血液外泌体作为肺癌诊断标志物的研究
Study of Blood Exosomes as Diagnostic Markers for Lung Cancer
DOI: 10.12677/pi.2025.142010, PDF, HTML, XML,   
作者: 郑雪雪, 梁宏伟*:中国药科大学生命科学与技术学院,江苏 南京
关键词: 外泌体肺癌核酸蛋白质早期诊断Exosome Lung Cancer Nucleic Acid Protein Early Diagnosis
摘要: 肺癌是全球高发病率和高死亡率的恶性肿瘤之一,目前缺乏有效的早期诊断手段。约75%的患者确诊时已处于晚期或发生远处转移,导致治疗效果不佳,预后不良。因此,实现肺癌的早期诊断对于显著提高患者的生存率具有至关重要的意义。近年来,血液外泌体作为肺癌诊断标志物的研究取得显著进展。研究表明,外泌体通过与肿瘤微环境相互作用,介导肿瘤细胞的生长、转移、免疫调节以及放化疗抵抗,影响肺癌的发生和发展,具有成为早期诊断标志物的潜力。本文综述了血液外泌体在肺癌诊断中的研究现状与进展。
Abstract: Lung cancer is one of the malignant tumors with high morbidity and mortality worldwide, and there is a lack of effective means of early diagnosis. About 75% of patients are in advanced stages or have distant metastases when diagnosed, resulting in poor treatment and poor prognosis. Therefore, realizing early diagnosis of lung cancer is of crucial significance to significantly improve the survival rate of patients. In recent years, research on blood exosomes as diagnostic markers for lung cancer has made remarkable progress. Studies have shown that exosomes have the potential to become early diagnostic markers by interacting with the tumor microenvironment, mediating tumor cell growth, metastasis, immune regulation, and resistance to radiotherapy, and influencing the occurrence and development of lung cancer. This article reviews the current status and progress of research on blood exosomes in lung cancer diagnosis.
文章引用:郑雪雪, 梁宏伟. 血液外泌体作为肺癌诊断标志物的研究[J]. 药物资讯, 2025, 14(2): 89-96. https://doi.org/10.12677/pi.2025.142010

1. 肺癌

肺癌(lung cancer, LC)是一种致命的原发性支气管癌,主要分为小细胞癌(约占10%~15%)和非小细胞癌(NSCLC) (约占85%~90%)。NSCLC包括两种亚型:肺腺癌(lung adenocarcinoma, LUAD)和鳞状细胞癌(Lung squamous cell carcinoma, LSCC) [1]。肺癌是目前全球范围内严重威胁人类生命健康的恶性肿瘤之一,约占全部肿瘤死亡病例的69.25% [1]。肺癌具有家族聚集性和基因突变的特性,因此,肺癌的早期诊断率较低约为15%,75%的患者被诊断为局部晚期或转移期,且晚期肺癌患者预后较差[2]。近年来,由于治疗方法的改进,以及肺癌早期诊断,肺癌导致的死亡率不论在男性还是女性中均有所下降。从1990年至2020年,男性肺癌患者的死亡率显著下降了58%,而女性患者的死亡率在2002年至2020年间也减少了36% [3]。由此可见,提升对肺癌早期诊断的能力是减少肺癌致死率的关键途径之一。

目前肺癌主要是通过胸片检查、低剂量计算机断层扫描、支气管镜检查、肺活检等方法检测。胸部X光检查因其低成本、操作便捷、无侵入性以及较低的辐射暴露而受到青睐,但其成像清晰度较低可能造成早期肺癌病例的漏检或被误诊[4]。低剂量计算机断层扫描对于检测有辐射暴露风险的肺部病变具有很高的灵敏度[5]。确诊潜在肺癌患者的主要方法之一是支气管镜检查,但该诊断方法会导致多种并发症多[6]。肺组织活检的准确度会受到样本组织异质性的影响[7]。此外,临床上常用的肺癌诊断标志物包括癌胚抗原(CEA)、鳞状细胞癌抗原(SCCA)、细胞角蛋白19片段(CYFRA21-1)、神经元特异性烯醇化酶(NSE)和胃泌素释放肽前体(ProGRP)。然而,这些标志物均存在特异性低、灵敏度低、稳定性差、一致性差、假阳性和假阴性等缺点[8]

尽管肺癌血清肿瘤标志物的灵敏度和特异性较低,但其水平升高有时可先于临床症状出现。因此,检测肺癌相关肿瘤标志物有助于辅助诊断、早期鉴别诊断,并预测肺癌病理类型。鉴于此,寻找可用于早期诊断的生物标志物及探索安全高效的分子靶向治疗方法,对提高肺癌患者生存率至关重要。

2. 外泌体

外泌体(Exosomes)是一类在多种生物体液中广泛存在的纳米级细胞外囊泡,其直径一般介于30~150 nm之间,它们在细胞间通信、免疫反应和肿瘤进展等多个关键生物学过程中扮演着重要角色[9]。外泌体携带着蛋白质、脂质、mRNA和miRNA等丰富的生物分子,这些内含物在细胞间通讯中发挥重要作用,能够通过自分泌、旁分泌、内分泌或近分泌等方式调节受体细胞的行为[10]。外泌体在体液中的分布极为广泛,包括但不限于血液、唾液和尿液,这使得外泌体成为疾病诊断和监测的潜在生物标志物[11]

2.1. 外泌体简介

细胞外囊泡(EVs)是细胞分泌的双层膜结构的球形囊泡,它们在细胞间通讯和物质运输中起着关键作用。根据其大小和生物生成过程,EVs主要分为三个亚类:大囊泡、凋亡小体和外泌体[12]。外泌体是其中最小的一种,它们是由细胞内部的内质网经过一系列复杂的内吞作用形成,并最终与细胞膜融合后释放到细胞外的纳米级膜囊泡。外泌体的膜为磷脂双层膜,与母细胞膜的磷脂相似,但磷脂的含量和比例略有不同,常见的磷脂包括鞘糖脂、磷脂酰丝氨酸、鞘磷脂和磷脂酰乙醇胺等[13]。外泌体含有多种复杂的RNA分子和蛋白质,这些成分使得外泌体能够在细胞间传递信息和调控受体细胞[11]

外泌体通过多种机制发挥对肺癌的发生、发展和转移发挥作用,包括促进上皮–间充质转化(Epithelial-mesenchymal transition, EMT)、诱导血管生成、调节肿瘤微环境、增强肿瘤细胞的侵袭和转移能力,以及介导免疫抑制和逃逸[14]。例如,肺癌患者体内循环外泌体可诱导肺癌细胞EMT,间充质细胞的ZEB1-RNA可通过外泌体转移至上皮细胞内,直接抑制上皮型剪接调节蛋白1的转录及细胞上皮分化,同时增加间充质剪接体的表达,促进细胞从上皮状态转化成间充质状态[15]。此外,外泌体还可通过携带特定的miRNA,如miR-23a,激活Wnt/β-catenin信号转导途径,加强转化生长因子β1 (TGF-β1)诱导EMT的作用,进而促进肿瘤转移[16]。外泌体还参与肿瘤相关成纤维细胞(TAF)的形成,TAF是肿瘤微环境的主要基质细胞,能够分泌多种细胞因子,与肿瘤微环境中的肿瘤细胞及其他间质细胞相互作用,促进肿瘤细胞的增殖、侵袭及转移[17]。这些研究表明,外泌体在肺癌的病理过程中扮演着复杂的角色,为肺癌的早期诊断和治疗提供了新的潜在靶点。

2.2. 外泌体的分离和纯化

目前常用的外泌体分离和纯化技术包括超速离心法、超滤法、尺寸排阻色谱法、免疫亲和层析法和沉淀法[18]。超速离心法是外泌体分离的金标准方法,通过差速离心和密度梯度离心可以有效去除细胞碎片和大颗粒物,得到纯净的外泌体[18]。超滤法利用不同截留相对分子质量的超滤膜对样品进行选择性分离,操作简便且无需特殊设备。尺寸排阻色谱法通过凝胶过滤柱分离外泌体,能够有效去除小分子杂质。免疫亲和层析法则利用抗体与外泌体表面特定抗原的特异性结合,实现外泌体的捕获和纯化。沉淀法通过加入特定的沉淀剂,使外泌体从溶液中沉淀出来,操作简单但纯度相对较低[19]

2.3. 血液外泌体在肺癌诊断中的应用

外泌体因其独特的生物学特性,在疾病诊断和治疗研究中越来越受到重视。这些细胞外囊泡由于磷脂双分子层的保护,能够稳定地携带miRNA和蛋白质等生物活性物质,长期存在于体液中,避免了被蛋白酶或RNA酶降解。这一特性使得外泌体在体液中容易被分离和分析,显示出作为非侵入性生物标志物的巨大潜力,尤其是在NSCLC的诊断中[20]。目前,结合血清生物学标志物和低剂量螺旋CT扫描的肺癌诊断策略正在被广泛研究。这种联合策略旨在提高肺癌的早期检出率,因为早期诊断对于改善患者的治疗结果至关重要。血清中的生物学标志物,如特定的miRNA和蛋白质,可以作为肺癌筛查的有力工具[21]。此外,肿瘤来源的外泌体能够显著影响受体细胞的功能。Wang等人的研究显示,肿瘤来源的外泌体可以导致间充质干细胞(MSCs)中的长链非编码RNA (lncRNAs)和蛋白编码mRNA表达发生显著变化,这表明外泌体可能在肿瘤微环境中发挥着关键作用[22]。当前,外泌体相关生物标志物的研究主要集中在外泌体携带的miRNA和蛋白质上。这些分子在癌症发展中的异常表达,使其成为癌症早期诊断、预后评估和治疗反应监测的有希望的候选者。

2.3.1. MicroRNA

MicroRNA (miRNA)是一类由19至24个核苷酸组成的小分子非编码RNA,它们在细胞内扮演着基因表达调控者的角色。miRNA通过与目标mRNA的3'非翻译区(3'UTR)进行互补配对,影响mRNA的稳定性和翻译过程,从而调控基因的表达[23]。miRNA的这种调控机制对多种细胞过程至关重要,包括细胞分化、增殖、凋亡等,这些过程在肿瘤的发生和发展中起着核心作用。在肿瘤学中,miRNA表达的异常,也称为失调,与多种肿瘤的发展和进展密切相关。与非肿瘤血浆相比,肿瘤血浆中外泌体相关的miRNA水平通常更高,这一现象表明肿瘤细胞来源的外泌体可能在内容物的分子组成上发生了改变[24]。这种改变可能与肿瘤相关的生物学过程有关,如肿瘤细胞的侵袭性、耐药性以及肿瘤血管生成等。因此,研究肿瘤血浆中外泌体的miRNA谱,有助于我们更好地理解肿瘤的分子机制,并可能为肿瘤的早期诊断、疗效监测以及预后评估提供新的策略。本小节对部分已公开发表的miRNA诊断标志物进行总结,见表1

Table 1. Summary of studies on blood-derived MicroRNA as a diagnostic marker for lung cancer

1. 血液来源MicroRNA作为肺癌诊断标志物研究总结

来源

检测指标

检测对象

检测方法

文献

血浆

miR-19b-3p, miR-21-5p, miR-221-3p, miR-409-3p, miR-425-5p, miR-584-5p, miR-378a, miR-379, miR-139-5p, miR-200b-5p

LUAD

qRT-PCR

[25] [26]

血清

miR-4-21p, miR-5-141p, miR-3-222p, miR-3-486p, miR-620

NSCLC

qRT-PCR

[27]

血浆

miR-181-5p, miR-30a-3p, miR-30e-3p, miR-361-5p

LUAD

miRNA-seq

[28]

血浆

miR-10b-5p, miR-15b-5p, miR-320b

LSCC

miRNA-seq

[28]

血浆

miR-21, miR-4257

NSCLC

qRT-PCR

[29]

血清

miR-146a-5p, miR-486-5p

NSCLC

qRT-PCR

[30]

2.3.2. circRNA

环状RNA (circRNA)是一类特殊的非编码RNA分子。与传统的线性RNA (linear RNA)不同,circRNA分子呈封闭环状结构,不受RNA外切酶影响,表达更稳定,不易降解。在功能上,近年的研究表明,circRNA分子富含microRNA (miRNA)结合位点,在细胞中起到miRNA海绵(miRNA sponge)的作用,进而解除miRNA对其靶基因的抑制作用,升高靶基因的表达水平。通过与疾病关联的miRNA相互作用,circRNA在疾病中发挥着重要的调控作用。外泌体源性circRNA作为肺癌诊断和预后评估的生物标志物具有较高的特异性和敏感性,可能优于传统的肺癌诊断标志物。与单一外泌体源性circRNA或传统诊断标志物诊断相比,几种外泌体源性circRNA联合诊断或外泌体源性circRNA与传统诊断标志物联合诊断具有更高的特异性和敏感性。此外,外泌体源性circRNA与肿瘤的分期以及患者的生存期可能具有较强的关联性。本小节对部分已公开发表的circRNA诊断标志物进行总结,见表2

Table 2. Summary of blood-derived circRNA in lung cancer diagnostic marker studies

2. 血液来源circRNA在肺癌诊断标志物研究总结

来源

检测指标

检测对象

检测方法

文献

血清

circSATB2, circ_0069313, circPLK1

NSCLC

WB, RT-qPCR

[31] [32]

血清

circFECR1

SCLC

RT-qPCR

[33]

血清

circ_0001439, circ_0001492, circ_0000896

LUAD

生物素偶联、ELISA

[34]

2.3.3. 蛋白质

外泌体蛋白质的多样性和复杂性使其在癌症诊断和治疗中具有重要的应用前景。常见的外泌体蛋白包括四蛋白(CD9、CD63和CD81)、MVB形成蛋白(ALIX和TSG101)、热休克蛋白(HSP,包括HSP70和HSP90)、膜运输蛋白(Rab GTP酶和膜联蛋白)、细胞骨架蛋白(肌动蛋白)和粘附蛋白(整合素)等[35]。因外泌体蛋白具有高稳定性、易于检测、能够反映肿瘤生物学特性等优点,而在肿瘤诊断和治疗中展现出巨大的潜力[36]。Huang SH等研究发现,从NSCLC患者组织提取分离的外泌体蛋白质中约80%含有EGFR,而在肺部慢性炎症患者中只有约2%的外泌体蛋白含有EGFR,证明EGFR可以作为NSCLC诊断标志物[37]。外泌体在肺癌的诊断和治疗中扮演着越来越重要的角色。它们含有多种特异性蛋白质,这些蛋白质不仅参与了肺癌的发生和发展,而且可以作为诊断肺癌的生物标志物。本小节对已公开发表的miRNA诊断标志物进行总结,见表3

Table 3. Summary of blood-derived proteins in lung cancer diagnostic marker studies

3. 血液来源蛋白质在肺癌诊断标志物研究总结

来源

检测指标

检测对象

检测方法

文献

血浆

EGFR, MUC1, TSPAN8

LC

ELISA, RT-qPCR

[37] [38]

血浆

CD151, CD171, tetraspanin 8, NY-ESO-1

NSCLC

生物素偶联

[39]

血清

CD5L, CD3L, CLEC1B, SERFINF4, ITIH4, SAA1, SERFINC20, C3ORF144, CD91

NSCLC

生物素偶联、ELISA

[40]

2.4. 其他体液来源外泌体

外泌体广泛存在于各种体液当中,包括但不限于血液、唾液、肺泡灌洗液和尿液。这些体液中的外泌体携带脂质、核酸、蛋白质等多种物质,能够作为生物标志物用于肺癌的诊断和治疗监测。与传统的血液检测相比,唾液和尿液外泌体检测具有无创、易于获取等优点。此外,尿液中的外泌体相对稳定,不易受到外界因素的干扰,这使得其作为生物标志物具有更高的可靠性和可重复性。Sun等人利用LC-MS/MS无定量标记方法,在肺癌患者唾液中发现4种肺癌特异性蛋白BPIFA1、CRNN、MUC5B和IQGAP [41]。Li等人利用Western Blot以及免疫组织化学等方法证明了,LRG1在NSCLC患者的尿外泌体和肺组织中表达水平较高[42]。与以上体液来源的外泌体相比,肺泡灌洗液具有较强的局部特异性,能够更直接地反映肺部病变情况,对于肺癌的早期诊断具有较高的敏感性和特异性。此外,Zhang等人有应用ELISA、Western Blot和Transwell等方法在肺癌患者支气管肺泡灌洗液中发现并证明了外泌体E-cadherin的水平明显高于对照组,并可以VE-cadherin依赖性机制起作用并诱导肺癌转移[43]。综上所述,体液来源的外泌体在肺癌的诊断和治疗中具有广阔的应用前景,但需要进一步的研究和临床验证。

3. 总结与展望

肺癌是全球范围内对人类健康和生命构成严重威胁的恶性肿瘤之一。现有的肺癌诊断方法存在局限性,从而延误最佳治疗时机,导致死亡率增加。因此,发现新的生物标志物对于提高肺癌的早期诊断率和治疗效果至关重要。外泌体是活细胞分泌的纳米级细胞外囊泡,参与细胞间通讯。在肺癌中,外泌体不仅参与肿瘤细胞的增殖、迁移和侵袭,还可能通过改变肿瘤微环境促进血管生成和免疫逃逸。近年来,血液外泌体作为肺癌诊断标志物的研究取得了显著进展。外泌体稳定存在于血液中,携带的特定分子可作为非侵入性诊断肺癌的生物标志物。

尽管外泌体作为生物标志物的潜力巨大,但仍面临一些挑战。首先,需要进一步优化外泌体的分离和纯化技术,以提高产量和纯度。其次,需通过大规模临床试验验证外泌体标志物的特异性和敏感性。此外,还需研究外泌体在不同肺癌亚型中的表达差异,以实现更精准的诊断。

综上所述,血液外泌体作为肺癌诊断标志物的研究已取得显著进展,但仍需进一步研究和验证,以实现其在临床中的广泛应用。

NOTES

*通讯作者。

参考文献

[1] Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[2] Jacobsen, M.M., Silverstein, S.C., Quinn, M., Waterston, L.B., Thomas, C.A., Benneyan, J.C., et al. (2017) Timeliness of Access to Lung Cancer Diagnosis and Treatment: A Scoping Literature Review. Lung Cancer, 112, 156-164.
https://doi.org/10.1016/j.lungcan.2017.08.011
[3] Delman, K.A. (2020) Introducing the “Virtual Tumor Board” Series in CA: A Cancer Journal for Clinicians. CA: A Cancer Journal for Clinicians, 70, 77.
https://doi.org/10.3322/caac.21598
[4] Adams, S.J., Stone, E., Baldwin, D.R., Vliegenthart, R., Lee, P. and Fintelmann, F.J. (2023) Lung Cancer Screening. The Lancet, 401, 390-408.
https://doi.org/10.1016/s0140-6736(22)01694-4
[5] Detterbeck, F.C., Lewis, S.Z., Diekemper, R., Addrizzo-Harris, D. and Alberts, W.M. (2013) Executive Summary: Diagnosis and Management of Lung Cancer, 3rd ed: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest, 143, 7S-37S.
https://doi.org/10.1378/chest.12-2377
[6] Gharsalli, H., Mlika, M., Sahnoun, I., Maalej, S., Douik El Gharbi, L. and Mezni, F.E. (2018) The Utility of Bronchoalveolar Lavage in the Evaluation of Interstitial Lung Diseases: A Clinicopathological Perspective. Seminars in Diagnostic Pathology, 35, 280-287.
https://doi.org/10.1053/j.semdp.2018.08.003
[7] Hirsch, F.R., Scagliotti, G.V., Mulshine, J.L., Kwon, R., Curran, W.J., Wu, Y., et al. (2017) Lung Cancer: Current Therapies and New Targeted Treatments. The Lancet, 389, 299-311.
https://doi.org/10.1016/s0140-6736(16)30958-8
[8] Trulson, I. and Holdenrieder, S. (2023) Prognostic Value of Blood-Based Protein Biomarkers in Non-Small Cell Lung Cancer: A Critical Review and 2008-2022 Update. Tumor Biology, 46, S111-S161.
https://doi.org/10.3233/tub-230009
[9] Arya, S.B., Collie, S.P. and Parent, C.A. (2024) The Ins-And-Outs of Exosome Biogenesis, Secretion, and Internalization. Trends in Cell Biology, 34, 90-108.
https://doi.org/10.1016/j.tcb.2023.06.006
[10] Jiang, C., Zhang, N., Hu, X. and Wang, H. (2021) Tumor-associated Exosomes Promote Lung Cancer Metastasis through Multiple Mechanisms. Molecular Cancer, 20, Article No. 117.
https://doi.org/10.1186/s12943-021-01411-w
[11] Pap, E., Pállinger, É., Pásztói, M. and Falus, A. (2009) Highlights of a New Type of Intercellular Communication: Microvesicle-Based Information Transfer. Inflammation Research, 58, 1-8.
https://doi.org/10.1007/s00011-008-8210-7
[12] Afzal, A., Khawar, M.B., Habiba, U., Afzal, H., Hamid, S.E., Rafiq, M., et al. (2023) Diagnostic and Therapeutic Value of EVs in Lungs Diseases and Inflammation. Molecular Biology Reports, 51, Article No. 26.
https://doi.org/10.1007/s11033-023-09045-5
[13] Pegtel, D.M. and Gould, S.J. (2019) Exosomes. Annual Review of Biochemistry, 88, 487-514.
https://doi.org/10.1146/annurev-biochem-013118-111902
[14] Li, K., Chen, Y., Li, A., Tan, C. and Liu, X. (2018) Exosomes Play Roles in Sequential Processes of Tumor Metastasis. International Journal of Cancer, 144, 1486-1495.
https://doi.org/10.1002/ijc.31774
[15] Larsen, J.E., Nathan, V., Osborne, J.K., Farrow, R.K., Deb, D., Sullivan, J.P., et al. (2016) ZEB1 Drives Epithelial-To-Mesenchymal Transition in Lung Cancer. Journal of Clinical Investigation, 126, 3219-3235.
https://doi.org/10.1172/jci76725
[16] Ma, F., Li, W., Liu, C., Li, W., Yu, H., Lei, B., et al. (2017) MiR-23a Promotes TGF-β1-induced EMT and Tumor Metastasis in Breast Cancer Cells by Directly Targeting CDH1 and Activating Wnt/β-Catenin Signaling. Oncotarget, 8, 69538-69550.
https://doi.org/10.18632/oncotarget.18422
[17] Jiang, Q., Lei, Z., Wang, Z., Wang, Q., Zhang, Z., Liu, X., et al. (2023) Tumor-Associated Fibroblast-Derived Exosomal Circdennd1b Promotes Pituitary Adenoma Progression by Modulating the miR-145-5p/ONECUT2 Axis and Activating the MAPK Pathway. Cancers, 15, Article 3375.
https://doi.org/10.3390/cancers15133375
[18] Wang, X., Xia, J., Yang, L., Dai, J. and He, L. (2023) Recent Progress in Exosome Research: Isolation, Characterization and Clinical Applications. Cancer Gene Therapy, 30, 1051-1065.
https://doi.org/10.1038/s41417-023-00617-y
[19] Zhu, L., Sun, H., Wang, S., Huang, S., Zheng, Y., Wang, C., et al. (2020) Isolation and Characterization of Exosomes for Cancer Research. Journal of Hematology & Oncology, 13, Article No. 152.
https://doi.org/10.1186/s13045-020-00987-y
[20] Baran, K., Waśko, J., Kryczka, J., Boncela, J., Jabłoński, S., Kolesińska, B., et al. (2023) The Comparison of Serum Exosome Protein Profile in Diagnosis of NSCLC Patients. International Journal of Molecular Sciences, 24, Article 13669.
https://doi.org/10.3390/ijms241813669
[21] Chu, G.C.W., Lazare, K. and Sullivan, F. (2018) Serum and Blood Based Biomarkers for Lung Cancer Screening: A Systematic Review. BMC Cancer, 18, Article No. 181.
https://doi.org/10.1186/s12885-018-4024-3
[22] Wang, S., Li, X., Zhu, R., Han, Q. and Zhao, R.C. (2015) Lung Cancer Exosomes Initiate Global Long Non-Coding RNA Changes in Mesenchymal Stem Cells. International Journal of Oncology, 48, 681-689.
https://doi.org/10.3892/ijo.2015.3272
[23] Mohr, A. and Mott, J. (2015) Overview of MicroRNA Biology. Seminars in Liver Disease, 35, 3-11.
https://doi.org/10.1055/s-0034-1397344
[24] Rodríguez, M., Silva, J., López‐Alfonso, A., López‐Muñiz, M.B., Peña, C., Domínguez, G., et al. (2014) Different Exosome Cargo from Plasma/Bronchoalveolar Lavage in Non‐Small‐Cell Lung Cancer. Genes, Chromosomes and Cancer, 53, 713-724.
https://doi.org/10.1002/gcc.22181
[25] Zhou, X., Wen, W., Shan, X., Zhu, W., Xu, J., Guo, R., et al. (2016) A Six-MicroRNA Panel in Plasma Was Identified as a Potential Biomarker for Lung Adenocarcinoma Diagnosis. Oncotarget, 8, 6513-6525.
https://doi.org/10.18632/oncotarget.14311
[26] Cazzoli, R., Buttitta, F., Di Nicola, M., Malatesta, S., Marchetti, A., Rom, W.N., et al. (2013) MicroRNAs Derived from Circulating Exosomes as Noninvasive Biomarkers for Screening and Diagnosing Lung Cancer. Journal of Thoracic Oncology, 8, 1156-1162.
https://doi.org/10.1097/jto.0b013e318299ac32
[27] Wu, Q., Yu, L., Lin, X., Zheng, Q., Zhang, S., Chen, D., et al. (2020) Combination of Serum miRNAs with Serum Exosomal miRNAs in Early Diagnosis for Non-Small-Cell Lung Cancer. Cancer Management and Research, 12, 485-495.
https://doi.org/10.2147/cmar.s232383
[28] Jin, X., Chen, Y., Chen, H., Fei, S., Chen, D., Cai, X., et al. (2017) Evaluation of Tumor-Derived Exosomal miRNA as Potential Diagnostic Biomarkers for Early-Stage Non-Small Cell Lung Cancer Using Next-Generation Sequencing. Clinical Cancer Research, 23, 5311-5319.
https://doi.org/10.1158/1078-0432.ccr-17-0577
[29] Dejima, H., Iinuma, H., Kanaoka, R., Matsutani, N. and Kawamura, M. (2017) Exosomal microRNA in Plasma as a Non-Invasive Biomarker for the Recurrence of Non-Small Cell Lung Cancer. Oncology Letters, 13, 1256-1263.
https://doi.org/10.3892/ol.2017.5569
[30] Yuwen, D.L., Sheng, B.B., Liu, J., et al. (2017) MiR-146a-5p Level in Serum Exosomes Predicts Therapeutic Effect of Cisplatin in Non-Small Cell Lung Cancer. European Review for Medical and Pharmacological Sciences, 21, 2650-2658.
[31] Zhang, N., Nan, A., Chen, L., Li, X., Jia, Y., Qiu, M., et al. (2020) Circular RNA CircSATB2 Promotes Progression of Non-Small Cell Lung Cancer Cells. Molecular Cancer, 19, Article No. 101.
https://doi.org/10.1186/s12943-020-01221-6
[32] Chen, Y., Lou, C., Ma, X., Zhou, C., Zhao, X., Li, N., et al. (2022) Serum Exosomal hsa_circ_0069313 has a Potential to Diagnose More Aggressive Non-Small Cell Lung Cancer. Clinical Biochemistry, 102, 56-64.
https://doi.org/10.1016/j.clinbiochem.2022.01.005
[33] Li, L., Li, W., Chen, N., Zhao, H., Xu, G., Zhao, Y., et al. (2019) FLI1 Exonic Circular RNAs as a Novel Oncogenic Driver to Promote Tumor Metastasis in Small Cell Lung Cancer. Clinical Cancer Research, 25, 1302-1317.
https://doi.org/10.1158/1078-0432.ccr-18-1447
[34] Kang, Y., You, J., Gan, Y., Chen, Q., Huang, C., Chen, F., et al. (2022) Serum and Serum Exosomal CircRNAs Hsa_circ_0001492, Hsa_circ_0001439, and Hsa_circ_0000896 as Diagnostic Biomarkers for Lung Adenocarcinoma. Frontiers in Oncology, 12, Article 912246.
https://doi.org/10.3389/fonc.2022.912246
[35] Boukouris, S. and Mathivanan, S. (2015) Exosomes in Bodily Fluids Are a Highly Stable Resource of Disease Biomarkers. ProteomicsClinical Applications, 9, 358-367.
https://doi.org/10.1002/prca.201400114
[36] Penfornis, P., Vallabhaneni, K.C., Whitt, J. and Pochampally, R. (2015) Extracellular Vesicles as Carriers of MicroRNA, Proteins and Lipids in Tumor Microenvironment. International Journal of Cancer, 138, 14-21.
https://doi.org/10.1002/ijc.29417
[37] Huang, S., Li, Y., Zhang, J., Rong, J. and Ye, S. (2013) Epidermal Growth Factor Receptor-Containing Exosomes Induce Tumor-Specific Regulatory T Cells. Cancer Investigation, 31, 330-335.
https://doi.org/10.3109/07357907.2013.789905
[38] Yamashita, T., Kamada, H., Kanasaki, S., et al. (2013) Epidermal Growth Factor Receptor Localized to Exosome Membranes as a Possible Biomarker for Lung Cancer Diagnosis. Die Pharmazie, 68, 969-973.
[39] Hsu, M., Wang, Y. and Tseng, Y.J. (2022) Exosomal Proteins and Lipids as Potential Biomarkers for Lung Cancer Diagnosis, Prognosis, and Treatment. Cancers, 14, Article 732.
https://doi.org/10.3390/cancers14030732
[40] Ueda, K., Ishikawa, N., Tatsuguchi, A., Saichi, N., Fujii, R. and Nakagawa, H. (2014) Antibody-Coupled Monolithic Silica Microtips for Highthroughput Molecular Profiling of Circulating Exosomes. Scientific Reports, 4, Article No. 6232.
https://doi.org/10.1038/srep06232
[41] Sun, Y., Huo, C., Qiao, Z., Shang, Z., Uzzaman, A., Liu, S., et al. (2018) Comparative Proteomic Analysis of Exosomes and Microvesicles in Human Saliva for Lung Cancer. Journal of Proteome Research, 17, 1101-1107.
https://doi.org/10.1021/acs.jproteome.7b00770
[42] Li, Y., Zhang, Y., Qiu, F. and Qiu, Z. (2011) Proteomic Identification of Exosomal LRG1: A Potential Urinary Biomarker for Detecting NSCLC. Electrophoresis, 32, 1976-1983.
https://doi.org/10.1002/elps.201000598
[43] Zhang, Y., Liu, Z., Li, S., Wang, M., Dai, D., Jing, H., et al. (2019) Upregulation of E‐Cadherin in Bronchoalveolar Lavage Fluid‐Derived Exosomes in Patients with Lung Cancer. Thoracic Cancer, 11, 41-47.
https://doi.org/10.1111/1759-7714.13220