股腘动脉介入治疗进展
Progress in Interventional Treatment of Femoral Popliteal Artery
摘要: 股腘动脉段狭窄闭塞是下肢动脉最常见的发病部位。介入治疗凭借微创、住院周期短等优点逐步成为了患者的首选治疗方式。但由于目前在手术过程中,远期股腘动脉通畅率仍不理想,因此,未来研究仍将重点放在提高股腘动脉通畅率方面。基于此,文章将会对当前腔内治疗的最新进展进行全面的综述,并且结合国内外相关的研究成果展开进一步的分析和探讨。
Abstract: The stenosis and occlusion of the femoropopliteal artery segment is the most common site of onset in lower extremity arteries. Interventional therapy has gradually become the preferred treatment method for patients due to its advantages, such as minimal invasiveness and short hospital stay. However, during the current surgical procedures, the long-term patency rate of the femoropopliteal artery is still not satisfactory. Therefore, future research will still focus on improving the patency rate of the femoropopliteal artery. Based on this, this article will comprehensively review the latest progress in current endovascular treatment and further analyze and discuss it in combination with relevant research results at home and abroad.
文章引用:尹颖异, 李刚. 股腘动脉介入治疗进展[J]. 临床医学进展, 2025, 15(3): 99-107. https://doi.org/10.12677/acm.2025.153592

1. 引言

股腘动脉作为下肢动脉硬化闭塞(ASO)最常见的病变部位,承受着肢体屈、伸等人体力学活动,会导致股腘动脉在运动过程中发生复杂的变化[1]。ASO作为一种具有进展性特征的疾病,尽早的干预能够在很大程度上显著改善患者的预后状态以及生活情况。与旁路手术相比,血管腔内治疗展现出创口小、恢复迅速的显著益处,也正因为如此,血管腔内治疗逐渐成为现阶段优先治疗下肢动脉硬化闭塞的治疗方案。在血管腔内治疗的范畴中,常见的手术类型包括球囊扩张、支架置入、斑块旋切术等。不过需要注意的是,不同的治疗方法所适应的病变是有所不同的。

2. 球囊

2.1. 普通球囊

普通球囊作为当代腔内治疗的基石,但约60%的患者会出现再狭窄[2]。球囊扩张术单独治疗效果有限,但其操作简便、成本低、成功率高、应用广泛的优点,作为其他治疗的前期血管准备,仍是必不可少的一环[3],然而球囊扩张过程中不均匀的剪切力是许多术后夹层事件的主要原因。有研究显示,普通球囊扩张仅仅只有16%的病变在PTA过程中没有发生夹层[4]-[6]。同时前期血管准备是下肢ASO腔内治疗中的关键一环,其目标是在尽可能扩大管腔的同时,避免血管破裂和限流性夹层的发生[7]。所以普通球囊仍然在当代下肢腔内治疗中起着不可缺少的作用。

2.2. 切割球囊

切割球囊通过将刀片切入血管壁的工作方式,可降低扩张压力,减少术后弹性回缩[8]。切割球囊开辟了治疗病变血管的新途径,减少了所需压力,有效地抑制了限流性夹层的发生,对减少再狭窄的发生起到了显著的效果[8]。Poncyljusz等学者的一项随机对照研究显示,手术1年后,切割球囊组再狭窄率为13%,普通球囊组为30% (P = 0.117),当排除两组中接受补救性支架治疗的患者后,经实际治疗情况分析,切割球囊组再狭窄率维持在13%,普通球囊组为36%,且两组差异具有统计学意义(P = 0.049) [9]。但切割球囊通常不会作为一种初始的治疗手段,特别是在长段病变或严重钙化病变时,由于成本较高,同时会增加血管穿孔与急性闭塞的发生率,因此其再狭窄率和临床效果并不优于一般球囊,通常需要与其他技术(如斑块旋切术)联合使用,以获得理想的效果[10]

2.3. 双导丝球囊

双导丝球囊上附着镍钛导丝,球囊作用于病变部位时,镍钛导丝能将斑块碎裂。该球囊利用接触面小、压强大的特性,在进行低压扩张操作时,能有效减少对血管内膜的伤害,降低夹层出现的风险[11],双导丝球囊可以作为一种预处理手段,更好地对钙化斑块进行挤压和塑形,为后续的治疗(如药物涂层球囊治疗或支架置入)创造更好的血管条件。一项研究发现[12],在股浅动脉血管成形术里,双导丝球囊与普通球囊相比优势明显。双导丝球囊组严重夹层(1/3管腔)的发生率为40.5%,较普通球囊组75.0%的发生率下降明显,差异具有统计学意义(P = 0.001)。同时,双导丝球囊组整体支架植入率只有27.0%,而普通球囊组达55.3%,差异具有统计学意义(P = 0.005)。这表明在股浅动脉血管成形术中,采用双导丝球囊进行血管准备,既安全又有效。Baumhäkel等人[11]的成果显示,股腘动脉病变患者需先运用双导丝球囊进行血管准备工作,经观察患者在接受该治疗方案12个月后,无需再次针对靶病变开展血运重建操作。但有一些研究提出了不同的观点,在下肢严重钙化的病变中,双导丝球囊与标准治疗(球囊 ± 支架植入术)相比并无明显优势,免于靶血管血运重建(Target Lesion Revascularization, TLR)双导丝球囊与标准手术之间无显著差异(82.3% vs. 78.1%, P > 0.05)。对生存率和截肢率没有额外影响(P > 0.05),未减少后续对额外支架植入的需求(32.6%和32.3%,P > 0.05)。

2.4. 巧克力球囊

巧克力球囊受镍钛合金支架的约束,表面形成了一个纵横交错的沟槽,使得与血管的接触面积增大,并提供可控制的扩张方式,对血管的伤害减少到最大程度,使限流夹层在扩张后的发生率减少[13]。2018年,Mustapha等[13]开展了一项前瞻性多中心研究,其中23.1%为完全闭塞性病变,63.4%为中重度钙化性病变,经过12个月的随访,发现血管畅通率达到64.1%,目标病灶血运复建率达到21.5%。该研究表明,巧克力球囊在股腘动脉展现出的良好效果,术后未发生限流性夹层,仅仅1.6%的支架植入率。Shigemitsu Shirai等人[14]的研究,对比了巧克力球囊和普通球囊在股腘动脉病变药物涂层球囊血管成形术里作为血管准备方式的差异,结果显示,巧克力球囊的限流夹层率为4.2%,普通球囊为25%,差异具有统计学意(P = 0.003);在救助支架的置入率上,巧克力球囊为2.1%,普通球囊为15.9%,两者相差明显(P = 0.016),巧克力组和常规球囊组半年时的初次通畅率分别为89.1%和85.2% (P = 0.670)。这表明,巧克力球囊不仅能显著降低限流型夹层的发生率,在为药物涂层球囊做血管准备时,还能保证足够的扩张效果,但在一些疗效指标上与常规球囊相比优势并不显著。

2.5. 冲击波球囊

在钙化病变的处理上,腔内技术仍有短板,而血管内碎石(Intravascular Vibration Lithotripsy, IVL)通过安装在传统球囊导管上的多个发射架提供脉冲声压能量,使浅层和深层的钙化物断裂。IVL可作为一种新的血管制备选择,改善管腔顺应性,促进血管内治疗效果[15]。在一项针对股腘动脉中度或重度钙化患者的治疗研究中,采用IVL疗法,并与经皮球囊扩张成形术进行对比。结果表明,IVL的限流夹层发生率仅1.4%,相比后者6.8% (P = 0.03)的限流夹层发生率下降明显。两组的TLR率均为0.7%,统计学上无显著差异(P = 1.00) [16]。一项IVL在下肢PAD中疗效和安全性的荟萃分析结果证明[17],尽管疾病复杂,但治疗后残余狭窄率和相关的穿孔,且血流限制型夹层或D/E/F型夹层很少见。IVL极有可能成为未来下肢动脉钙化病变治疗领域的研究趋势,结合其破坏浅表和深层钙化的理论优势,无论是独立治疗还是血管准备对下肢动脉硬化闭塞症病变都是很好的选择。

2.6. 药物涂层球囊

药物涂层球囊(Drug-Coated Balloon, DCB)扩张时,紫杉醇能够快速渗透到病变血管壁中,抑制平滑肌细胞的增殖与迁移,以此减少再狭窄情况的出现[18],而股腘动脉平滑肌层发达,平滑肌细胞增生能力较强,与药物涂层球囊的治疗原理不谋而合。有学者[19]在多中心AcoArti试验中报告,在长期复杂钙化病变的治疗效果方面,术后1年,药物涂层球囊组的免于靶血管重建率和通畅率分别达到92.8%、76.1%,明显高于普通球囊组的60.4%、33.7%。此外,药物涂层球囊也可用于治疗支架内再狭窄。既往研究显示[20],药物涂层球囊治疗支架内再狭窄(In-Stent Restenosis, ISR)后的12个月通畅率明显高于经皮球囊扩张。

但一项研究表明,紫杉醇治疗后的患者在2年(7.2% vs. 3.8%, P = 0.80)和5年(14.7% vs. 8.1%, P = 0.92)的全因病死率有所增加。同时,每毫克紫杉醇使用量与患者死亡风险的增加相关(0.4% ± 0.1%, P < 0.001) [21]。但2020年一项研究对2289例患者进行了平均2.49年的随访,发现其中574例患者死亡。紫杉醇组死亡人数为293人(占比25.5%),非紫杉醇组死亡人数为281人(占比24.6%)。研究结果表明,紫杉醇药物对患者病死率没有显著影响[22]。另一项对1980名患者进行长达5年随访的患者水平独立荟萃分析显示,5年全因死亡率分别为13.2%和11.0% (P = 0.188),药物涂层球囊和普通球囊5年后的死亡率没有差异。低、中、高剂量组,3组的平均剂量分别为5019.0、10007.5和19978.2 mg,表明不同程度的紫杉醇暴露和DCB患者5年的死亡率没有直接影响(P = 0.731) [23]。此后又陆续发表了以原始数据为基础、追踪研究时间更长的一系列大样本研究。这些研究均表明,药物剂量与死亡率之间没有关系[24]-[26]。此外药物涂层球囊也是球囊一种,也会发生弹性回缩和夹层形成、并且对钙化显著的病变效果较差。从理论层面分析,药物涂层球囊对全身的影响比较有限,因为载药量比较小,药物主要在局部释放。

3. 支架

3.1. 金属裸支架

为解决球囊扩张后的血管弹性回缩和限流性夹层问题,通常选择性置入金属裸支架(BMS)以扩大动脉管腔,并降低再干预风险。但有研究显示支架内再狭窄的发生率可高达40%~60% [27] [28],而且还伴随着支架可能随时断裂和移位的风险。但因其操作简单、价格低廉依然是不可缺少的治疗方案。

3.2. 药物涂层支架

药物涂层支架(Drug-Eluting Stent, DES)表面附着紫杉醇,能够抑制内皮细胞增殖。在EMINENT研究中,使用药物涂层支架的病人,12个月的一期通畅率为83.2%,金属裸支架为一期通畅率为73.4%,两者差异具有统计学意义(P < 0.01)。但TLR方面,接受药物涂层支架治疗的患者比例为83.0%,高于接受BMS治疗患者的76.6%,且该差异同样具有统计学意义(P = 0.045) [29]。DAKE等[30]研究表明,植入药物涂层支架术后5年的通畅率更胜一筹,再干预和再狭窄风险降低了40%,但仍有17%的支架再狭窄发生率。但是一些其他的研究却持有不同的看法,BATTLE试验纳入186例股腘动脉病变患者的结果也显示,药物涂层支架与金属裸支架相比,12个月支架内再狭窄率无明显优势[31]

Zeller等[32]研究对比了药物涂层支架和药物涂层球囊在长段股腘动脉病变中的效果。结果显示,药物涂层支架1年再狭窄率为23.9%;药物涂层球囊1年再狭窄率为30.4%。两组间无显著统计学差异。但一些研究也提出了不同的观点。Bausback等[33]报道了在长度大于10 cm的病变亚组里,药物涂层支架和药物涂层球囊的通畅率均随时间推移呈下降趋势,但药物涂层球囊组的下降速度更快。目前关于这二种技术的选择尚无明确倾向。

3.3. 覆膜支架

当下,应用于下肢动脉硬化闭塞症治疗的覆膜支架,因具备出色的弹性,以及较强的扭曲和弯折能力,适配于复杂力学环境的股腘动脉[34]。Mwipatayi等[35]研究表明,覆膜支架通畅率优于裸支架。另外一些研究也表示[36],对接受长期股腘动脉病变治疗的外周动脉疾病患者研究显示,与金属裸支架相比,具有显著的临床和通畅优势。但是有研究显示,覆膜支架血栓形成率较高,可能由于其阻断分支血管血流,导致血栓易扩展至整个支架。此外,覆膜支架常用于长段病变,增加了血栓形成的风险,从而提高急性肢体缺血和截肢的发生率[37] [38]

3.4. 可降解支架

生物可吸收支架(BRS)是一种由聚合物或金属材料制成的支架,可在体内逐渐降解[39]。针对股浅动脉狭窄的问题,使用生物可吸收支架治疗后,1年的初级通畅率为82.8%,3年为77.1%。超声随访结果显示,术后30个月支架结构完全被重新吸收,至少上升了两个卢瑟福分级[40]。但是目前可降解支架主要应用于膝下动脉,单纯应用并不足以避免该支架降解过程中的内膜增生,且血栓的发生率高,径向支撑不足[41]

4. 减容

4.1. 定向斑块旋切

定向斑块旋切是指在血管介入治疗过程中,通过特殊的器械,精确地将血管内的粥样硬化斑块等病变组织进行切割、移除的方法,为防止栓塞,使用该装置时需在远端放置保护伞。它主要适用于短段、分散以及跨关节的病变。McKinsey [42]等人开展了一项前瞻性研究,以此评估定向斑块旋切术(DA)治疗下肢动脉闭塞疾病的安全性与有效性,术后一年一期通畅率为78%。围手术期出现的不良事件主要包括栓塞(发生率3.8%)、穿孔(发生率5.3%)以及血管突然闭塞(发生率2.0%),救助支架植入率为3.2%。Roberts等[43]对治疗下肢股腘动脉中度钙化的效果展开评估,结果显示,一期通畅率达到92%。在治疗过程中,88.4%的远端保护伞收集到了脱落栓子,远端血管堵塞概率为2.3%。这一结果有力地证实了在DA治疗期间,使用远端保护伞十分必要。

斑块旋切联合DCB,通过斑块旋切术可以有效去除血管表面的斑块和钙化灶,扩大管腔容积,从而促进药物更好地渗透至血管壁。Zeller [44]等研究结果表明,斑块旋切联合DCB手术成功率为89.6%,单纯DCB组手术成功率为64.2%,差异具有统计学意义(P = 0.004)。斑块旋切联合DCB组的限流性夹层发生率仅为2%,而单纯DCB组高达19%,二者差异显著(P = 0.01)。不过,在为期12个月的随访中,两组在整体通畅率和临床驱动的靶血管再干预率方面,未观察到明显的统计学差异。

4.2. 准分子激光消蚀术

准分子激光消蚀术(Excimer Laser Ablation, ELA)适用于血栓、斑块、CTO、ISR 等多种病变的治疗[20]。无论使用何种减容技术,导丝都必须在血管真腔内通过病变。对于导丝无法通过的完全性闭塞病变,ELA可以通过“逐步消蚀”(Step-by-Step, SBS)技术,无需导丝,通过多次短距离(<5 mm)推进,来逐步通过病变。SBS技术可降低导丝误入血管内膜的风险,是治疗难治性病变的有效手段[45]。Dave [46]等研究显示,实施ELA术后,狭窄直径百分比大幅下降,单独进行激光消融后,狭窄直径百分比迅速降至(42.5 ± 13.2)%,术后开展12个月的随访,结果显示一期通畅率为54.3%。国外一项随机对照试验(RCT)表明,相较于单纯的经皮球囊扩张术,联合ELA的手术成功率更高,分别为93.5%和82.7%,差异在统计学意义上存在差异(P = 0.01)。同时,该联合疗法的主要不良事件发生率更低,仅为5.8%,而单纯PTA为20.5% (P < 0.001)。术后6个月,ELA联合经皮球囊扩张术免于TLR的比例也更高,达到73.5%,明显高于单纯PTA的51.8% (P < 0.005) [47]

4.3. 减容技术的探讨

减容技术借助机械装置、激光等手段,能清除血管内的动脉粥样硬化斑块、钙化灶以及血栓等物质,从根本上拓宽病变血管的管腔容积,并且高效完成血管准备工作,为预防管腔远期再狭窄奠定了重要理论基础。然而,部分学者研究发现,与普通球囊扩张相比,斑块旋切的一期通畅率并无显著差异[48]。和单纯运用DCB相比,斑块旋切联合DCB治疗在通畅率等指标上也未展现出明显优势。[49]目前,腔内减容术在操作上缺乏统一规范。术中不仅要多次进行造影检查,或者反复复查超声来确认斑块切除程度,而且还存在一些风险,比如可能引发肢体远端栓塞、导致假性动脉瘤形成,甚至造成动脉穿孔等并发症。把减容治疗、药物治疗以及其他非手术疗法相结合,会成为提升下肢动脉闭塞性疾病治疗效果的关键方向[50]

5. 腔内治疗的缺陷

腔内治疗(紫杉醇涂层球囊和支架),再狭窄和再闭塞是常见的并发症,尤其是在长段病变或糖尿病患者中,主要原因是内膜增生和术后血栓的形成[21]。金属支架在下肢动脉中可能因机械弯曲和扭转而发生断裂或移位,尤其是在活动较多的股腘动脉[51]。减容治疗中,斑块或血栓可能脱落并导致远端栓塞,尤其是在复杂病变中[52]。腔内治疗通常需要昂贵的设备(如药物涂层球囊、支架和斑块旋切设备),且对术者的技术要求较高,这可能限制其在资源有限地区的应用[53]。尽管腔内治疗在短期内效果显著,但其长期疗效与外科旁路手术相比仍存在争议,尤其是在复杂病变患者中[54]。腔内治疗的效果高度依赖于患者的选择。对于严重钙化、长段闭塞或多节段病变的患者,腔内治疗的失败率较高[55]。在讨论下肢股腘动脉腔内介入治疗时,除了强调其微创、恢复快等优势外,还需客观分析其短板,如再狭窄、支架断裂、钙化病变处理难度、远端栓塞风险等。这些短板的存在提示腔内治疗仍需进一步技术改进和长期疗效验证。

6. 小结和展望

不同技术的组合和创新提供了更多的治疗选择,尤其在病变复杂、钙化严重的患者中,个体化治疗策略更加重要。尽管各种腔内治疗新技术提供了显著的疗效提升,但仍需进一步的临床研究来优化治疗方案,评估其长期效果与安全性。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Kamenskiy, A.V., Pipinos, I.I., Dzenis, Y.A., Phillips, N.Y., Desyatova, A.S., Kitson, J., et al. (2015) Effects of Age on the Physiological and Mechanical Characteristics of Human Femoropopliteal Arteries. Acta Biomaterialia, 11, 304-313.
https://doi.org/10.1016/j.actbio.2014.09.050
[2] Rocha‐Singh, K.J., Jaff, M.R., Crabtree, T.R., Bloch, D.A. and Ansel, G. (2007) Performance Goals and Endpoint Assessments for Clinical Trials of Femoropopliteal Bare Nitinol Stents in Patients with Symptomatic Peripheral Arterial Disease. Catheterization and Cardiovascular Interventions, 69, 910-919.
https://doi.org/10.1002/ccd.21104
[3] Block, P.C., Myler, R.K., Stertzer, S. and Fallon, J.T. (1981) Morphology after Transluminal Angioplasty in Human Beings. New England Journal of Medicine, 305, 382-385.
https://doi.org/10.1056/nejm198108133050706
[4] Rocha‐Singh, K.J., Zeller, T. and Jaff, M.R. (2014) Peripheral Arterial Calcification: Prevalence, Mechanism, Detection, and Clinical Implications. Catheterization and Cardiovascular Interventions, 83, E212-220.
https://doi.org/10.1002/ccd.25387
[5] Dua, A. and Lee, C.J. (2016) Epidemiology of Peripheral Arterial Disease and Critical Limb Ischemia. Techniques in Vascular and Interventional Radiology, 19, 91-95.
https://doi.org/10.1053/j.tvir.2016.04.001
[6] Okuno, S., Iida, O., Shiraki, T., Fujita, M., Masuda, M., Okamoto, S., et al. (2016) Impact of Calcification on Clinical Outcomes after Endovascular Therapy for Superficial Femoral Artery Disease: Assessment Using the Peripheral Artery Calcification Scoring System. Journal of Endovascular Therapy, 23, 731-737.
https://doi.org/10.1177/1526602816656612
[7] Donas, K.P. and AbU Bakr, N. (2022) New Insights in Vessel Preparation Options by the Use of Atherectomy in the Treatment of Calcified Femoropopliteal Lesions. The Journal of Cardiovascular Surgery, 63, 1.
https://doi.org/10.23736/s0021-9509.21.12202-5
[8] 王爱林, 孟昕, 秦巍. 切割球囊扩张治疗膝下动脉狭窄[J]. 中国血管外科杂志(电子版), 2014, 6(2): 96-8+103.
[9] Poncyljusz, W., Falkowski, A., Safranow, K., Rać, M. and Zawierucha, D. (2013) Cutting-balloon Angioplasty versus Balloon Angioplasty as Treatment for Short Atherosclerotic Lesions in the Superficial Femoral Artery: Randomized Controlled Trial. CardioVascular and Interventional Radiology, 36, 1500-1507.
https://doi.org/10.1007/s00270-013-0603-5
[10] Cioppa, A., Stabile, E., Popusoi, G., Salemme, L., Cota, L., Pucciarelli, A., et al. (2012) Combined Treatment of Heavy Calcified Femoro-Popliteal Lesions Using Directional Atherectomy and a Paclitaxel Coated Balloon: One-Year Single Centre Clinical Results. Cardiovascular Revascularization Medicine, 13, 219-223.
https://doi.org/10.1016/j.carrev.2012.04.007
[11] Baumhäkel, M., Chketia, S. and Kindermann, M. (2018) Treatment of Femoro-Popliteal Lesions with Scoring and Drug-Coated Balloon Angioplasty: 12-Month Results of the Dcb-Trak Registry. Diagnostic and Interventional Radiology, 24, 153-157.
https://doi.org/10.5152/dir.2018.17466
[12] Hong, H., Park, U.J., Roh, Y.N. and Kim, H.T. (2020) Scoring Balloon Reduces the Severity of Dissection and Stent Implantation Rate in Superficial Femoral Artery Angioplasty Compared to Plain Balloon. Vascular and Endovascular Surgery, 55, 135-142.
https://doi.org/10.1177/1538574420968977
[13] Mustapha, J.A., Lansky, A., Shishehbor, M., Miles McClure, J., Johnson, S., Davis, T., et al. (2018) A Prospective, Multi‐Center Study of the Chocolate Balloon in Femoropopliteal Peripheral Artery Disease: The Chocolate Bar Registry. Catheterization and Cardiovascular Interventions, 91, 1144-1148.
https://doi.org/10.1002/ccd.27565
[14] Shirai, S., Mori, S., Yamaguchi, K., Mizusawa, M., Chishiki, T., Makino, K., et al. (2022) Impact of Chocolate Percutaneous Transluminal Angioplasty Balloon on Vessel Preparation in Drug-Coated Balloon Angioplasty for Femoropopliteal Lesion. CVIR Endovascular, 5, 46.
https://doi.org/10.1186/s42155-022-00324-z
[15] Kereiakes, D.J., Virmani, R., Hokama, J.Y., Illindala, U., Mena-Hurtado, C., Holden, A., et al. (2021) Principles of Intravascular Lithotripsy for Calcific Plaque Modification. JACC: Cardiovascular Interventions, 14, 1275-1292.
https://doi.org/10.1016/j.jcin.2021.03.036
[16] Tepe, G., Brodmann, M., Werner, M., Bachinsky, W., Holden, A., Zeller, T., et al. (2021) Intravascular Lithotripsy for Peripheral Artery Calcification: 30-Day Outcomes from the Randomized Disrupt PAD III Trial. JACC: Cardiovascular Interventions, 14, 1352-1361.
https://doi.org/10.1016/j.jcin.2021.04.010
[17] Wong, C.P., Chan, L.P., Au, D.M., Chan, H.W.C. and Chan, Y.C. (2022) Efficacy and Safety of Intravascular Lithotripsy in Lower Extremity Peripheral Artery Disease: A Systematic Review and Meta-analysis. European Journal of Vascular and Endovascular Surgery, 63, 446-456.
https://doi.org/10.1016/j.ejvs.2021.10.035
[18] Al-Bawardy, R.F., Waldo, S.W. and Rosenfield, K. (2017) Advances in Percutaneous Therapies for Peripheral Artery Disease: Drug-Coated Balloons. Current Cardiology Reports, 19, 99.
https://doi.org/10.1007/s11886-017-0913-3
[19] Jia, X., Zhang, J., Zhuang, B., Fu, W., Wu, D., Wang, F., et al. (2016) Acotec Drug-Coated Balloon Catheter: Randomized, Multicenter, Controlled Clinical Study in Femoropopliteal Arteries: Evidence from the AcoArt I Trial. JACC: Cardiovascular Interventions, 9, 1941-1949.
https://doi.org/10.1016/j.jcin.2016.06.055
[20] Kinstner, C.M., Lammer, J., Willfort-Ehringer, A., Matzek, W., Gschwandtner, M., Javor, D., et al. (2016) Paclitaxel-eluting Balloon versus Standard Balloon Angioplasty in In-Stent Restenosis of the Superficial Femoral and Proximal Popliteal Artery: 1-Year Results of the PACUBA Trial. JACC: Cardiovascular Interventions, 9, 1386-1392.
https://doi.org/10.1016/j.jcin.2016.04.012
[21] Katsanos, K., Spiliopoulos, S., Kitrou, P., Krokidis, M. and Karnabatidis, D. (2018) Risk of Death Following Application of Paclitaxel‐Coated Balloons and Stents in the Femoropopliteal Artery of the Leg: A Systematic Review and Meta‐Analysis of Randomized Controlled Trials. Journal of the American Heart Association, 7, e011245.
https://doi.org/10.1161/jaha.118.011245
[22] Nordanstig, J., James, S., Andersson, M., Andersson, M., Danielsson, P., Gillgren, P., et al. (2020) Mortality with Paclitaxel-Coated Devices in Peripheral Artery Disease. New England Journal of Medicine, 383, 2538-2546.
https://doi.org/10.1056/nejmoa2005206
[23] Schneider, P.A., Laird, J.R., Doros, G., Gao, Q., Ansel, G. and Brodmann, M. (2019) Mortality Not Correlated with Paclitaxel Exposure: An Independent Patient-Level Meta-Analysis of a Drug-Coated Balloon. Journal of Vascular Surgery, 73, 2550-2563.
https://doi.org/10.1016/j.jvs.2019.06.094
[24] Ouriel, K., Adelman, M.A., Rosenfield, K., Scheinert, D., Brodmann, M., Peña, C., et al. (2019) Safety of Paclitaxel-Coated Balloon Angioplasty for Femoropopliteal Peripheral Artery Disease. JACC: Cardiovascular Interventions, 12, 2515-2524.
https://doi.org/10.1016/j.jcin.2019.08.025
[25] Secemsky, E.A., Kundi, H., Weinberg, I., Jaff, M.R., Krawisz, A., Parikh, S.A., et al. (2019) Association of Survival with Femoropopliteal Artery Revascularization with Drug-Coated Devices. JAMA Cardiology, 4, 332-340.
https://doi.org/10.1001/jamacardio.2019.0325
[26] Gray, W.A., Jaff, M.R., Parikh, S.A., Ansel, G.M., Brodmann, M., Krishnan, P., et al. (2019) Mortality Assessment of Paclitaxel-Coated Balloons: Patient-Level Meta-Analysis of the ILLUMENATE Clinical Program at 3 Years. Circulation, 140, 1145-1155.
https://doi.org/10.1161/circulationaha.119.040518
[27] Laird, J.R., Katzen, B.T., Scheinert, D., Lammer, J., Carpenter, J., Buchbinder, M., et al. (2012) Nitinol Stent Implantation Vs. Balloon Angioplasty for Lesions in the Superficial Femoral and Proximal Popliteal Arteries of Patients with Claudication: Three-Year Follow-Up from the RESILIENT Randomized Trial. Journal of Endovascular Therapy, 19, 1-9.
https://doi.org/10.1583/11-3627.1
[28] Gouëffic, Y., Della Schiava, N., Thaveau, F., Rosset, E., Favre, J., Salomon du Mont, L., et al. (2017) Stenting or Surgery for De Novo Common Femoral Artery Stenosis. JACC: Cardiovascular Interventions, 10, 1344-1354.
https://doi.org/10.1016/j.jcin.2017.03.046
[29] Gouëffic, Y., Torsello, G., Zeller, T., Esposito, G., Vermassen, F., Hausegger, K.A., et al. (2022) Efficacy of a Drug-Eluting Stent versus Bare Metal Stents for Symptomatic Femoropopliteal Peripheral Artery Disease: Primary Results of the EMINENT Randomized Trial. Circulation, 146, 1564-1576.
https://doi.org/10.1161/circulationaha.122.059606
[30] Dake, M.D., Ansel, G.M., Jaff, M.R., Ohki, T., Saxon, R.R., Smouse, H.B., et al. (2016) Durable Clinical Effectiveness with Paclitaxel-Eluting Stents in the Femoropopliteal Artery: 5-Year Results of the Zilver PTX Randomized Trial. Circulation, 133, 1472-1483.
https://doi.org/10.1161/circulationaha.115.016900
[31] Dake, M.D., Ansel, G.M., Jaff, M.R., Ohki, T., Saxon, R.R., Smouse, H.B., et al. (2013) Sustained Safety and Effectiveness of Paclitaxel-Eluting Stents for Femoropopliteal Lesions: 2-Year Follow-Up from the Zilver PTX Randomized and Single-Arm Clinical Studies. Journal of the American College of Cardiology, 61, 2417-2427.
https://doi.org/10.1016/j.jacc.2013.03.034
[32] Zeller, T., Rastan, A., Macharzina, R., Tepe, G., Kaspar, M., Chavarria, J., et al. (2014) Drug-Coated Balloons vs. Drug-Eluting Stents for Treatment of Long Femoropopliteal Lesions. Journal of Endovascular Therapy, 21, 359-368.
https://doi.org/10.1583/13-4630mr.1
[33] Bausback, Y., Wittig, T., Schmidt, A., Zeller, T., Bosiers, M., Peeters, P., et al. (2019) Drug-Eluting Stent versus Drug-Coated Balloon Revascularization in Patients with Femoropopliteal Arterial Disease. Journal of the American College of Cardiology, 73, 667-679.
https://doi.org/10.1016/j.jacc.2018.11.039
[34] Madassery, S., Turba, U.C. and Arslan, B. (2016) Role of Stent Grafts and Helical-Woven Bare-Metal Stents in the Superficial Femoral and Popliteal Arteries. Techniques in Vascular and Interventional Radiology, 19, 153-162.
https://doi.org/10.1053/j.tvir.2016.05.002
[35] Hu, C., Chen, L., Wu, M., Ye, Q., Zou, J., Zhao, B., et al. (2024) Efficacy and Safety of Covered Stents versus Bare-Metal Stents for Aortoiliac Occlusive Disease: A Systematic Review and Meta-Analysis. Journal of Endovascular Therapy.
https://doi.org/10.1177/15266028241237387
[36] Lammer, J., Zeller, T., Hausegger, K.A., Schaefer, P.J., Gschwendtner, M., Mueller-Huelsbeck, S., et al. (2013) Heparin-Bonded Covered Stents versus Bare-Metal Stents for Complex Femoropopliteal Artery Lesions. Journal of the American College of Cardiology, 62, 1320-1327.
https://doi.org/10.1016/j.jacc.2013.05.079
[37] Ichihashi, S., Takahara, M., Iida, O., Suzuki, K., Yamaoka, T., Maeda, K., et al. (2021) Clinical Impact of Stent Graft Thrombosis in Femoropopliteal Arterial Lesions. JACC: Cardiovascular Interventions, 14, 1137-1147.
https://doi.org/10.1016/j.jcin.2021.03.030
[38] Katsanos, K., Al-Lamki, S.A.M., Parthipun, A., Spiliopoulos, S., Patel, S.D., Paraskevopoulos, I., et al. (2016) Peripheral Stent Thrombosis Leading to Acute Limb Ischemia and Major Amputation: Incidence and Risk Factors in the Aortoiliac and Femoropopliteal Arteries. CardioVascular and Interventional Radiology, 40, 351-359.
https://doi.org/10.1007/s00270-016-1513-0
[39] Onuma, Y. and Serruys, P.W. (2011) Bioresorbable Scaffold. Circulation, 123, 779-797.
https://doi.org/10.1161/circulationaha.110.971606
[40] Silingardi, R., Lauricella, A., Coppi, G., Nicolosi, E., Gennai, S. and Coppi, G. (2015) Midterm Results of Endovascular Treatment of Superficial Femoral Artery Disease with Biodegradable Stents: Single-Center Experience. Journal of Vascular and Interventional Radiology, 26, 374-381.e1.
https://doi.org/10.1016/j.jvir.2014.10.050
[41] 杨炎, 张针锋, 王俊伟, 等. 可降解金属血管支架的研发进展[J]. 中南大学学报(医学版), 2024: 1-8.
[42] McKinsey, J.F., Zeller, T., Rocha-Singh, K.J., Jaff, M.R. and Garcia, L.A. (2014) Lower Extremity Revascularization Using Directional Atherectomy. JACC: Cardiovascular Interventions, 7, 923-933.
https://doi.org/10.1016/j.jcin.2014.05.006
[43] Roberts, D., Niazi, K., Miller, W., Krishnan, P., Gammon, R., Schreiber, T., et al. (2014) Effective Endovascular Treatment of Calcified Femoropopliteal Disease with Directional Atherectomy and Distal Embolic Protection: Final Results of the DEFINITIVE Ca++ Trial. Catheterization and Cardiovascular Interventions, 84, 236-244.
https://doi.org/10.1002/ccd.25384
[44] Zeller, T., Langhoff, R., Rocha-Singh, K.J., Jaff, M.R., Blessing, E., Amann-Vesti, B., et al. (2017) Directional Atherectomy Followed by a Paclitaxel-Coated Balloon to Inhibit Restenosis and Maintain Vessel Patency. Circulation: Cardiovascular Interventions, 10, e004848.
https://doi.org/10.1161/circinterventions.116.004848
[45] Wissgott, C., Kamusella, P, Lüdtke, C., et al. (2013) Excimer Laser Atherectomy after Unsuccessful Angioplasty of TASC C and D Lesions in Femoropopliteal Arteries. The Journal of Cardiovascular Surgery (Torino), 54, 359-365.
[46] Dave, R.M., Patlola, R., Kollmeyer, K., Bunch, F., Weinstock, B.S., Dippel, E., et al. (2009) Excimer Laser Recanalization of Femoropopliteal Lesions and 1-Year Patency: Results of the CELLO Registry. Journal of Endovascular Therapy, 16, 665-675.
https://doi.org/10.1583/09-2781.1
[47] Dippel, E.J., Makam, P., Kovach, R., George, J.C., Patlola, R., Metzger, D.C., et al. (2015) Randomized Controlled Study of Excimer Laser Atherectomy for Treatment of Femoropopliteal In-Stent Restenosis. JACC: Cardiovascular Interventions, 8, 92-101.
https://doi.org/10.1016/j.jcin.2014.09.009
[48] Diamantopoulos, A. and Katsanos, K. (2014) Atherectomy of the Femoropopliteal Artery: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. The Journal of Cardiovascular Surgery (Torino), 55, 655-665.
[49] Zhen, Y., Chang, Z., Wang, C., Liu, Z. and Zheng, J. (2019) Directional Atherectomy with Antirestenotic Therapy for Femoropopliteal Artery Disease: A Systematic Review and Meta-Analysis. Journal of Vascular and Interventional Radiology, 30, 1586-1592.
https://doi.org/10.1016/j.jvir.2019.06.012
[50] Kokkinidis, D.G. and Armstrong, E.J. (2020) Current Developments in Endovascular Therapy of Peripheral Vascular Disease. Journal of Thoracic Disease, 12, 1681-1694.
https://doi.org/10.21037/jtd.2019.12.130
[51] Scheinert, D., Scheinert, S., Sax, J., Piorkowski, C., Bräunlich, S., Ulrich, M., et al. (2005) Prevalence and Clinical Impact of Stent Fractures after Femoropopliteal Stenting. Journal of the American College of Cardiology, 45, 312-315.
https://doi.org/10.1016/j.jacc.2004.11.026
[52] Shrikhande, G.V. and McKinsey, J.F. (2008) Use and Abuse of Atherectomy: Where Should It Be Used? Seminars in Vascular Surgery, 21, 204-209.
https://doi.org/10.1053/j.semvascsurg.2008.11.007
[53] Suresh, K. (2019) Global Vascular Guidelines on the Management of Chronic Limb-Threatening Ischemia: A Brief Purview. Indian Journal of Vascular and Endovascular Surgery, 6, 147-157.
https://doi.org/10.4103/ijves.ijves_50_19
[54] Bradbury, A.W., Adam, D.J., Bell, J., Forbes, J.F., Fowkes, F.G.R., Gillespie, I., et al. (2010) Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL) Trial: A Survival Prediction Model to Facilitate Clinical Decision Making. Journal of Vascular Surgery, 51, 52S-68S.
https://doi.org/10.1016/j.jvs.2010.01.077
[55] Norgren, L., Hiatt, W.R., Dormandy, J.A., Nehler, M.R., Harris, K.A. and Fowkes, F.G.R. (2007) Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II). Journal of Vascular Surgery, 45, S5-S67.
https://doi.org/10.1016/j.jvs.2006.12.037