腹腔镜肝部分切除减少出血的麻醉管理
Anesthetic Management of Laparoscopic Hepatectomy to Reduce Bleeding
DOI: 10.12677/acm.2025.153591, PDF, HTML, XML,   
作者: 曹益会:昆明医科大学第二附属医院麻醉科,云南 昆明
关键词: 腹腔镜肝切除术出血控制性低中心静脉压Laparoscopic Liver Surgery Blood Loss Controlled Low Central Venous Pressure
摘要: 在肝脏手术中实现适当的止血仍然是麻醉医生的主要关注点。因此,已经并且仍在开发许多技术来进一步降低失血和输血率。根据最新数据,文章综述的目的是总结在腹腔镜肝脏手术中减少失血量的麻醉管理的最佳可用方法。
Abstract: Proper hemostasis during liver surgery remains a major concern for anesthesiologists. Therefore, many technologies have been and are still being developed to further reduce blood loss and transfusion rates. Based on the latest data, the purpose of this literature review is to summarize the best available methods for anesthesia management to reduce blood loss in laparoscopic liver surgery.
文章引用:曹益会. 腹腔镜肝部分切除减少出血的麻醉管理[J]. 临床医学进展, 2025, 15(3): 90-98. https://doi.org/10.12677/acm.2025.153591

1. 引言

原发性肝癌是一种高发病率、高病死率的恶性肿瘤,是全球 6大常见恶性肿瘤及第3大肿瘤致死病因[1]。以中国为例,70%的患者在初次就诊时已处于中晚期[2]。目前,肝切除术广泛应用于肝脏占位病变,特别是肝癌。与开腹手术相比,腹腔镜肝部分切除术具有术后疼痛轻、失血少、恢复快、费用低等优点,特别是能够减少术中出血、缩短住院时间,对于肝硬化患者而言,还能降低并发症(例如,术后腹水和肝衰竭)的发生率。腹腔镜技术的适应证已扩展到一些复杂的病例,包括肝脏肿块合并静脉肿瘤血栓[3] [4]。腹腔镜肝部分切除术还可以应用于肝内胆管多发结石、肝囊肿、肝血管瘤、局灶性结节增生等肝脏疾病。然而,肝脏的解剖结构复杂,肝脏的传入血液供应具有双重来源:75%~80%的供应来自门静脉(由肝脏颈部后方的肠系膜上静脉和脾静脉联合形成),其余20%~25%来自肝动脉(来源于腹主动脉的腹腔干),以及复杂的肝内胆管系统,使得控制出血是腹腔镜肝脏手术中最重要的因素,同时也是决定中转开放的决定性因素。

出血仍然是肝切除和其他血管器官包括脾脏和肾脏手术的重要并发症。据报道,20%到60%的肝切除患者需要输血[5] [6]。Katz [7]等人研究了因HCC接受部分肝切除术的192名患者,确定了术中估计失血量的临床病理预测因子:与术中估计失血量增加相关的因素包括男性、血管侵犯、肝切除范围和手术时间(P < 0.01)。术中估计失血量和血管侵犯是总生存期和疾病特异性生存期的独立预测因子。肝细胞癌切除期间,术中失血量增加是肿瘤复发和死亡的独立预后因素。有相关研究指出,异基因输血是肿瘤复发的独立危险因素。在这项研究中,自体血液程序没有显著改善总体预后,输血方式对结直肠癌手术治疗后的肿瘤复发有显著影响[8]。所以减少术中出血量成为了麻醉和外科医生共同的目标,减少手术失血量可能会减少术后并发症并提高HCC患者的长期生存率[9]。本文围绕腹腔镜肝部分切除术减少出血的麻醉管理策略的临床研究和现状进行阐述。

2. 腹腔镜肝脏手术中的影像学检查

随着技术的发展,更好地在术前和术中可视化肝脏解剖结构和变化、横断面和肿瘤与大血管的关系是腹腔镜肝脏手术成功的关键。因此,在腔镜肝脏手术中,术前成像对于肿瘤分期和计划手术及其潜在的预期困难都是必要的。腔镜肝脏手术之前使用的主要成像设备是计算机断层扫描(CT)和磁共振成像(MRI),其中CT在评估与大血管相关的肿瘤方面更有效,而MRI在评估肿瘤特征和评估胆管方面更准确。PET-CT成像仅用于特定病例[10]。由于成本高昂,肝脏模型的3D打印并未得到广泛应用,3D重建可能有助于仔细规划困难的肝脏手术,包括肿瘤大小、位置及其与大肝血管的关系[11]

术中超声成本低、可用性高,它可以评估肿瘤的精确位置及其解剖关系,并帮助规划术中横断线,避免与大肝血管意外碰撞从而减少出血[12]。在重复肝切除的患者中,通过超声检查很难确定肿瘤的位置。吲哚菁绿荧光导航方法对肿瘤组织进行识别更加容易,使用ICG荧光导航的腔镜重复肝切除在手术时间、出血量和住院时间方面效果良好。总的来说,我们相信在执行腹腔镜重复肝切除时实施ICG荧光导航是可行的,并且有助于提高安全性和方便性[13]。ICG是一种分子量为77.460 Da的水溶性化合物,与血浆脂蛋白迅速结合,其中大部分被肝实质细胞吸收并在胆汁中排泄而不被代谢,使其能够广泛用于评估肝脏[14],并用于检测胆漏以减少肝切除术后胆瘘形成的发生率,值得广泛应用[15]

3. 控制性低中心静脉压(CLCVP)

控制性低中心静脉压是一种简单有效地减少肝切除术中失血和输血的技术,似乎对肝肾功能没有不利影响[16]。降低CVP可以降低肝静脉和肝窦的压力,并减少肝实质破裂时的出血。根据Poiser叶层流公式,肝静脉损伤引起的出血量与血管壁的压力差和血管半径的4次方成正比[17]。当CVP降低时,下腔静脉、肝静脉和肝窦的压力也降低,这减小了血管壁和血管半径的压力差,从而显著减少了患者的术中失血量。CLCVP技术(0~5 mmhg)并未增加术后肝功能不全的发生率[18],但是最新研究发现,在腹腔镜肝切除术中应避免过低的CVP维持水平,以降低组织灌注不良和PHLF(肝切除术后肝衰竭)的风险,特别是对于老年或长期门静脉阻断的患者,术中最低CVP维持水平 < 2 mmHg是PHLF的独立危险因素[19]。众所周知,肝切除术期间的目标CVP为5 mmHg或更低,并且已被证明可以减少术中失血、输血需求、并发症发生率和死亡率。Lin [20]等人研究指出2.1~3 mmHg的CVP在HCC接受部分肝切除术的患者中是最佳的。实现低中心静脉压的方法有体位操作、液体限制、血管扩张剂的给药,利尿剂的应用、胸部硬膜外麻醉或不存在PEEP。CVP不能用来估计血容量,连续监测CVP以及压力变化与容量扩张或收缩的相关性是液体治疗的有用指南。

低CVP可以简单地通过限制液体摄入来产生和维持,尽管没有研究评估最低的液体输注安全率。例如,Wang [21]等人报道,通过将输液速率降低到接近75 mL/h来维持CVP ≤ 4 mmHg。反向特伦德伦堡体位可降低中心静脉压,而不会显著降低收缩压,这表明与下腔静脉夹闭相比,反向特伦德伦堡体位可以更安全地进行肝切除术[22]。但长时间操作和反向特伦德伦伯卧位是深静脉血栓的诱发因素[23]

硝酸甘油输注用于降低肝静脉压。CVP可用于指导水平位置的硝酸甘油剂量和输液速率,硝酸甘油输注期间可采用低头倾斜来改善血压和心输出量[24]。与硝酸甘油相比,米力农可以在肝切除术期间有效维持受控的低中心静脉压,从而减少失血量,具有更好的血流动力学表现和促进术后恢复[25],加压素和硝酸甘油联用也可降低门静脉压力和肝内脏血流量[26]。但是有部分患者难以耐受低CVP,导致血流动力学不平稳,难以维持器官组织灌注,因此需要升压药,例如去氧肾上腺素或去甲肾上腺素,其中去甲肾上腺素能够加剧肝静脉血流减少。还有研究发现食管超声检测LVETc联合多巴酚丁胺可确保肝部分切除术患者的血流动力学稳定,同时降低术中低血压和空气栓塞的发生率[27],但还需要更多临床试验去验证多巴酚丁胺的安全性和可行性。除此之外,每搏输出量变化(SVV)可以安全地用作肝切除术期间CVP监测的替代方法,在失血和实质横切时间方面具有同等结果。使用SVV作为液体状态的预测指标可能被证明是有利的,避免了CVC插入的需要,从而消除了CVC相关并发症的风险。SVV引导下目标导向治疗在腹腔镜精准肝切除术中安全有效。它减少了术中失血,有利于患者术后的短期预后[28]。肝切除期采用高SVV值(13%~17%),横断面末期SVV值为8%~12%,可作为腹腔镜精确肝切除术的术中液体治疗之一[29]。因此低CVP和高SVV更好地指导术中麻醉管理。

4. 外用药物

4.1. 特利加压素

加压素是一种内源性激素,具有多种作用,包括血管收缩。加压素(也称为精氨酸加压素或精氨酸–加压素)的外源性给药能够减少接受肝脏手术患者的门静脉和肝脏血流量[30]。特利加压素改善了全身血管阻力和平均动脉压,对儿茶酚胺的需求较少,尤其是在再灌注后;它还能改善术后尿量。Raedler [31]等在猪模型的研究中显示,在钝性肝损伤和不受控制的失血性休克后,加压素减少了出血并改善了预后。同样的研究表明,与肾上腺素和其他血管加压素相比,加压素后的存活率有所提高。Fayed [32]等发现特利加压素已被证明可以减少肝脏移植门静脉高压患者的失血量。这归因于毛细血管系膜前血管收缩和沿肠血管床的压力下降导致门静脉压力下降,这使得特利加压素成为未来应用于腹腔镜肝脏切除手术的血管活性药物。在大型肝脏手术中,输注特利加压素可以减少出血和降低输血要求,但是该研究需要更多的实验来证实我们的结果,特别是在没有门静脉高压的患者中。

4.2. 氨甲环酸(TXA)

手术期间发生的原发性纤维蛋白溶解症在失血中起着重要作用,是使用抗纤维蛋白溶解药制剂减少围手术期失血和输血需求的基础。抗纤维蛋白溶解药、氨基己酸、抑肽酶和氨甲环酸已显示可减少主要外科手术的出血[33]。据报道,氨甲环酸的精确使用可以减少心肺搭桥手术[34]、全髋关节置换术、膝关节置换术[35]、脊柱手术[36]和剖宫产手术[37]的出血。然而当术中给予它时,并不能减少出血,因为纤溶活化是一个级联过程,在其早期阶段最容易被抑制。但在肝切除术期间,纤维蛋白原水平降低,而PAP (纤维蛋白溶解的标志物)适度增加,TXA对纤维蛋白原水平或降解的检测没有影响,重要的是,TXA的血清浓度在整个围手术期保持为超过10 mcg/ml的浓度,在体外证明需要的浓度是完全抑制纤维蛋白溶解所必需的[38]。Kumkum [38]等人研究得出使用氨甲环酸可显著降低总失血量,氨甲环酸组术后血细胞比容值较高,与对照组相比,血小板计数无明显差异,则其无诱导血小板活化作用,且外源性凝血(PT)和内源性凝血途径(APTT)也不受氨甲环酸的影响,并在其参考范围内,因此预防性给予氨甲环酸可有效减少根治性手术中的失血量和输血需求,且无不良反应和血栓并发症。一项荟萃分析表明:根据TXA的有效性在很宽的剂量范围内是稳定的,这表明TXA的影响在临床使用的浓度下不是剂量依赖性的。相比之下,在较高剂量下观察到更多的并发症(最明显的癫痫发作)。[38]

4.3. 止血剂

止血外用剂是一类通过血管封闭技术改善止血性能的合成和生物制剂。局部止血剂不仅经常用于降低术中失血或缩短止血时间,更重要的是,用于减少与切除表面相关的并发症,例如胆漏、术后出血和脓肿形成[39]。目前可用的三类药物是胶原蛋白、纤维蛋白和氰基丙烯酸酯。然而,氰基丙烯酸酯聚合物已被证明能产生组织坏死和炎症介质释放,因此阻止其在肝实质止血中的应用[40]。但Wells [41]等人的一项随机试验网络荟萃分析中得出:在目前可用的止血剂中,纤维蛋白贴和纤维蛋白胶是缩短肝切除术中止血时间的最有效方法,但对其他围手术期结局没有影响。但Briceno [42]等和Chapman [43]等的另一项研究表示手术失血量没有差异,但胶原蛋白制剂组的住院时间减少,再入院率降低,总体发病率降低。纤维蛋白制剂相对于胶原蛋白制剂是典型的组分混合物,在手术中制备,随后应用。用利多卡因凝胶润滑的电烙术是一种廉价、容易获得且有效的方法,可在肝、脾和骨手术中实现小血管的止血。利多卡因和甘油止血效果优于其他药膏或干电灼止血效果。利多卡因的凝血剂是包裹在外壳中的凝血剂,利多卡因外壳经过电灼后已经失去了所有的药理学特性,所以利多卡因的副作用极大程度减小。[44]最近的一项随机前瞻性试验发现,预防性使用纤维蛋白垫与手工压迫和纤维素应用于切除部位相比,可降低失血量和并发症发生[45]

5. 低潮气量

在腹腔镜肝实质分离期间使用低潮气量(LTV)的机械通气(6~8 mL/kg)和每隔30 min进行肺复张操作以及无PEEP,减少了手术出血、临床显著出血的风险和输血需求,而术后肺部并发症没有增加,提高了手术安全性,减少了意外转为开放手术,发现的出血减少可能与气道压力降低和低潮气量的机械通气相关[18]。LTV机械通气有助于维持低CVP (<5 cm H2O)。此外,与高潮气量的机械通气相比,LTV通气对心脏功能的影响较小,气腹建立期间,LTV组的心指数维持良好。这可能部分归因于与LTV机械通气相关的胸内压干扰减少。然而,Arthur [46]等人指出在肝脏手术期间,与使用零PEEP的非保护性通气相比,在多方面使用PEEP (6至8 cm H2O之间)和肺复张操作(肺保护性通气策略)的机械通气与出血增加无关,需要更多前瞻性研究去证明。因此根据术中生命体征与术区视野个性化调整呼吸机参数,有利于腹腔镜肝脏切除术顺利进行。

6. 气腹压

腹腔镜检查需要CO2气腹腔才能获得足够的手术空间。气腹在腹腔镜肝部分切除术中具有理论技术优势,因为CO2吹入可以减少肝静脉回血并减少肝脏流入,减少手术失血。在猪肝损伤模型中,治疗性气腹已被证明可以减少肝静脉损伤的失血量。[47]此外,有报告指出使用气腹超过14 mmHg可以减少LLR期间出血,但也增加了CO2栓塞的风险,而且70%肝切除前高压气腹会损害术后肝再生,而低压气腹则无不良影响[48] [49]。有多项研究支持10~14 mmHg压力气腹能有效地控制LLR期间的出血,出血风险最小,且不会显著改变血流动力学[50]。Kobayashi [51]等人表明在高气道压力下也难以控制肝静脉出血,但在低气道压力下更容易控制。因此,降低气道压力是控制肝静脉出血的另一个有效措施。然而,在低气道压力下,当气腹压力大于CVP时,肺气体栓塞的风险增加。但在动物模型中,能够检测到CO2栓塞并引发血流动力学改变,大多表现为心律失常,然而在临床中较少病例报道。小气泡的栓塞不太可能引起血流动力学后果,并且由于CO2在血浆中的溶解性,应该被迅速吸收。然而,大气泡可能导致气栓,并可能导致肺血管流出道梗阻,仍需进一步研究[52]。一旦在LLR期间发生气体栓塞,可能会影响心肺功能,甚至导致神经功能缺损,导致术后恢复延迟[53]。此外,在LLS期间面临大量出血时,即使短暂暂停机械通气也被认为可以减少失血[54]。经食管超声心动图(TEE)对于CO2栓塞监测具有很高的敏感性和特异性,因此术中监测是必要的。

7. 硬膜外麻醉

使用硬膜外镇痛也可能是实现低CVP的有用辅助手段。硬膜外麻醉不会导致血管内容积的改变,只会促进血液的重新分配,从而导致静脉回流和门静脉压力的降低。降低肝窦和肝静脉压有助于减少肝充血和手术失血,加上使用去甲肾上腺素可以加剧这一现象。血容量减少和出血时逆转血流动力学紊乱的潜在困难是术中维持硬膜外麻醉的主要缺点,但术中神经轴麻醉对于健康个体和预定肝切除的Child-Pugh A型肝硬化患者都是可行的和有价值的[55]。近期有研究表明,适当的胸导管插入(T6-T8),相对较低的推注量(或输注速率)以及对利用短效麻醉剂使不良的血流动力学紊乱更容易补偿,并且持续时间相对较短,术中和术后硬膜外镇痛降低了术中阿片类药物的含量和术后疼痛阈值,更好地控制手术应激反应和减少术后肺部并发症,可显著改善患者的术后状况和认知功能,改善术后发病率和短期结果[55] [56]。建议术中硬膜外麻醉与轻度全身麻醉相结合是保持肝切除术中低CVP的有效方法。

8. 急性等容血液稀释

急性等容量血液稀释是通过全血与胶体或晶体液溶液的等血容量交换诱导的有益术中血液稀释,以在维持正常血容量的同时保留自体血。急性等容量血液稀释法在肝切除术期间可以安全有效地限制库存血液的使用。ANH (急性等容血液稀释)联合LCVP在肝切除术中的应用可明显减少术中出血和同种血输注;而且对凝血功能无明显不良影响[57]。等血容量血液稀释的安全性取决于相对完整的左心室功能和冠状动脉循环。但在急性等容血液稀释过程中,对于接受肝脏大切除术的患者,低红细胞聚集可能会引发内皮依赖性血栓形成和促炎症反应[58],临床应用需根据患者自身情况和麻醉医生经验考虑使用。

9. 结语

总之,麻醉期间最主要减少出血的是联合控制性低中心静脉压技术,它被证明是能减少出血的麻醉策略,其次可辅助其他的方法联合进一步减少出血:预防性给予低剂量氨甲环酸,允许10~14 mmhg的气腹压,适时适量使用特利加压素,使用低潮气量的机械通气参数,联合使用术前术中小剂量低浓度硬膜外麻醉可减少肝脏手术的出血。既能满足外科医生暴露手术视野以及手术操作空间的需求,又能降低气体栓塞的风险和减少出血。但是未来仍需要更多的临床实验数据去进一步验证。

参考文献

[1] Bray, F., Ferlay, J., Soerjomataram, I., et al. (2018) Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 68, 394-424.
https://doi.org/10.3322/caac.21492
[2] Zhou, J., Sun, H., Wang, Z., et al. (2020) Guidelines for the Diagnosis and Treatment of Hepatocellular Carcinoma (2019 Edition). Liver Cancer, 9, 682-720.
https://doi.org/10.1159/000509424
[3] Shang, H.T., Bao, J.H., Zhang, X.B., et al. (2019) Comparison of Clinical Efficacy and Complications between Laparoscopic Partial and Open Partial Hepatectomy for Liver Carcinoma: A Meta-Analysis. Journal of Laparoendoscopic & Advanced Surgical Techniques A, 29, 225-232.
https://doi.org/10.1089/lap.2018.0346
[4] Morise, Z. and Wakabayashi, G. (2017) First Quarter Century of Laparoscopic Liver Resection. World Journal of Gastroenterology, 23, 3581-3588.
https://doi.org/10.3748/wjg.v23.i20.3581
[5] Cunningham, J.D., Fong, Y., Shriver, C., et al. (1994) One Hundred Consecutive Hepatic Resections: Blood Loss, Transfusion, and Operative Technique. Archives of Surgery, 129, 1050-1056.
https://doi.org/10.1001/archsurg.1994.01420340064011
[6] Arnoletti, J.P. and Brodsky, J. (1999) Reduction of Transfusion Requirements during Major Hepatic Resection for Metastatic Disease. Surgery, 125, 166-171.
https://doi.org/10.1016/S0039-6060(99)70261-8
[7] Katz, S.C., Shia, J., Liau, K.H., et al. (2009) Operative Blood Loss Independently Predicts Recurrence and Survival after Resection of Hepatocellular Carcinoma. Annals of Surgery, 249, 617-623.
https://doi.org/10.1097/SLA.0b013e31819ed22f
[8] Heiss, M.M., Mempel, W., Delanoff, C., et al. (1994) Blood Transfusion-Modulated Tumor Recurrence: First Results of a Randomized Study of Autologous versus Allogeneic Blood Transfusion in Colorectal Cancer Surgery. Journal of Clinical Oncology, 12, 1859-1867.
https://doi.org/10.1200/JCO.1994.12.9.1859
[9] Kusano, T., Sasaki, A., Kai, S., et al. (2009) Predictors and Prognostic Significance of Operative Complications in Patients with Hepatocellular Carcinoma Who Underwent Hepatic Resection. European Journal of Surgical Oncology, 35, 1179-1185.
https://doi.org/10.1016/j.ejso.2009.04.008
[10] Budjan, J., Schoenberg, S.O. and Attenberger, U.I. (2017) CT und MRT der Leber: Wann, was, warum? Radiologe, 57, 366-372.
https://doi.org/10.1007/s00117-017-0232-0
[11] Yeo, C.T., Macdonald, A., Ungi, T., et al. (2018) Utility of 3D Reconstruction of 2D Liver Computed Tomography/Magnetic Resonance Images as a Surgical Planning Tool for Residents in Liver Resection Surgery. Journal of Surgical Education, 75, 792-797.
https://doi.org/10.1016/j.jsurg.2017.07.031
[12] Xiao, G., Tang, H. and Lu, B. (2025) Application of Intraoperative Ultrasound in Laparoscopic Liver Resection with Pringle Maneuver: A Comparative Study with the Pringle Maneuver. Journal of Laparoendoscopic & Advanced Surgical Techniques A, 35, 15-21.
https://doi.org/10.1089/lap.2024.0153
[13] Yoshioka, M., Taniai, N., Kawano, Y., et al. (2019) Laparoscopic Repeat Hepatectomy with Indocyanine Green Fluorescence Navigation: A Case Report. Journal of Nippon Medical School, 86, 291-295.
https://doi.org/10.1272/jnms.JNMS.2019_86-503
[14] Wada, T., Kawada, K., Takahashi, R., et al. (2017) ICG Fluorescence Imaging for Quantitative Evaluation of Colonic Perfusion in Laparoscopic Colorectal Surgery. Surgical Endoscopy, 31, 4184-4193.
https://doi.org/10.1007/s00464-017-5475-3
[15] Kaibori, M., Ishizaki, M., Matsui, K., et al. (2011) Intraoperative Indocyanine Green Fluorescent Imaging for Prevention of Bile Leakage after Hepatic Resection. Surgery, 150, 91-98.
https://doi.org/10.1016/j.surg.2011.02.011
[16] Li, Z., Sun, Y.M., Wu, F.X., et al. (2014) Controlled Low Central Venous Pressure Reduces Blood Loss and Transfusion Requirements in Hepatectomy. World Journal of Gastroenterology, 20, 303-309.
https://doi.org/10.3748/wjg.v20.i1.303
[17] Vassiliou, I., Arkadopoulos, N., Stafyla, V., et al. (2009) The Introduction of a Simple Maneuver to Reduce the Risk of Postoperative Bleeding after Major Hepatectomies. Journal of Hepato-Biliary-Pancreatic Surgery, 16, 552-556.
https://doi.org/10.1007/s00534-009-0100-z
[18] Wu, G., Chen, T. and Chen, Z. (2021) Effect of Controlled Low Central Venous Pressure Technique on Postoperative Hepatic Insufficiency in Patients Undergoing a Major Hepatic Resection. American Journal of Translational Research, 13, 8286-8293.
[19] Liu, Z., Yang, X., Yang, H., et al. (2024) Controlled Low Central Venous Pressure Maintenance Level during Laparoscopic Hepatectomy Negatively Associated with PHLF Incidence: A Retrospective Propensity Score Matching Study. Surgical Endoscopy, 39, 1101-1113.
https://doi.org/10.1007/s00464-024-11470-x
[20] Lin, C.X., Guo, Y., Lau, W.Y., et al. (2013) Optimal Central Venous Pressure during Partial Hepatectomy for Hepatocellular Carcinoma. Hepatobiliary & Pancreatic Diseases International, 12, 520-524.
https://doi.org/10.1016/S1499-3872(13)60082-X
[21] Wang, W.D., Liang, L.J., Huang, X.Q., et al. (2006) Low Central Venous Pressure Reduces Blood Loss in Hepatectomy. World Journal of Gastroenterology, 12, 935-939.
https://doi.org/10.3748/wjg.v12.i6.935
[22] Yoneda, G., Katagiri, S. and Yamamoto, M. (2015) Reverse Trendelenburg Position Is a Safer Technique for Lowering Central Venous Pressure without Decreasing Blood Pressure than Clamping of the Inferior Vena Cava Below the Liver. Journal of Hepato-Biliary-Pancreatic Sciences, 22, 463-466.
https://doi.org/10.1002/jhbp.229
[23] Catheline, J.M., Capelluto, E., Gaillard, J.L., et al. (2000) Thromboembolism Prophylaxis and Incidence of Thromboembolic Complications after Laparoscopic Surgery. International Journal of Surgical Investigation, 2, 41-47.
[24] Sand, L., Lundin, S., Rizell, M., et al. (2014) Nitroglycerine and Patient Position Effect on Central, Hepatic and Portal Venous Pressures during Liver Surgery. Acta Anaesthesiologica Scandinavica, 58, 961-967.
https://doi.org/10.1111/aas.12349
[25] Hu, W., Li, Z. and Hu, Z. (2021) A Commentary on ‘Milrinone Is Better Choice for Controlled Low Central Venous Pressure during Hepatectomy: A Randomized, Controlled Trial Comparing with Nitroglycerin’ [Int. J. Surg. (2021) 94: 106080]. International Journal of Surgery, 94, Article 106130.
https://doi.org/10.1016/j.ijsu.2021.106130
[26] Wisén, E., Svennerholm, K., Sand Bown, L., et al. (2018) Vasopressin and Nitroglycerin Decrease Portal and Hepatic Venous Pressure and Hepato-Splanchnic Blood Flow. Acta Anaesthesiologica Scandinavica, 62, 1161.
https://doi.org/10.1111/aas.13125
[27] Jian, Y., Xiaochen, J., Zongjian, S., et al. (2022) The Impacts of Corrected Left Ventricular Ejection Time Combined with Dobutamine on Hepatocellular Carcinoma Patients. Scientific Reports, 12, Article No. 21151.
https://doi.org/10.1038/s41598-022-24907-x
[28] Dunki-Jacobs, E.M., Philips, P., Scoggins, C.R., et al. (2014) Stroke Volume Variation in Hepatic Resection: A Replacement for Standard Central Venous Pressure Monitoring. Annals of Surgical Oncology, 21, 473-478.
https://doi.org/10.1245/s10434-013-3323-9
[29] Mei, X., Liu, J., Wang, Y., et al. (2019) [Application of Stroke Volume Variation-Guided Liquid Therapy in Laparoscopic Precision Hepatectomy]. Journal of Central South University (Medical Sciences), 44, 1163-1168.
[30] Hemingway, D.M., Chang, D., Cooke, T.G., et al. (1991) The Effects of Vasopressin Infusion on Hepatic Haemodynamics in an Experimental Model of Liver Metastases. British Journal of Cancer, 64, 212-214.
https://doi.org/10.1038/bjc.1991.278
[31] Raedler, C., Voelckel, W.G., Wenzel, V., et al. (2004) Treatment of Uncontrolled Hemorrhagic Shock after Liver Trauma: Fatal Effects of Fluid Resuscitation versus Improved Outcome after Vasopressin. Anesthesia & Analgesia, 98, 1759-1766.
https://doi.org/10.1213/01.ANE.0000117150.29361.5A
[32] Fayed, N., Refaat, E.K., Yassein, T.E., et al. (2013) Effect of Perioperative Terlipressin Infusion on Systemic, Hepatic, and Renal Hemodynamics during Living Donor Liver Transplantation. Journal of Critical Care, 28, 775-782.
https://doi.org/10.1016/j.jcrc.2013.02.016
[33] Verstraete, M. (1985) Clinical Application of Inhibitors of Fibrinolysis. Drugs, 29, 236-261.
https://doi.org/10.2165/00003495-198529030-00003
[34] Esfandiari, B.R., Bistgani, M.M. and Kabiri, M. (2013) Low Dose Tranexamic Acid Effect on Post-Coronary Artery Bypass Grafting Bleeding. Asian Cardiovascular and Thoracic Annals, 21, 669-674.
https://doi.org/10.1177/0218492312466391
[35] Pan, D.Q., Chen, L.L., Sun, B., et al. (2019) [Effect of Tranexamic Acid Combined Flexion Position of Hip and Knee on Perioperative Bleeding Following Unilateral Total Knee Arthroplasty]. China Journal of Orthopaedics and Traumatology, 32, 759-764.
[36] Cheriyan, T., Maier, S.P., Bianco, K., et al. (2015) Efficacy of Tranexamic Acid on Surgical Bleeding in Spine Surgery: A Meta-Analysis. The Spine Journal, 15, 752-761.
https://doi.org/10.1016/j.spinee.2015.01.013
[37] Gai, M.Y., Wu, L.F., Su, Q.F., et al. (2004) Clinical Observation of Blood Loss Reduced by Tranexamic Acid during and after Caesarian Section: A Multi-Center, Randomized Trial. European Journal of Obstetrics and Gynecology and Reproductive Biology, 112, 154-157.
https://doi.org/10.1016/S0301-2115(03)00287-2
[38] Ker, K., Edwards, P., Perel, P., et al. (2012) Effect of Tranexamic Acid on Surgical Bleeding: Systematic Review and Cumulative Meta-Analysis. The BMJ, 344, e3054.
https://doi.org/10.1136/bmj.e3054
[39] Boonstra, E.A., Molenaar, I.Q., Porte, R.J., et al. (2009) Topical Haemostatic Agents in Liver Surgery: Do We Need Them? HPB (Oxford), 11, 306-310.
https://doi.org/10.1111/j.1477-2574.2009.00065.x
[40] Olmez, A., Karabulut, K., Aydin, C., et al. (2012) Comparison of Harmonic Scalpel versus Conventional Knot Tying for Transection of Short Hepatic Veins at Liver Transplantation: Prospective Randomized Study. Transplantation Proceedings, 44, 1717-1719.
https://doi.org/10.1016/j.transproceed.2012.05.035
[41] Wells, C.I., Ratnayake, C.B.B., Mentor, K., et al. (2020) Haemostatic Efficacy of Topical Agents during Liver Resection: A Network Meta-Analysis of Randomised Trials. World Journal of Surgery, 44, 3461-3469.
https://doi.org/10.1007/s00268-020-05621-z
[42] Briceño, J., Naranjo, A., Ciria, R., et al. (2010) A Prospective Study of the Efficacy of Clinical Application of a New Carrier-Bound Fibrin Sealant after Liver Resection. Archives of Surgery, 145, 482-488.
https://doi.org/10.1001/archsurg.2010.62
[43] Chapman, W.C., Clavien, P.A., Fung, J., et al. (2000) Effective Control of Hepatic Bleeding with a Novel Collagen-Based Composite Combined with Autologous Plasma: Results of a Randomized Controlled Trial. Archives of Surgery, 135, 1200-1204.
https://doi.org/10.1001/archsurg.135.10.1200
[44] Petroianu, A. (2011) Hemostasis of the Liver, Spleen, and Bone Achieved by Electrocautery Greased with Lidocaine Gel. Surgery Today, 41, 300-302.
https://doi.org/10.1007/s00595-009-4211-6
[45] Koea, J.B., Batiller, J., Patel, B., et al. (2013) A Phase III, Randomized, Controlled, Superiority Trial Evaluating the Fibrin Pad versus Standard of Care in Controlling Parenchymal Bleeding during Elective Hepatic Surgery. HPB (Oxford), 15, 61-70.
https://doi.org/10.1111/j.1477-2574.2012.00583.x
[46] Neuschwander, A., Futier, E., Jaber, S., et al. (2016) The Effects of Intraoperative Lung Protective Ventilation with Positive End-Expiratory Pressure on Blood Loss during Hepatic Resection Surgery: A Secondary Analysis of Data from a Published Randomised Control Trial (IMPROVE). European Journal of Anaesthesiology, 33, 292-298.
https://doi.org/10.1097/EJA.0000000000000390
[47] Jaskille, A., Schechner, A., Park, K., et al. (2005) Abdominal Insufflation Decreases Blood Loss and Mortality after Porcine Liver Injury. The Journal of Trauma: Injury, Infection, and Critical Care, 59, 1305-1308.
https://doi.org/10.1097/01.ta.0000198374.16218.ca
[48] Cannon, R.M., Brock, G.N., Marvin, M.R., et al. (2011) Laparoscopic Liver Resection: An Examination of Our First 300 Patients. Journal of the American College of Surgeons, 213, 501-507.
https://doi.org/10.1016/j.jamcollsurg.2011.04.032
[49] Komori, Y., Iwashita, Y., Ohta, M., et al. (2014) Effects of Different Pressure Levels of CO2 Pneumoperitoneum on Liver Regeneration after Liver Resection in a Rat Model. Surgical Endoscopy, 28, 2466-2473.
https://doi.org/10.1007/s00464-014-3498-6
[50] Tranchart, H., O’Rourke, N., Van Dam, R., et al. (2015) Bleeding Control during Laparoscopic Liver Resection: A Review of Literature. Journal of Hepato-Biliary-Pancreatic Sciences, 22, 371-378.
https://doi.org/10.1002/jhbp.217
[51] Kobayashi, S., Honda, G., Kurata, M., et al. (2016) An Experimental Study on the Relationship among Airway Pressure, Pneumoperitoneum Pressure, and Central Venous Pressure in Pure Laparoscopic Hepatectomy. Annals of Surgery, 263, 1159-1163.
https://doi.org/10.1097/SLA.0000000000001482
[52] Jayaraman, S., Khakhar, A., Yang, H., et al. (2009) The Association between Central Venous Pressure, Pneumoperitoneum, and Venous Carbon Dioxide Embolism in Laparoscopic Hepatectomy. Surgical Endoscopy, 23, 2369-2373.
https://doi.org/10.1007/s00464-009-0359-9
[53] Jin, D., Liu, M., Huang, J., et al. (2021) Gas Embolism under Standard versus Low Pneumoperitoneum Pressure during Laparoscopic Liver Resection (GASES): Study Protocol for a Randomized Controlled Trial. Trials, 22, Article No. 807.
https://doi.org/10.1186/s13063-021-05678-8
[54] Honda, G., Kurata, M., Okuda, Y., et al. (2013) Totally Laparoscopic Hepatectomy Exposing the Major Vessels. Journal of Hepato-Biliary-Pancreatic Sciences, 20, 435-440.
https://doi.org/10.1007/s00534-012-0586-7
[55] Feltracco, P., Brezzi, M.L., Barbieri, S., et al. (2008) Epidural Anesthesia and Analgesia in Liver Resection and Living Donor Hepatectomy. Transplantation Proceedings, 40, 1165-1168.
https://doi.org/10.1016/j.transproceed.2008.03.108
[56] Su, Y., Pu, Y., Zhao, Z., et al. (2020) Influence of Combined Epidural Anesthesia on Cognitive Function, Inflammation and Stress Response in Elderly Liver Cancer Patients Undergoing Surgery. Oncology Letters, 19, 2733-2738.
https://doi.org/10.3892/ol.2020.11395
[57] Guo, J.R., Shen, H.C., Liu, Y., et al. (2015) Effect of Acute Normovolemic Hemodilution Combined with Controlled Low Central Venous Pressure on Blood Coagulation Function and Blood Loss in Patients Undergoing Resection of Liver Cancer Operation. Hepatogastroenterology, 62, 992-996.
[58] Morariu, A.M., Maathuis, M.H., Asgeirsdottir, S.A., et al. (2006) Acute Isovolemic Hemodilution Triggers Proinflammatory and Procoagulatory Endothelial Activation in Vital Organs: Role of Erythrocyte Aggregation. Microcirculation, 13, 397-409.
https://doi.org/10.1080/10739680600745992