负压伤口治疗填充敷料的研究进展
Advances in Negative Pressure Wound Therapy Filler Dressings
DOI: 10.12677/jcpm.2025.41137, PDF, HTML, XML,   
作者: 黄富超:广东医科大学深圳宝安临床医学院,广东 深圳;王绍庚:深圳大学第二附属医院创伤骨科与矫形外科,广东 深圳;汤家骏:暨南大学附属第二临床医学院,广东 深圳;潘晓华*:广东医科大学深圳宝安临床医学院,广东 深圳;深圳大学第二附属医院创伤骨科与矫形外科,广东 深圳
关键词: 负压伤口治疗填充敷料优缺点Negative Pressure Wound Therapy Filler Dressings Advantages and Disadvantages
摘要: 负压伤口治疗(NPWT)已广泛应用于各种创面的治疗中。不同的负压填充敷料对促进伤口愈合有着不同的效果,其使用条件、适用范围也不同。本文对用于负压伤口治疗的填充敷料研究进展及各种填充敷料的优缺点进行综述。
Abstract: Negative pressure wound therapy (NPWT) has been widely used in the treatment of various wounds. Different negative pressure filler dressings have different effects on promoting wound healing, and their conditions of use and scope of application are also different. In this paper, the research progress of filling dressings for NPWT and the advantages and disadvantages of various filling dressings are reviewed.
文章引用:黄富超, 王绍庚, 汤家骏, 潘晓华. 负压伤口治疗填充敷料的研究进展[J]. 临床个性化医学, 2025, 4(1): 985-994. https://doi.org/10.12677/jcpm.2025.41137

1. 简介

伤口负压疗法(NPWT),又称负压疗法(NPT)、局部负压(TNP)、真空辅助伤口闭合(VAC)。1952年,Raffel首次成功应用NPWT管理伤口渗出并加速伤口愈合[2]。1993年,Fleischmann等人首次描述了长期使用亚大气压促进伤口清创和愈合的方法[3]。1997年,Argenta和Morykwas进行了里程碑式的研究,在动物创面上使用泡沫作为接触层(填充材料)来提供NPWT,从而开发出了最早的商业化系统VAC [4]。研究表明,NPWT可以创造湿润的愈合环境,减少细菌负担,减轻组织水肿,增加伤口血流,加快肉芽组织形成,刺激血管生成,减少伤口表面积。一般认为,去除渗出物和伤口表面组织的微机械变形是主要机制[5] [6]。传统的NPWT设备由界面材料或填充物(如泡沫或纱布)组成,用于覆盖伤口并为空气和液体流动提供通道。还包括透气膜和连接膜下空间与抽吸泵的管道[7] [8]。泡沫伤口填充物具有开孔结构,可用的有:聚氨酯泡沫(黑色泡沫),或聚乙烯醇(PVA)白色泡沫和绿色泡沫[9]。Chariker-Jeter技术——在2000年代中期开始使用纱布代替泡沫作为伤口填充物[10]。最常用的伤口填充物是黑色聚氨酯泡沫和纱布[9]。压力设定也取决于填充材料的特性,通常在−125 mmHg和−75 mmHg之间变化[7] [8]

2. 绿色、黑色的聚氨酯泡沫(PU)、白色聚乙烯醇泡沫(PVA)和纱布

绿色和黑色泡沫都是具有开孔结构的聚氨酯泡沫。除了颜色之外,它们之间唯一的区别是绿色泡沫的抗拉强度比黑色泡沫高,这可能会导致伤口产生泡沫残留物的问题较少。Malmsjö M等人采用猪体内伤口模型,比较绿色泡沫、黑色泡沫和纱布在NPWT过程中对伤口床外观和肉芽组织形成的影响。在负压伤口治疗期间,绿色和黑色泡沫下形成的肉芽组织的数量和特征没有差异。两种泡沫均比纱布下产生更多的肉芽组织。伤口组织长入两种泡沫中,但没有长入纱布中。移除绿色和黑色泡沫所需的力量相似,移除纱布所需的力量较小[9]。通过绿色泡沫、黑色泡沫和纱布传导到伤口床的压力相似,只有很小的压力下降。与纱布相比,绿色和黑色泡沫的伤口收缩更为明显。血流在距离伤口边缘0.5厘米处减少,在距离伤口边缘2.5厘米处增加。所有伤口填充物的血流量增加情况相似,纱布的血流量减少情况不如两种泡沫明显[11]。绿色泡沫和纱布的优点是伤口渗出和出血比黑色泡沫更容易监测。研究的生物效应,包括肉芽组织形成、微变形、长入和去除伤口填充物所需的力,绿色泡沫和黑色泡沫相似,但与纱布不同[9]。Paglinawan等人证明纱布和泡沫都增加了肉芽组织的形成[12]。聚氨酯(PU)或聚乙烯醇(PVA)不可降解。PU泡沫的孔径较大,肉芽组织形成得更快更多,但组织和新生血管会大量生长到PU泡沫中,从而在移除时引起疼痛,并对伤口床造成创伤。PVA泡沫等孔径较小的泡沫形成的肉芽组织较少。不过,肉芽组织的形成速度较慢,因此需要较长的治疗时间[4] [13] [14]。泡沫下形成的肉芽组织比纱布下产生的肉芽组织厚。厚的肉芽组织有利于伤口的快速愈合,但在伤口愈合过程中可能导致纤维化、疤痕和挛缩等问题[8] [15]。Fraccalvieri M等人比较了11名泡沫和7名纱布治疗患者的具体细节,超声分析显示,泡沫处理创面的伤口床瘢痕组织平均深度为18毫米,纱布处理创面的瘢痕组织平均深度为7毫米。用纱布治疗后对瘢痕组织进行的活检显示,组织厚度和组织混乱程度较轻,硬化成分较少[8]。Mansoor J等人对使用纱布基NPWT治疗的军事创伤患者的经验进行了回顾性分析。结果非常令人鼓舞,肉芽组织健康,伤口床干净是普遍结果。这种方法可以成为昂贵的专有系统的有用和廉价的替代品[1]。通过使用纱布代替泡沫作为伤口填充物还可以减轻疼痛[16]。Fraccalvieri M等人比较了13位接受纱布治疗的患者和18位接受泡沫治疗的患者在接受NPWT治疗前、治疗过程中和治疗后换药时的疼痛和反馈程度。他们观察到,在使用纱布和泡沫进行NPWT治疗之前和治疗期间,患者的平均疼痛程度相差无几。换药时的疼痛,泡沫的平均值为6.5,而纱布的平均值为4.15。两组之间的差异具有统计学意义。这项研究结果证实,使用纱布的NPWT治疗,换药时疼痛较轻[17]。Hurd T等人评估了超过152名使用纱布负压疗法治疗的患者。据报告,80%的患者在更换敷料时不会感到伤口疼痛。96%的敷料更换后伤口床无破损。对于易感疼痛的患者,纱布负压疗法可能是最大限度提高患者舒适度的可行选择[18]。Wagstaff MJ等人评估一种新型聚氨酯泡沫(NovoPore)在人体内的安全性和生物相容性。18名患者的20压迫性溃疡接受了手术清创,然后随机接受NovoPore或对照泡沫作为NPWT的伤口界面。接受NovoPore治疗的患者均未出现不良反应。新型泡沫作为NPWT界面的效果与对照组“标准泡沫”相同。在深部伤口中,新型泡沫比对照泡沫更容易去除,碎裂更少,泡沫残留物更少[19]

3. 病原体结合网(Cutimed Sorbact)

在NPWT,病原体结合网可能是一个有趣的替代伤口填充敷料。这种网格利用疏水作用去除病原菌。细菌的细胞表面结构使它们具有疏水性。当伤口细菌在潮湿的伤口环境中与疏水纤维接触时,它们不可逆地与敷料结合[20]。病原体结合网也吸附和灭活各种各样的细菌,例如金黄色葡萄球菌和绿脓杆菌,以及真菌,并已被证明可以减少伤口中的微生物负荷[21] [22]。当感染阻止伤口愈合时,病原体结合网作为伤口填充物在NPWT中的应用可能特别有益。Malmsjö M等人比较病原体结合网、泡沫和纱布作为NPWT伤口填充物在压力转导、液体潴留、伤口收缩和微血管血流方面的性能。用病原体结合网、泡沫或纱布填充16头猪背部的伤口,并用NPWT处理。在负压治疗期间,病原体结合网、纱布和泡沫为伤口床提供类似的压力转导。血流量在距离伤口边缘0.5 cm处减少,在距离伤口边缘2.5 cm处增加,但在距离伤口边缘5.0 cm处没有变化。所有填充敷料的血流量增加相似。泡沫比纱布和病原体结合网更明显地减少血流量。同样,泡沫的伤口收缩比纱布和病原体结合网更明显。泡沫和病原体结合网中的伤口液体潴留是相同的,而使用纱布时,伤口中保留的液体更多。当使用病原体结合网和纱布时,距伤口边缘0.5~5 cm的血流和NPWT期间伤口的收缩相似[23]。Malmsjö M等人再次使用猪模型来比较三种填充敷料,活组织切片和组织学检查显示,Cutimed Sorbact比纱布能产生更多的肉芽组织、白细胞浸润,但比泡沫少。组织学检查还显示,泡沫上有组织长入,而纱布或Cutimed Sorbact上则没有。根据这项动物研究,Cutimed Sorbact在促进肉芽组织生长的能力方面优于纱布,但没有泡沫引起的组织长入的缺点[24]。对于使用Cutimed Sorbact作为伤口填充物和接触层的患者来说,伤口粘连不是问题。肉芽组织没有长入材料,敷料去除是无损伤性的。Jeffery S等人介绍了在复杂的术前和术后伤口上成功使用Cutimed Sorbact的七个病例。病原体粘结网也是一种编织材料,其应用技术类似于纱布。它可以用于所有类型的伤口,无论细菌污染或定植的程度如何。适应症包括术后伤口和裂开的伤口、外伤性伤口、慢性伤口、真菌感染和脓肿切除引起的伤口[25]

4. 涂层敷料

4.1. 银基聚氨酯

然而,NPWT只能作为控制伤口感染的辅助疗法[26]。银离子具有高活性,能与细菌中带负电荷的分子相互作用,从而破坏细菌DNA的复制[27]。Hahn HM等人研究了银浸渍负压创面治疗(NPWT)对下肢急性创伤创面的抗菌效果。对照组创面采用常规NPWT,试验组创面采用浸银NPWT。结果显示NPWT组细菌定植率普遍低于常规NPWT组,且差异随时间延长而增大。对于耐甲氧西林金黄色葡萄球菌的定植,与常规NPWT处理的伤口相比,用银浸渍NPWT处理的伤口显示细菌负荷显著减少[28]

4.2. 含有CZ-01179抗菌生物膜聚氨酯泡沫

Rawson KB等人之前的研究表明,V.A.C.®Granufoam SilveTM在体外对已建立的MRSA和鲍曼假单胞杆菌生物膜的作用有限,而装载CZ-01179的V.A.C.®GranufoamTM具有显著的抗菌膜潜力[29]。在离体猪切除伤口模型上测试负载有CZ-01179的开孔聚氨酯(PU)泡沫(V.A.C.®GranufoamTM),用于在NPWT存在下进行抗生物膜功效测试。并根据现行护理标准进行了测试:V.A.C.颗粒泡沫银TM和V.A.C.®®颗粒泡沫TM。我们观察到,与当前的护理泡沫标准相比,CZ-01179抗生物膜泡沫对耐甲氧西林金黄色葡萄球菌(MRSA)和鲍曼不动杆菌生物膜的显著减少[30]

4.3. 锌基敷料

锌在免疫功能、抗氧化防御机制和伤口愈合中起重要作用。缺锌可延缓再上皮化,可延长伤口愈合时间,降低伤口强度[31]-[35]。研究显示锌具有抗菌和抗病毒活性,意味着它可以减少伤口愈合中的细菌负荷[36] [37]。Aydoğdu O等人回顾性研究了94例使用镀锌泡沫与NPWT联合治疗的患者。在所有伤口中,伤口表面积显著减少,治疗结束时伤口渗出物也明显减少。治疗前和治疗后的测量结果差异有统计学意义。这项回顾性研究的结果表明,使用NPWT的锌涂层泡沫可作为一种有效的替代界面材料,安全地用于治疗具有挑战性的伤口[38]

4.4. 铜基敷料

铜的抗菌效果与其细胞毒性相关,它似乎兼具抗菌作用和促进伤口愈合的能力[39] [40]。Ellenrieder M等人研究了银和NPWT敷料实验性镀铜对耐甲氧西林金黄色葡萄球菌(MRSA)生长动力学的影响。将无涂层、含银和实验性镀铜泡沫样本接种到MRSA悬浮液中。经过1、3、7和14天的培养后,对接种物中存活的MRSA细菌数量进行了统计评估。测试结果表明,与无涂层的NPWT敷料样品相比,市售泡沫银敷料在1、3、7和14天的培养后对MRSA有明显的抗菌效果。铜的抗菌效果在7天后才开始显现,但此后比银的效果更明显(14天后p < 0.01)。银和铜涂层都适用于减少NPWT泡沫敷料中的MRSA数量,尽管这两种金属的抗菌活性表现出不同的动力学特性[41]

4.5. 硅基敷料

最近的研究表明,硅胶敷料不会粘附在潮湿的伤口上,只会粘附在周围干燥的皮肤上,有助于保持潮湿的伤口愈合环境,是一种理想的非粘附性伤口接触敷料技术[42]-[44]。Losi P等人采用绵羊伤口模型,在NPWT条件下,以聚氨酯泡沫塑料(PU)和纯棉亲水纱布为参考材料,对有机硅涂层非织造聚酯(N-WPE)的性能进行了评价。根据大体和组织学表现评估伤口敷料治疗1、8和16天后的伤口情况。与纱布和PU泡沫相比,用有机硅涂层的N-WPE处理的皮肤缺陷显示出伤口大小的显着减少,再上皮化,胶原沉积和伤口新血管形成的增加以及对伤口组织的最小粘附性。这些发现表明,有机硅涂层的N-WPE敷料可以促进伤口愈合并导致轻微的组织损伤[45]

5. 生物降解材料(PCL泡沫和共聚PGLA泡沫)

临床使用的泡沫是不可吸收的,如果用于深度伤口或长时间放置,泡沫中过度的组织长入可能导致需要外科手术来去除泡沫[46]。生物降解泡沫可留在伤口内,直到伤口愈合,并形成可生物降解的基质,组织可在其中生长。不需要连续更换泡沫,也不需要最后清除泡沫,从而使病人护理变得更容易、更经济。PCL已获得美国食品及药物管理局批准用于各种医疗器械,具有较低的炎症和免疫反应。在生理条件下,PCL会通过水解酯连接而降解,降解产物不会产生毒性作用。Liu J等人采用相分离法制备的生物降解PCL泡沫在形态、孔径和拉伸性能方面与PVA泡沫更为相似。制备出来的PCL泡沫与PVA泡沫进行比较。体外生物降解测试表明,在pH值为7.4、温度为37℃的条件下,多孔PCL泡沫的重量在33周内减少了80%以上。使用MTS法评估PCL泡沫的细胞毒性。结果显示,在1、3、7天观察到的细胞存活率均超过85%,这表明PCL泡沫与细胞具有生物相容性。在负压系统下PCL泡沫去除液体的能力与PVA泡沫相似。此外,PCL泡沫在负压处理后保持了原有的机械性能。结果表明,在NPWT应用中,PCL泡沫可替代目前使用的不可降解的PVA泡沫[47]。PCL具有良好的机械性能和可降解性,但其在体内的降解期较长,约为30个月,因此不适合用于大多数深层组织修复。理想情况下,生物降解泡沫具有一定的机械性能,以保持结构的完整性,从而在所需的处理过程(3~6天)中均匀分布所施加的真空,然后根据应用情况在7~30天内降解[48] [49]。Warner HJ等人确定了生物可降解聚酯泡沫的特定配方,可用于NPWT的深层组织应用,以50:50的内酯:缩水甘油比率结合75:25或50:50的PCL的共聚PLGA (Mn 3000 Da),以及以50:50的内酯:缩水甘油比率结合50:50的PCL的共聚PLGA (Mn 7500 Da)。对泡沫的力学性能进行了评估,结果显示其功能性能明显优于PVA和PCL。低分子量PLGA (50:50,丙交酯:乙醇酸酯)与PCL混合形成的泡沫在大鼠皮下植入21天后仍保持力学性能,并显著降解[46]

6. 无填充物的负压敷料

较高的负压水平可能导致患者不适,甚至血管受损的伤口缺血[50] [51]。此外,随着时间的推移,泡沫或纱布可能会破裂并被细菌定植。研究表明,新形成的肉芽组织可能会生长到泡沫中,换敷料时导致疼痛、出血和组织损伤[52]-[55]。Nuutila K等人发明了一种简化的NPWT设备称为平台伤口装置(PWD),无需使用填充材料。它由一层不透水的压纹薄膜组成,薄膜用整体粘合剂固定在伤口周围。抽吸泵通过管道连接到膜的底部。PWD可以在更低的负压下工作,还可用于局部输送镇痛剂和抗生素等药物。Nuutila K等人在猪烧伤模型上证明了,PWD在−50 mmHg的负压条件下比未接受NPWT治疗组更有效地减少伤口面积,PWD组形成的肉芽组织更多。并且PWD能有效地减少烧伤痂和伤口床上的细菌[56]。Nuutila K等人比较平台伤口敷料与最常见的市售负压伤口治疗系统(V.A.C.VIA, PREVENA, and PICO)在猪的全层切除、切开和切开缝合伤口中的治疗效果。在全层切除伤口中,PWD、PICO和V.A.C.VIA处理的伤口面积缩小率分别为41.4% ± 5.3%、25.1% ± 8.1%和18.4% ± 7.0%。平台式伤口敷料与V.A.C.VIA处理伤口之间的差异具有统计学意义(p = 0.0207)。在切开不缝合切口中,伤口面积缩小率各组之间没有发现明显的统计学差异。在全层切除伤口中,苏木精和伊红染色的切片显示,伤口床的再上皮化和肉芽组织的数量在各组之间没有明显的统计学差异。对切开不缝合切口肉芽组织的数量进行了测量,结果表明,治疗组之间没有明显的统计学差异。免疫组织化学分析显示,平台创面敷料处理的切口比V.A.C.VIA处理的切口有更多的血管。总之,泡沫、纱布、和PWD在总体上具有相同的效果[57]

7. 剥离放置敷料(Peel and Place Dressing)

Allen D等人报道了一种易于使用的新型敷料——剥离放置敷料(Peel and Place Dressing),由用于伤口周围界面的硅丙烯酸酯组合粘合胶条和带有聚氨酯分流芯的多层敷料相结合。使用猪全厚切除伤口模型比较了peel and place敷料和ROCF (网状开口泡沫)敷料的组织长入的发生率和敷料去除的难易程度。从伤口床移除剥离放置敷料所需的力量小于移除ROCF。使用ROCF敷料时,泡沫碎片会大量嵌入伤口,但剥离放置型敷料不会出现这种情况。经过7天的NPWT治疗后,剥离放置型敷料比传统的ROCF敷料更能减少伤口体积。组织病理学评估发现,剥离放置敷料处理伤口的肉芽组织厚度至少是ROCF处理伤口的2.4倍。与ROCF处理过的伤口相比,剥离和放置敷料处理过的伤口有更多成熟的胶原蛋白和更高水平的血管形成。此外,伤口的再上皮化程度也更高[58]。与使用ROCF + IFL/IFL (带界面层的ROCF)处理的伤口相比,剥离放置敷料的胶原成熟度、再上皮化程度和血管生成水平相似。剥离放置型敷料和ROCF + IFL/IFL均未观察到组织生长或残留敷料碎片。作为一种长期的7天NPWT敷料,剥离放置型敷料促进伤口愈合的效果与ROCF相当,甚至更好[59]

8. 高渗盐敷料与藻酸盐敷料

高渗盐敷料是一种含有高渗性氯化钠的无纺纱布敷料。可有效地吸收其创面处的渗液,清除其创面上的细菌及坏死组织,促进创面的愈合[60]。强若云将这82例宫产术后切口感染患者分为对照组和观察组。对照组患者使用普通敷料联合VSD技术进行治疗,观察组患者使用高渗盐敷料联合VSD技术进行治疗。结果显示,与对照组患者相比,观察组患者切口的愈合率和细菌的清除率均更高,其换药的次数更少,其切口处渗液的pH更低,其切口愈合的时间和住院的时间均更短[61]。藻酸盐类敷料是从天然海藻中提取的产品,由藻酸钙和羧甲基纤维素钠相互交联编织而成,与伤口接触时,藻酸钙和聚阴离子纤维素化合物(CMC)吸收渗出液变大,形成柔软凝胶[62]。陈晓红等人选取88例慢性伤口感染的患者作为研究对象,对照组实施负压吸引术护理,观察组实施藻酸盐类敷料结合负压引流技术护理,对患者护理后的应用效果对比。结果显示观察组患者的伤口愈合率明显高于对照组患者,且愈合时间也较快,两组患者的应用效果差异具有统计学意义[63]

9. 总结与展望

目前临床上最常用的负压敷料仍然是聚氨酯、聚乙烯醇、纱布。聚氨酯、聚乙烯醇、不可降解,去除时破碎物残留,引起机体异物反应,增加感染风险。因肉芽组织长入泡沫中,去除泡沫时会破坏伤口床,引起出血、疼痛等不适。而纱布相对是一种廉价的负压敷料,降低患者医疗负担,肉芽组织长入少,去除时疼痛感较轻,形成的肉芽组织薄,创面愈合后形成的瘢痕较小,但创面愈合的时间较泡沫久。由于其延展性、残留异物少,纱布可适用于不规则、深部创面。泡沫和纱布都不可直接应用于感染创面,这大大降低了其使用范围。病原体结合网的应用与纱布类似,但具有一定的抗菌作用。目前已经研发出多种涂层负压敷料,在体外和动物实验的研究中,这些敷料对促进创面愈合有积极作用,研究最多的是镀银抗菌泡沫敷料,并且已经应用于临床。其它涂层敷料缺少临床应用试验,仍需探索其在临床上的安全性和有效性。聚氨酯、聚乙烯醇、纱布、各种涂层敷料不可降解,治疗过程中通常需要更换,造成痛苦、增加患者医疗负担。去除敷料时可能会残留异物,增加并发症的风险,可能需要手术取出,这也限制了其在深部不规则复杂创面的使用。总之,临床上需要更多能应用于感染性创面的抗菌负压敷料和应用于深部不规则创面的可降解负压敷料。

利益冲突

所有作者声明无利益冲突。

作者贡献声明

黄富超、王绍庚:文献收集、文章撰写;汤家骏:文章修改;潘晓华:研究指导、论文审阅、经费支持。

致 谢

感谢本次科研及论文协作过程中导师及科室同事的指导和大力支持。

NOTES

*通讯作者。

参考文献

[1] Mansoor, J., Ellahi, I., Junaid, Z., Habib, A. and Ilyas, U. (2013) Clinical Evaluation of Improvised Gauze‐Based Negative Pressure Wound Therapy in Military Wounds. International Wound Journal, 12, 559-563.
https://doi.org/10.1111/iwj.12164
[2] Raffl, A.B. (1952) The Use of Negative Pressure under Skin Flaps after Radical Mastectomy. Annals of Surgery, 136, 1048.
https://doi.org/10.1097/00000658-195212000-00022
[3] Fleischmann, W., Strecker, W., Bombelli, M. and Kinzl, L. (1993) Vakuumversiegelung zur Behandlung des Weichteils-chadens bei of-fenen Frakturen. Der Unfallchirurg. 96, 488-492.
[4] Argenta, L.C. and Morykwas, M.J. (1997) Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience. Annals of Plastic Surgery, 38, 563-577.
https://doi.org/10.1097/00000637-199706000-00002
[5] Kantak, N.A., Mistry, R., Varon, D.E. and Halvorson, E.G. (2017) Negative Pressure Wound Therapy for Burns. Clinics in Plastic Surgery, 44, 671-677.
https://doi.org/10.1016/j.cps.2017.02.023
[6] Anghel, E.L. and Kim, P.J. (2016) Negative-Pressure Wound Therapy: A Comprehensive Review of the Evidence. Plastic & Reconstructive Surgery, 138, 129S-137S.
https://doi.org/10.1097/prs.0000000000002645
[7] Kairinos, N., Solomons, M. and Hudson, D.A. (2009) Negative-Pressure Wound Therapy I: The Paradox of Negative-Pressure Wound Therapy. Plastic and Reconstructive Surgery, 123, 589-598.
https://doi.org/10.1097/prs.0b013e3181956551
[8] Fraccalvieri, M., Zingarelli, E., Ruka, E., Antoniotti, U., Coda, R., Sarno, A., et al. (2011) Negative Pressure Wound Therapy Using Gauze and Foam: Histological, Immunohistochemical and Ultrasonography Morphological Analysis of the Granulation Tissue and Scar Tissue. Preliminary Report of a Clinical Study. International Wound Journal, 8, 355-364.
https://doi.org/10.1111/j.1742-481x.2011.00798.x
[9] Malmsjö, M. and Ingemansson, R. (2011) Green Foam, Black Foam or Gauze for NWPT: Effects on Granulation Tissue Formation. Journal of Wound Care, 20, 294-299.
https://doi.org/10.12968/jowc.2011.20.6.294
[10] Chariker, M.E., Jeter, K.F., Tintle, T.E., Bottsford, J.E., et al. (1989) Effective Management of Incisional and Cutaneous Fistulae with Closed Suction Wound Drainage. Contemporary Neurosurgery, 34, 59-63.
[11] Malmsjö, M. and Ingemansson, R. (2011) Effects of Green Foam, Black Foam and Gauze on Contraction, Blood Flow and Pressure Delivery to the Wound Bed in Negative Pressure Wound Therapy. Journal of Plastic, Reconstructive & Aesthetic Surgery, 64, e289-e296.
https://doi.org/10.1016/j.bjps.2011.06.023
[12] Paglinawan, R., Colic, M. and Simon, M.A. (2008) Comparative Study of the Influence of Different Pressure Levels Combined with Various Wound Dressings on Negative Pressure Wound Therapy Driven Wound Healing. European Tissue Repair Society, Malta.
[13] Morykwas, M.J., Argenta, L.C., Shelton-Brown, E.I. and McGuirt, W. (1997) Vacuum-Assisted Closure: A New Method for Wound Control and Treatment. Annals of Plastic Surgery, 38, 553-562.
https://doi.org/10.1097/00000637-199706000-00001
[14] Morykwas, M.J., Faler, B.J., Pearce, D.J. and Argenta, L.C. (2001) Effects of Varying Levels of Subatmospheric Pressure on the Rate of Granulation Tissue Formation in Experimental Wounds in Swine. Annals of Plastic Surgery, 47, 547-551.
https://doi.org/10.1097/00000637-200111000-00013
[15] Borgquist, O., Gustafson, L., Ingemansson, R. and Malmsjo, M. (2009) Tissue Ingrowth into Foam but not into Gauze during Negative Pressure Wound Therapy. Wounds, 21, 302-309.
[16] Torbrand, C., Anesäter, E., Borgquist, O. and Malmsjö, M. (2017) Mechanical Effects of Negative Pressure Wound Therapy on Abdominal Wounds—Effects of Different Pressures and Wound Fillers. International Wound Journal, 15, 24-28.
https://doi.org/10.1111/iwj.12810
[17] Fraccalvieri, M., Ruka, E., Bocchiotti, M.A., Zingarelli, E. and Bruschi, S. (2011) Patient’s Pain Feedback Using Negative Pressure Wound Therapy with Foam and Gauze. International Wound Journal, 8, 492-499.
https://doi.org/10.1111/j.1742-481x.2011.00821.x
[18] Hurd, T., Chadwick, P., Cote, J., Cockwill, J., Mole, T.R. and Smith, J.M. (2010) Impact of Gauze‐Based NPWT on the Patient and Nursing Experience in the Treatment of Challenging Wounds. International Wound Journal, 7, 448-455.
https://doi.org/10.1111/j.1742-481x.2010.00714.x
[19] Wagstaff, M.J.D., Driver, S., Coghlan, P. and Greenwood, J.E. (2014) A Randomized, Controlled Trial of Negative Pressure Wound Therapy of Pressure Ulcers via a Novel Polyurethane Foam. Wound Repair and Regeneration, 22, 205-211.
https://doi.org/10.1111/wrr.12146
[20] Borgquist, O., Ingemansson, R., Lindstedt, S. and Malmsjö, M. (2011) Undertrycksbehandling av sår: Kunskap om verkningsmekanis-mer och komplikationer ger nya möjligheter. Lakartidningen, 108, 2372-2375.
[21] Vig, S., Dowsett, C., Berg, L., Caravaggi, C., Rome, P., Birke-Sorensen, H., et al. (2011) Evidence-Based Recommendations for the Use of Negative Pressure Wound Therapy in Chronic Wounds: Steps Towards an International Consensus. Journal of Tissue Viability, 20, S1-S18.
https://doi.org/10.1016/j.jtv.2011.07.002
[22] Mussi, C. and Salvioli, G. (2004) Clinical Evaluation of Sorbact (Bacteria Absorbing Dressing) in the Treatment of Infected Pressure Sores. Acta Vulnologica, 2, 9-11.
[23] Malmsjö, M., Ingemansson, R., Lindstedt, S. and Gustafsson, L. (2012) Comparison of Bacteria and Fungus‐Binding Mesh, Foam and Gauze as Fillers in Negative Pressure Wound Therapy—Pressure Transduction, Wound Edge Contraction, Microvascular Blood Flow and Fluid Retention. International Wound Journal, 10, 597-605.
https://doi.org/10.1111/j.1742-481x.2012.01029.x
[24] Malmsjö, M., Lindstedt, S., Ingemansson, R. and Gustafsson, L. (2014) Use of Bacteria-and Fungus-Binding Mesh in Negative Pressure Wound Therapy Provides Significant Granulation Tissue without Tissue Ingrowth. Eplasty, 14, e3.
[25] Jeffery, S.L. (2018) The Use of an Antimicrobial Primary Wound Contact Layer as Liner and Filler with NPWT. Journal of Wound Care, 23, S3-S14.
https://doi.org/10.12968/jowc.2014.23.sup8.s1
[26] Weed, T., Ratliff, C. and Drake, D.B. (2004) Quantifying Bacterial Bioburden during Negative Pressure Wound Therapy: Does the Wound VAC Enhance Bacterial Clearance? Annals of Plastic Surgery, 52, 276-279.
https://doi.org/10.1097/01.sap.0000111861.75927.4d
[27] Stinner, D.J., Waterman, S.M., Masini, B.D. and Wenke, J.C. (2011) Silver Dressings Augment the Ability of Negative Pressure Wound Therapy to Reduce Bacteria in a Contaminated Open Fracture Model. Journal of Trauma: Injury, Infection & Critical Care, 71, S147-S150.
https://doi.org/10.1097/ta.0b013e318221944a
[28] Hahn, H.M., Lee, I.J., Woo, K. and Park, B.Y. (2019) Silver-Impregnated Negative-Pressure Wound Therapy for the Treatment of Lower-Extremity Open Wounds: A Prospective Randomized Clinical Study. Advances in Skin & Wound Care, 32, 370-377.
https://doi.org/10.1097/01.asw.0000569116.59534.a6
[29] Rawson, K.B., Neuberger, T., Smith, T., Reddy, H.R.K., Haussener, T.J., Sebahar, P.R., et al. (2022) Antibiofilm Potential of a Negative Pressure Wound Therapy Foam Loaded with a First‐in‐Class Tri‐Alkyl Norspermidine‐Biaryl Antibiotic. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 110, 1780-1788.
https://doi.org/10.1002/jbm.b.35035
[30] Rawson, K.B., Neuberger, T., Smith, T.B., Bell, I.J., Looper, R.E., Sebahar, P.R., et al. (2023) Ex Vivo Comparison of V.A.C.® Granufoam Silver™ and V.A.C.® Granufoam™ Loaded with a First-in-Class Bis-Dialkylnorspermidine-Terphenyl Antibiofilm Agent. Biofilm, 6, Article 100142.
https://doi.org/10.1016/j.bioflm.2023.100142
[31] Hughes, G. and McLean, N.R. (1988) Zinc Oxide Tape: A Useful Dressing for the Recalcitrant Finger-Tip and Soft-Tissue Injury. Emergency Medicine Journal, 5, 223-227.
https://doi.org/10.1136/emj.5.4.223
[32] Monteiro-Riviere, N.A., Wiench, K., Landsiedel, R., Schulte, S., Inman, A.O. and Riviere, J.E. (2011) Safety Evaluation of Sunscreen Formulations Containing Titanium Dioxide and Zinc Oxide Nanoparticles in UVB Sunburned Skin: An in Vitro and in Vivo Study. Toxicological Sciences, 123, 264-280.
https://doi.org/10.1093/toxsci/kfr148
[33] Oberleas, D., Seymour, J.K., Lenaghan, R., Hovanesian, J., Wilson, R.F. and Prasad, A.S. (1971) Effect of Zinc Deficiency on Wound-Healing in Rats. The American Journal of Surgery, 121, 566-568.
https://doi.org/10.1016/0002-9610(71)90140-1
[34] Ozdemir, G. and Inanc, F. (2005) Zinc May Protect Remote Ocular Injury Caused by Intestinal Ischemia Reperfusion in Rats. The Tohoku Journal of Experimental Medicine, 206, 247-251.
https://doi.org/10.1620/tjem.206.247
[35] Lim, Y., Levy, M. and Bray, T.M. (2004) Dietary Zinc Alters Early Inflammatory Responses during Cutaneous Wound Healing in Weanling CD-1 Mice. The Journal of Nutrition, 134, 811-816.
https://doi.org/10.1093/jn/134.4.811
[36] Ashfaq, M., Verma, N. and Khan, S. (2016) Copper/Zinc Bimetal Nanoparticles-Dispersed Carbon Nanofibers: A Novel Potential Antibiotic Material. Materials Science and Engineering: C, 59, 938-947.
https://doi.org/10.1016/j.msec.2015.10.079
[37] Mohandas, A., Kumar PT, S., Raja, B., Lakshmanan, V. and Jayakumar, R. (2019) Exploration of Alginate Hydrogel/ Nano Zinc Oxide Composite Bandages for Infected Wounds [Corrigendum]. International Journal of Nanomedicine, 14, 2607-2608.
https://doi.org/10.2147/ijn.s208590
[38] Aydoğdu, O., Tuncel, U., Gümüş, M., Kurt, A., Oztürk, N., Aksakal, I.A., Çelik, U.R., Güzel, N. and Erkorkmaz, U. (2016) Zinc-Coated Foam with Negative Pressure Wound Therapy in the Treatment of Challenging Wounds: A New Alternative Interface Material. Wounds.
[39] Heidenau, F., Mittelmeier, W., Detsch, R., Haenle, M., Stenzel, F., Ziegler, G., et al. (2005) A Novel Antibacterial Titania Coating: Metal Ion Toxicity and in Vitro Surface Colonization. Journal of Materials Science: Materials in Medicine, 16, 883-888.
https://doi.org/10.1007/s10856-005-4422-3
[40] Borkow, G., Gabbay, J., Dardik, R., Eidelman, A.I., Lavie, Y., Grunfeld, Y., et al. (2010) Molecular Mechanisms of Enhanced Wound Healing by Copper Oxide-Impregnated Dressings. Wound Repair and Regeneration, 18, 266-275.
https://doi.org/10.1111/j.1524-475x.2010.00573.x
[41] Ellenrieder, M., Redanz, S., Bader, R., Mittelmeier, W. and Podbielski, A. (2015) Influence of Antimicrobial Coatings of Vacuum-Assisted Closure Dressings on Methicillin-Resistant Staphylococcus aureus Growth Kinetics: An in Vitro Study. Surgical Infections, 16, 139-145.
https://doi.org/10.1089/sur.2013.268
[42] Morris, C., Emsley, P., Marland, E., Meuleneire, F. and White, R. (2009) Use of Wound Dressings with Soft Silicone Adhesive Technology. Paediatric Care, 21, 38-43.
https://doi.org/10.7748/paed2009.04.21.3.38.c7037
[43] White, R. and Morris, C. (2009) Mepitel: A Non-Adherent Wound Dressing with Safetac Technology. British Journal of Nursing, 18, 58-64.
https://doi.org/10.12968/bjon.2009.18.1.93582
[44] Davies, P. and Rippon, M. (2008) Evidence Review: The Clinical Benefits of Safetac® Technology in Wound Care. Journal of Wound Care, 17, 3-31.
[45] Losi, P., Briganti, E., Costa, M., Sanguinetti, E. and Soldani, G. (2012) Silicone-Coated Non-Woven Polyester Dressing Enhances Reepithelialisation in a Sheep Model of Dermal Wounds. Journal of Materials Science: Materials in Medicine, 23, 2235-2243.
https://doi.org/10.1007/s10856-012-4701-8
[46] Warner, H.J. and Wagner, W.D. (2017) Fabrication of Biodegradable Foams for Deep Tissue Negative Pressure Treatments. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 106, 1998-2007.
https://doi.org/10.1002/jbm.b.34007
[47] Liu, J., Morykwas, M.J., Argenta, L.C. and Wagner, W.D. (2011) Development of a Biodegradable Foam for Use in Negative Pressure Wound Therapy. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 98, 316-322.
https://doi.org/10.1002/jbm.b.31854
[48] Sun, H., Mei, L., Song, C., Cui, X. and Wang, P. (2006) The in Vivo Degradation, Absorption and Excretion of PCL-Based Implant. Biomaterials, 27, 1735-1740.
https://doi.org/10.1016/j.biomaterials.2005.09.019
[49] Zheng, Z., Morykwas, M., Campbell, D., McGee, M., Hollingsworth, C., Adams, F., et al. (2014) Mechanical Tissue Resuscitation at the Site of Traumatic Brain Injuries Reduces the Volume of Injury and Hemorrhage in a Swine Model. Neurosurgery, 75, 152-162.
https://doi.org/10.1227/neu.0000000000000341
[50] Borgquist, O., Ingemansson, R. and Malmsjö, M. (2010) The Effect of Intermittent and Variable Negative Pressure Wound Therapy on Wound Edge Microvascular Blood Flow. Ostomy Wound Manage, 56, 60-67.
[51] Borgquist, O., Ingemansson, R. and Malmsjö, M. (2011) The Influence of Low and High Pressure Levels during Negative-Pressure Wound Therapy on Wound Contraction and Fluid Evacuation. Plastic and Reconstructive Surgery, 127, 551-559.
https://doi.org/10.1097/prs.0b013e3181fed52a
[52] Campbell, P.E., Smith, G.S. and Smith, J.M. (2008) Retrospective Clinical Evaluation of Gauze‐based Negative Pressure Wound Therapy. International Wound Journal, 5, 280-286.
https://doi.org/10.1111/j.1742-481x.2008.00485.x
[53] Krasner, D.L. (2002) Managing Wound Pain in Patients with Vacuum-Assisted Closure Devices. Ostomy Wound Manage, 48, 38-43.
[54] 陈莉. 纱布和泡沫敷料填充伤口实施负压治疗对伤口组织血管化形成的影响[J]. 中外医疗, 2015, 34(18): 70-71.
[55] Apostoli, A. and Caula, C. (2008) Dolore e attività funzionali di base durante la V.A.C. terapia in un gruppo di pazienti ospedalizzati portatori di lesioni cutanee. Professioni Infermieristiche, 61, 158-164.
[56] Nuutila, K., Yang, L., Broomhead, M., Proppe, K. and Eriksson, E. (2018) Novel Negative Pressure Wound Therapy Device without Foam or Gauze Is Effective at −50 mmHg. Wound Repair and Regeneration, 27, 162-169.
https://doi.org/10.1111/wrr.3
[57] Nuutila, K., Broomhead, M., Proppe, K. and Eriksson, E. (2020) Study Comparing Platform Wound Dressing, a Negative-Pressure Device without a Filler, with Three Conventional Negative-Pressure Wound Therapy Systems in the Treatment of Excisional and Incisional Wounds. Plastic & Reconstructive Surgery, 147, 76-86.
https://doi.org/10.1097/prs.0000000000007450
[58] Allen, D., Robinson, T., Schmidt, M. and Kieswetter, K. (2023) Preclinical Assessment of Novel Longer‐Duration Wear Negative Pressure Wound Therapy Dressing in a Porcine Model. Wound Repair and Regeneration, 31, 349-359.
https://doi.org/10.1111/wrr.13084
[59] Allen, D., Mann, S., Robinson, T., Schmidt, M. and Kieswetter, K. (2024) Preclinical Assessments of a Novel Peel and Place Extended-Wear Negative-Pressure Wound Therapy Dressing for up to 35 Days in a Porcine Model. Advances in Wound Care, 13, 291-307.
https://doi.org/10.1089/wound.2023.0096
[60] 黄伟斌, 詹国锋, 陈巧郁. 京万红联合高渗盐敷料在30例慢性伤口自溶清创的疗效观察[J]. 上海医药, 2017, 38(19): 32-34.
[61] 强若云. 高渗盐敷料联合负压封闭引流技术治疗剖宫产术后切口感染的效果探究[J]. 当代医药论丛, 2020, 18(1): 33-34.
[62] 马惠, 陈瑶劼, 谭小丽. 康惠尔系列护理敷料治疗慢性伤口及各期压疮的护理进展[J]. 护理研究, 2012, 26(3): 198-199.
[63] 陈晓红, 刘红兵, 郑晓英. 藻酸盐类敷料结合创面负压引流技术在慢性伤口护理中的应用价值[J]. 实用临床护理学电子杂志, 2020, 5(24): 20.