Implant. Biomaterials, 27, 1735-1740. https://doi.org/10.1016/j.biomaterials.2005.09.019
|
[49]
|
Zheng, Z., Morykwas, M., Campbell, D., McGee, M., Hollingsworth, C., Adams, F., et al. (2014) Mechanical Tissue Resuscitation at the Site of Traumatic Brain Injuries Reduces the Volume of Injury and Hemorrhage in a Swine Model. Neurosurgery, 75, 152-162. https://doi.org/10.1227/neu.0000000000000341
|
[50]
|
Borgquist, O., Ingemansson, R. and Malmsjö, M. (2010) The Effect of Intermittent and Variable Negative Pressure Wound Therapy on Wound Edge Microvascular Blood Flow. Ostomy Wound Manage, 56, 60-67.
|
[51]
|
Borgquist, O., Ingemansson, R. and Malmsjö, M. (2011) The Influence of Low and High Pressure Levels during Negative-Pressure Wound Therapy on Wound Contraction and Fluid Evacuation. Plastic and Reconstructive Surgery, 127, 551-559. https://doi.org/10.1097/prs.0b013e3181fed52a
|
[52]
|
Campbell, P.E., Smith, G.S. and Smith, J.M. (2008) Retrospective Clinical Evaluation of Gauze‐based Negative Pressure Wound Therapy. International Wound Journal, 5, 280-286. https://doi.org/10.1111/j.1742-481x.2008.00485.x
|
[53]
|
Krasner, D.L. (2002) Managing Wound Pain in Patients with Vacuum-Assisted Closure Devices. Ostomy Wound Manage, 48, 38-43.
|
[54]
|
陈莉. 纱布和泡沫敷料填充伤口实施负压治疗对伤口组织血管化形成的影响[J]. 中外医疗, 2015, 34(18): 70-71.
|
[55]
|
Apostoli, A. and Caula, C. (2008) Dolore e attività funzionali di base durante la V.A.C. terapia in un gruppo di pazienti ospedalizzati portatori di lesioni cutanee. Professioni Infermieristiche, 61, 158-164.
|
[56]
|
Nuutila, K., Yang, L., Broomhead, M., Proppe, K. and Eriksson, E. (2018) Novel Negative Pressure Wound Therapy Device without Foam or Gauze Is Effective at −50 mmHg. Wound Repair and Regeneration, 27, 162-169. https://doi.org/10.1111/wrr.3
|
[57]
|
Nuutila, K., Broomhead, M., Proppe, K. and Eriksson, E. (2020) Study Comparing Platform Wound Dressing, a Negative-Pressure Device without a Filler, with Three Conventional Negative-Pressure Wound Therapy Systems in the Treatment of Excisional and Incisional Wounds. Plastic & Reconstructive Surgery, 147, 76-86. https://doi.org/10.1097/prs.0000000000007450
|
[58]
|
Allen, D., Robinson, T., Schmidt, M. and Kieswetter, K. (2023) Preclinical Assessment of Novel Longer‐Duration Wear Negative Pressure Wound Therapy Dressing in a Porcine Model. Wound Repair and Regeneration, 31, 349-359. https://doi.org/10.1111/wrr.13084
|
[59]
|
Allen, D., Mann, S., Robinson, T., Schmidt, M. and Kieswetter, K. (2024) Preclinical Assessments of a Novel Peel and Place Extended-Wear Negative-Pressure Wound Therapy Dressing for up to 35 Days in a Porcine Model. Advances in Wound Care, 13, 291-307. https://doi.org/10.1089/wound.2023.0096
|
[60]
|
黄伟斌, 詹国锋, 陈巧郁. 京万红联合高渗盐敷料在30例慢性伤口自溶清创的疗效观察[J]. 上海医药, 2017, 38(19): 32-34.
|
[61]
|
强若云. 高渗盐敷料联合负压封闭引流技术治疗剖宫产术后切口感染的效果探究[J]. 当代医药论丛, 2020, 18(1): 33-34.
|
[62]
|
马惠, 陈瑶劼, 谭小丽. 康惠尔系列护理敷料治疗慢性伤口及各期压疮的护理进展[J]. 护理研究, 2012, 26(3): 198-199.
|
[63]
|
陈晓红, 刘红兵, 郑晓英. 藻酸盐类敷料结合创面负压引流技术在慢性伤口护理中的应用价值[J]. 实用临床护理学电子杂志, 2020, 5(24): 20.
|