|
[1]
|
中华医学会眼科学分会斜视与小儿眼科学组. 弱视诊断专家共识(2011年) [J]. 中华眼科杂志, 2011, 47(8): 768-768.
|
|
[2]
|
周逸峰, 杨昱鹏. 弱视与视觉系统可塑性[J]. 中华眼视光学与视觉科学杂志, 2016, 18(8): 449-452.
|
|
[3]
|
Hubel, D.H. and Wiesel, T.N. (1970) The Period of Susceptibility to the Physiological Effects of Unilateral Eye Closure in Kittens. The Journal of Physiology, 206, 419-436. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Baker, C.I., Peli, E., Knouf, N. and Kanwisher, N.G. (2005) Reorganization of Visual Processing in Macular Degeneration. The Journal of Neuroscience, 25, 614-618. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Gilbert, C.D. and Wiesel, T.N. (1992) Receptive Field Dynamics in Adult Primary Visual Cortex. Nature, 356, 150-152. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
吕忠林, 黄昌兵, 周逸峰. 屈光参差性弱视的知觉机制及知觉学习[J]. 眼科, 2008(5): 289-297.
|
|
[7]
|
李云香, 李兰, 丁素真. 成年弱视治疗新进展[J]. 中国斜视与小儿眼科杂志, 2021, 29(2): 45-46+32.
|
|
[8]
|
刘安国, 阚丽丽, 严兴科. 针刺对弱视视功能重塑调节机制的研究现状与展望[J]. 中华中医药杂志, 2022, 37(7): 3751-3756.
|
|
[9]
|
李瑞英, 吕星瑶, 朱德海. 视觉可塑性和弱视治疗中的新兴途径[J]. 中国斜视与小儿眼科杂志, 2020, 28(3): 37-40.
|
|
[10]
|
金恩忠, 肖林. 成年人弱视的认识与研究进展[EB]. 国际眼科纵览, 2012, 36(3): 213-216.
|
|
[11]
|
Rashad, M. (2012) Pharmacological Enhancement of Treatment for Amblyopia. Clinical Ophthalmology, 6, 409-416. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Silingardi, D., Scali, M., Belluomini, G. and Pizzorusso, T. (2010) Epigenetic Treatments of Adult Rats Promote Recovery from Visual Acuity Deficits Induced by Long‐Term Monocular Deprivation. European Journal of Neuroscience, 31, 2185-2192. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Campos, E.C., Schiavi, C., Benedetti, P., Bolzani, R. and Porciatti, V. (1995) Effect of Citicoline on Visual Acuity in Amblyopia: Preliminary Results. Graefe’s Archive for Clinical and Experimental Ophthalmology, 233, 307-312. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Matta, N.S., Singman, E.L. and Silbert, D.I. (2010) Evidenced-Based Medicine: Treatment for Amblyopia. American Orthoptic Journal, 60, 17-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Vetencourt, J.F.M., Sale, A., Viegi, A., Baroncelli, L., De Pasquale, R., F. O’Leary, O., et al. (2008) The Antidepressant Fluoxetine Restores Plasticity in the Adult Visual Cortex. Science, 320, 385-388. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Duffy, F.H., Burchfiel, J.L., Mower, G.D., Joy, R.M. and Snodgrass, S.R. (1985) Comparative Pharmacological Effects on Visual Cortical Neurons in Monocularly Deprived Cats. Brain Research, 339, 257-264. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Žiak, P., Holm, A., Halička, J., Mojžiš, P. and Piñero, D.P. (2017) Amblyopia Treatment of Adults with Dichoptic Training Using the Virtual Reality Oculus Rift Head Mounted Display: Preliminary Results. BMC Ophthalmology, 17, Article No. 105. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hess, R.F., Babu, R.J., Clavagnier, S., Black, J., Bobier, W. and Thompson, B. (2014) The Ipod Binocular Home‐Based Treatment for Amblyopia in Adults: Efficacy and Compliance. Clinical and Experimental Optometry, 97, 389-398. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Chung, S.T.L., Li, R.W. and Levi, D.M. (2012) Learning to Identify Near-Acuity Letters, Either with or without Flankers, Results in Improved Letter Size and Spacing Limits in Adults with Amblyopia. PLOS ONE, 7, e35829. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Hussain, Z., Webb, B.S., Astle, A.T. and McGraw, P.V. (2012) Perceptual Learning Reduces Crowding in Amblyopia and in the Normal Periphery. The Journal of Neuroscience, 32, 474-480. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Avram, E. and Stănilă, A. (2013) Treating Anisometric Amblyopia with HTS Amblyopia iNet Software—Preliminary Results. Oftalmologia, 57, 32-37.
|
|
[22]
|
Jia, W., Lan, F., Zhao, X., Lu, Z., Huang, C., Zhao, W., et al. (2018) The Effects of Monocular Training on Binocular Functions in Anisometropic Amblyopia. Vision Research, 152, 74-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Liu, X. and Zhang, J. (2018) Dichoptic Training in Adults with Amblyopia: Additional Stereoacuity Gains over Monocular Training. Vision Research, 152, 84-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
王传玉. 视知觉学习治疗屈光不正性和屈光参差性弱视的临床研究[D]: [硕士学位论文]. 济南: 山东大学, 2022.
|
|
[25]
|
Portela-Camino, J.A., Martín-González, S., Ruiz-Alcocer, J., Illarramendi-Mendicute, I. and Garrido-Mercado, R. (2018) A Random Dot Computer Video Game Improves Stereopsis. Optometry and Vision Science, 95, 523-535. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Martín-González, S., Portela-Camino, J., Ruiz-Alcocer, J., Illarramendi-Mendicute, I. and Garrido-Mercado, R. (2020) Stereoacuity Improvement Using Random-Dot Video Games. Journal of Visualized Experiments, 2020, e60236. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Chopin, A., Silver, M.A., Sheynin, Y., Ding, J. and Levi, D.M. (2021) Transfer of Perceptual Learning from Local Stereopsis to Global Stereopsis in Adults with Amblyopia: A Preliminary Study. Frontiers in Neuroscience, 15, Article ID: 719120. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
孙娅玲, 严兴科, 赵中亭, 等. 经颅磁电刺激治疗成人弱视临床研究进展[J]. 甘肃中医药大学学报, 2023, 40(2): 78-81.
|
|
[29]
|
Kalogeraki, E., Greifzu, F., Haack, F. and Löwel, S. (2014) Voluntary Physical Exercise Promotes Ocular Dominance Plasticity in Adult Mouse Primary Visual Cortex. The Journal of Neuroscience, 34, 15476-15481. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Lunghi, C. and Sale, A. (2015) A Cycling Lane for Brain Rewiring. Current Biology, 25, R1122-R1123. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Holmes, J.M. and Levi, D.M. (2018) Treatment of Amblyopia as a Function of Age. Visual Neuroscience, 35, E015. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Grieco, S.F., Holmes, T.C. and Xu, X. (2018) Neuregulin Directed Molecular Mechanisms of Visual Cortical Plasticity. Journal of Comparative Neurology, 527, 668-678. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Gu, Y., Tran, T., Murase, S., Borrell, A., Kirkwood, A. and Quinlan, E.M. (2016) Neuregulin-Dependent Regulation of Fast-Spiking Interneuron Excitability Controls the Timing of the Critical Period. The Journal of Neuroscience, 36, 10285-10295. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Luke, M.P., Brown, R.E. and Clarke, D.B. (2020) Polysialylated—Neural Cell Adhesion Molecule (PSA-NCAM) Promotes Recovery of Vision after the Critical Period. Molecular and Cellular Neuroscience, 107, Article ID: 103527. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
王圆月, 刘向玲, 蔺静静, 等. 反转缝合与丰富环境联合干预对成年弱视大鼠视皮层可塑性的再激活作用[J]. 中国斜视与小儿眼科杂志, 2014, 22(1): 5-8+30.
|
|
[36]
|
Greifzu, F., Parthier, D., Goetze, B., Schlüter, O.M. and Löwel, S. (2016) Ocular Dominance Plasticity after Stroke Was Preserved in PSD-95 Knockout Mice. PLOS ONE, 11, e0149771. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Luo, Y., Wu, X., Liu, S. and Li, K. (2011) Reactivation of Visual Cortical Plasticity by NEP1-40 from Early Monocular Deprivation in Adult Rats. Neuroscience Letters, 494, 196-201. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Pernet, V. (2017) Nogo-a in the Visual System Development and in Ocular Diseases. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1863, 1300-1311. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
何梅, 毛敏, 赵国燕, 等. Nogo-A对突触可塑性的调节及相关神经疾病[J]. 中国康复理论与实践, 2019, 25(2): 196-200.
|
|
[40]
|
Bochner, D.N., Sapp, R.W., Adelson, J.D., Zhang, S., Lee, H., Djurisic, M., et al. (2014) Blocking Pirb Up-Regulates Spines and Functional Synapses to Unlock Visual Cortical Plasticity and Facilitate Recovery from Amblyopia. Science Translational Medicine, 6, 258ra140. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Syken, J., GrandPre, T., Kanold, P.O. and Shatz, C.J. (2006) Pirb Restricts Ocular-Dominance Plasticity in Visual Cortex. Science, 313, 1795-1800. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Pizzorusso, T., Medini, P., Berardi, N., Chierzi, S., Fawcett, J.W. and Maffei, L. (2002) Reactivation of Ocular Dominance Plasticity in the Adult Visual Cortex. Science, 298, 1248-1251. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Lensjø, K.K., Lepperød, M.E., Dick, G., Hafting, T. and Fyhn, M. (2016) Removal of Perineuronal Nets Unlocks Juvenile Plasticity through Network Mechanisms of Decreased Inhibition and Increased Gamma Activity. The Journal of Neuroscience, 37, 1269-1283. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Miyata, S., Komatsu, Y., Yoshimura, Y., Taya, C. and Kitagawa, H. (2012) Persistent Cortical Plasticity by Upregulation of Chondroitin 6-Sulfation. Nature Neuroscience, 15, 414-422. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Spatazza, J., Lee, H.H.C., Di Nardo, A.A., Tibaldi, L., Joliot, A., Hensch, T.K., et al. (2013) Choroid-Plexus-Derived Otx2 Homeoprotein Constrains Adult Cortical Plasticity. Cell Reports, 3, 1815-1823. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Beurdeley, M., Spatazza, J., Lee, H.H.C., Sugiyama, S., Bernard, C., Di Nardo, A.A., et al. (2012) Otx2 Binding to Perineuronal Nets Persistently Regulates Plasticity in the Mature Visual Cortex. Journal of Neuroscience, 32, 9429-9437. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Hou, X., Yoshioka, N., Tsukano, H., Sakai, A., Miyata, S., Watanabe, Y., et al. (2017) Chondroitin Sulfate Is Required for Onset and Offset of Critical Period Plasticity in Visual Cortex. Scientific Reports, 7, Article No. 12646. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Carmignoto, G. and Vicini, S. (1992) Activity-Dependent Decrease in NMDA Receptor Responses during Development of the Visual Cortex. Science, 258, 1007-1011. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Liu, H., Li, Y., Wang, Y., Wang, X., An, X., Wang, S., et al. (2015) The Distinct Role of NR2B Subunit in the Enhancement of Visual Plasticity in Adulthood. Molecular Brain, 8, Article No. 49. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
de Marchena, J., Roberts, A.C., Middlebrooks, P.G., Valakh, V., Yashiro, K., Wilfley, L.R., et al. (2008) NMDA Receptor Antagonists Reveal Age-Dependent Differences in the Properties of Visual Cortical Plasticity. Journal of Neurophysiology, 100, 1936-1948. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Nott, A., Cho, S., Seo, J. and Tsai, L. (2015) HDAC2 Expression in Parvalbumin Interneurons Regulates Synaptic Plasticity in the Mouse Visual Cortex. Neuroepigenetics, 1, 34-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Lennartsson, A., Arner, E., Fagiolini, M., Saxena, A., Andersson, R., Takahashi, H., et al. (2015) Remodeling of Retrotransposon Elements during Epigenetic Induction of Adult Visual Cortical Plasticity by HDAC Inhibitors. Epigenetics & Chromatin, 8, Article No. 55. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Li, Y., Wang, L., Zhang, X., Huang, M., Li, S., Wang, X., et al. (2018) Inhibition of Cdk5 Rejuvenates Inhibitory Circuits and Restores Experience-Dependent Plasticity in Adult Visual Cortex. Neuropharmacology, 128, 207-220. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Hawasli, A.H., Benavides, D.R., Nguyen, C., Kansy, J.W., Hayashi, K., Chambon, P., et al. (2007) Cyclin-Dependent Kinase 5 Governs Learning and Synaptic Plasticity via Control of NMDAR Degradation. Nature Neuroscience, 10, 880-886. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Morishita, H., Miwa, J.M., Heintz, N. and Hensch, T.K. (2010) Lynx1, a Cholinergic Brake, Limits Plasticity in Adult Visual Cortex. Science, 330, 1238-1240. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Bukhari, N., Burman, P.N., Hussein, A., Demars, M.P., Sadahiro, M., Brady, D.M., et al. (2015) Unmasking Proteolytic Activity for Adult Visual Cortex Plasticity by the Removal of Lynx1. The Journal of Neuroscience, 35, 12693-12702. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Greifzu, F., Pielecka-Fortuna, J., Kalogeraki, E., Krempler, K., Favaro, P.D., Schlüter, O.M., et al. (2014) Environmental Enrichment Extends Ocular Dominance Plasticity into Adulthood and Protects from Stroke-Induced Impairments of Plasticity. Proceedings of the National Academy of Sciences, 111, 1150-1155. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Stodieck, S.K., Greifzu, F., Goetze, B., Schmidt, K. and Löwel, S. (2014) Brief Dark Exposure Restored Ocular Dominance Plasticity in Aging Mice and after a Cortical Stroke. Experimental Gerontology, 60, 1-11. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Erchova, I., Vasalauskaite, A., Longo, V. and Sengpiel, F. (2017) Enhancement of Visual Cortex Plasticity by Dark Exposure. Philosophical Transactions of the Royal Society B: Biological Sciences, 372, Article ID: 20160159. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Murase, S., Lantz, C.L. and Quinlan, E.M. (2017) Light Reintroduction after Dark Exposure Reactivates Plasticity in Adults via Perisynaptic Activation of Mmp-9. eLife, 6, e27345. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
曹朝霞, 刘安国, 严兴科, 等. 弱视视觉可塑性相关基因研究[EB]. 国际眼科纵览, 2018, 42(3): 163-168.
|
|
[62]
|
敖明昕, 布娟. 视觉皮质可塑性及双眼视觉与弱视治疗新理念[J]. 中华实验眼科杂志, 2017, 35(6): 561-566.
|
|
[63]
|
Menon, V., Shailesh, G., Sharma, P. and Saxena, R. (2008) Clinical Trial of Patching versus Atropine Penalization for the Treatment of Anisometropic Amblyopia in Older Children. Journal of American Association for Pediatric Ophthalmology and Strabismus, 12, 493-497. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
郭瑞芳, 彭聃龄. 脑可塑性研究综述[J]. 心理科学, 2005(2): 409-411.
|
|
[65]
|
赵倪. 探讨弱视的视感知觉治疗疗效[D]: [硕士学位论文]. 重庆: 重庆医科大学, 2015.
|
|
[66]
|
Hernández-Rodríguez, C.J., Piñero, D.P., Molina-Martín, A., Morales-Quezada, L., de Fez, D., Leal-Vega, L., et al. (2020) Stimuli Characteristics and Psychophysical Requirements for Visual Training in Amblyopia: A Narrative Review. Journal of Clinical Medicine, 9, Article No. 3985. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Hess, R.F., Dakin, S.C., Tewfik, M. and Brown, B. (2001) Contour Interaction in Amblyopia: Scale Selection. Vision Research, 41, 2285-2296. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Daugman, J.G. (1980) Two-Dimensional Spectral Analysis of Cortical Receptive Field Profiles. Vision Research, 20, 847-856. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Hubel, D.H. and Wiesel, T.N. (1959) Receptive Fields of Single Neurones in the Cat’s Striate Cortex. The Journal of Physiology, 148, 574-591. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Gambacorta, C., Nahum, M., Vedamurthy, I., Bayliss, J., Jordan, J., Bavelier, D., et al. (2018) An Action Video Game for the Treatment of Amblyopia in Children: A Feasibility Study. Vision Research, 148, 1-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Balci, O. and Yalcin, E. (2013) Efficacy of Perceptual Vision Therapy in Enhancing Visual Acuity and Contrast Sensitivity Function in Adult Hypermetropic Anisometropic Amblyopia. Clinical Ophthalmology, 8, 49-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Polat, U. (2008) Restoration of Underdeveloped Cortical Functions: Evidence from Treatment of Adult Amblyopia. Restorative Neurology and Neuroscience, 26, 413-424. [Google Scholar] [CrossRef]
|
|
[73]
|
Polat, U., Ma-Naim, T., Belkin, M. and Sagi, D. (2004) Improving Vision in Adult Amblyopia by Perceptual Learning. Proceedings of the National Academy of Sciences, 101, 6692-6697. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
罗志红. 基于视知觉感知学习的Gabor刺激源弱视矫正训练系统[D]: [硕士学位论文]. 重庆: 重庆大学, 2020.
|
|
[75]
|
Levi, D.M., Polat, U. and Hu, Y.S. (1997) Improvement in Vernier Acuity in Adults with Amblyopia. Practice Makes Better. Investigative Ophthalmology & Visual Science, 38, 1493-1510.
|
|
[76]
|
Falcone, M.M., Hunter, D.G. and Gaier, E.D. (2021) Emerging Therapies for Amblyopia. Seminars in Ophthalmology, 36, 282-288. [Google Scholar] [CrossRef] [PubMed]
|