原发性胆汁性胆管炎的流行病学、发病机制及治疗进展
Epidemiology, Pathogenesis and Treatment Progress of Primary Biliary Cholangitis
摘要: 原发性胆汁性胆管炎是一种慢性自身免疫性胆汁淤积性疾病,主要发生在中老年女性,PBC的发病率和患病率在不同地区和时期差异性较大。原发性胆汁性胆管炎的发病机制尚不明确,现普遍认为PBC的发病涉及遗传因素、环境因素和免疫因素。目前,除了熊去氧胆酸(UDCA)、奥贝胆酸以及贝特类药物被批准用于PBC患者的治疗,更多的新型药物以及治疗方法正处于临床研发的不同阶段。
Abstract: Primary biliary cholangitis is a chronic autoimmune cholestasis disease, mainly occurring in middle-aged and elderly women. The incidence and prevalence of PBC vary greatly in different regions and periods. The pathogenesis of primary biliary cholangitis is still unclear, but it is generally believed that the pathogenesis of PBC involves genetic factors, environmental factors and immune factors. At present, in addition to Ursodeoxycholic Acid (UDCA), obecholic acid and bate drugs are approved for the treatment of PBC patients, more new drugs and treatments are in different stages of clinical research and development.
文章引用:余兴丹, 曾爱中. 原发性胆汁性胆管炎的流行病学、发病机制及治疗进展[J]. 临床医学进展, 2025, 15(3): 153-160. https://doi.org/10.12677/acm.2025.153599

1. 引言

原发性胆汁性胆管炎(Primary Biliary Cholangitis, PBC)又称原发性胆汁性肝硬化,是一种慢性、进行性、肝内胆汁淤积性肝脏疾病,是发病率最高的自身免疫性肝病。PBC多见于40岁以上的中老年女性,疲劳、乏力和皮肤瘙痒是最常见的临床表现,大多数患者可检测出疾病特异性自身抗体–抗线粒体抗体(Anti-Mitochondrial Antibody, AMA) [1] [2]。PBC的病理特征主要为肝内小胆管的慢性非化脓性破坏性胆管炎,汇管区炎症及慢性胆汁淤积、肝纤维化,可进一步发展为肝硬化,最终导致肝衰竭[3]。PBC的发病机制尚未明确,目前研究普遍认为PBC可能为环境因素、遗传因素以及个体易感因素相互作用下导致的自身免疫紊乱[4]。现大量研究结果表明,肠道微生物与PBC的发生发展有着密切联系,肠–肝轴在其中起着至关重要的作用[5] [6]。目前,熊去氧胆酸(UDCA)为PBC的首选初始治疗药物,奥贝胆酸(OCA)以及贝特类药物(超说明书用药)作为对UDCA应答不完全或UDCA不耐受的PBC患者的二线治疗。

2. PBC的流行病学

PBC的发病无种族特异性,但具有性别差异,正如大多数自身免疫性疾病所描述的一样,主要发病于40~70岁的中老年女性[7]。最近的流行病学研究表明,该疾病所影响的男女比例有所下降,但全球发病率仍在增加。据报道,在历史队列中,女性患者与男性的比例高达9至10:1 [8],但在过去二十年间,女性患者与男性的比例已经逐渐降低至4:1,这个结果很大程度上是取决于对PBC疾病的早期识别诊断和及时的治疗。相比于女性,男性PBC常常在处于肝病的更晚期时被诊断出来,肝细胞癌的发生率更高,且预后较差[9]。PBC在儿童中很少报道[10]。原发性胆汁性胆管炎(PBC)的全球年发病率估计为每十万人口中1.7例,而患病率则为每十万人口中14.6例。然而,PBC的发病率和患病率在不同地区差异很大,与亚太地区相比,北美和欧洲的发病率(北美为每十万人口中2.75例,欧洲为1.86例,亚太为0.84例)和患病率(北美为每十万人口中21.81例,欧洲为14.59例,亚太为9.82例)均较高[11]。尽管北美和欧洲的发病率在2000年后迅速上升后趋于稳定,但是亚太地区的发病率自2000年以来略有增长。北美、欧洲和亚太地区的PBC患病率均持续上升,得益于熊去氧胆酸(UDCA)的使用和早期临床诊断技术的提升,患者的生存率有所改善。PBC的发病率和患病率随着年龄的增长而增加,来自北美和欧洲的大型队列研究显示,近期确诊的PBC患者相较于早期几十年确诊的患者,年龄更大、临床症状更轻[12]

3. PBC的发病机制

原发性胆汁性胆管炎的发病机制尚未完全阐明,与其他自身免疫性疾病一样,目前认为PBC的发生是由于遗传易感个体暴露于环境触发因素,特别是外源性物质、吸烟和肠道微生物组等,免疫耐受丧失,引起胆管上皮细胞损伤,导致胆汁淤积,最终发生肝脏纤维化、肝硬化或肝衰竭[13] [14]

3.1. 遗传易感因素

PBC的发生发展存在遗传易感性,自身免疫性疾病(例如PBC)的家族史和自身免疫性疾病的个人史是PBC发展的危险因素。全基因组关联研究(Genome Wide Association Studies, GWAS) [15] [16]和密集精细定位关联分析[17]认为,PBC的易感性与调节先天免疫和适应性免疫的基因变异有关,包括人类白细胞抗原(HLA)位点和非HLA位点在内的遗传变异。与PBC易感性相关的特征性HLA区域包括HLA II类等位基因[18]。近期,我们的国际PBC研究小组进行了最大的全基因组荟萃分析(meta-GWAS),结合了来自5个欧洲队列和2个东亚队列的10,516例病例和20,772例对照的新基因型数据和先前报告的基因型数据,该研究确定了22个新的PBC易感基因位点,这22个新基因位点位于常染色体上,GRIPAP1在X染色体上[19] [20]。最新的GWAS研究结果揭示了PBC多个新的风险基因座,包括IL21、IL21R、CD28/CTLA4/ICOS、CD58、ARID3A和IL16 [21]。这些基因位点的发现进一步加深了我们对PBC遗传易感性和发病机制的理解。

3.2. 环境触发因素

多项PBC流行病学研究发现,吸烟、频繁使用某些化妆品如指甲油和接触染发剂或复杂性尿路感染与PBC的增加风险显著相关[22]-[24]。近期一项孟德尔随机化分析显示,肠–肝轴、胃肠道微生物组(GM)和原发性胆汁性胆管炎之间存在密切关系[6]。大规模病例对照研究一致发现PBC与大肠杆菌引起的泌尿道感染之间存在关联[24]-[26]。人类丙酮酸脱氢酶复合体(PDC)-E2与大肠杆菌PDC-E2之间具有同源性,产生抗线粒体抗体[27]。因此,大肠杆菌感染可能通过分子模拟和交叉反应触发对人类PDC-E2的免疫耐受性的破坏。日本一项多中心病例对照研究发现,不卫生的环境与PBC的发生存在关联,特别是在老年患者中,而不是在年轻患者中,这表明环境因素随时间发生了变化[28]

3.3. 免疫发病机制

PBC患者的线粒体抗原,主要包含4个亚单位,其中最重要的是丙酮酸脱氢酶复合体(PDC)-E2,对自身抗原PDC-E2的耐受性丧失是PBC发病机制中的关键事件,抗线粒体抗体(AMA)主要针对PDC-E2的硫辛酸结合区域[21],启动PDC-E2特异性的自身反应性T淋巴细胞的免疫反应,包括Th1、Th17和调节性T细胞在内的CD4+ T细胞亚群与PBC发病机制有关。T细胞在PBC的发病机制中扮演着核心角色。CD4+ T和CD8+ T细胞均参与疾病的发生和发展。CD4+ T细胞可以分为多个亚群,包括Th1、Th17、Treg等,这些亚群之间的平衡失调可能导致PBC的发展。例如,Th1和Th17细胞通过分泌促炎细胞因子如IFN-γ和IL-17促进胆管损伤,而Treg细胞则具有抑制这种炎症反应的功能。CD103+记忆T细胞是主要的PDC-E2反应性CD8+ T细胞,并对胆管上皮细胞(BECs)具有细胞毒性[29]。B细胞在PBC中也起着重要作用,它们通过分泌自身抗体如抗线粒体抗体(AMA)参与疾病的发生。B细胞还能通过抗原呈递激活T细胞,从而扩大免疫反应。在PBC中,自然杀伤细胞的细胞毒活性和穿孔素表达水平均显著增加,NK细胞通过分泌干扰素(IFN)-γ促进CD4+ T细胞的细胞毒性转化[30]。新近鉴定的PBC风险基因ARID3A影响巨噬细胞介导的凋亡性胆管上皮细胞的吞噬作用,这在PBC和原发性硬化性胆管炎中促进了胆汁淤积[31],且研究分析发现PBC患者肝组织中ARID3A阳性炎症细胞的数量与肝脏炎症等级和纤维化阶段呈正相关[32]

肝内胆管上皮细胞(Biliary Epithelial Cells, BECs)为靶点的自身免疫反应在PBC免疫发病机制中发挥重要作用。在正常情况下,BECs会产生碳酸氢钠,导致碱性碳酸氢盐伞覆盖在顶端表面,阴离子交换蛋白2 (AE2)是一种Cl/ HC O 3 交换蛋白,AE2是碳酸氢盐伞形成的最重要因素,PBC患者BECs上的AE2表达下调导致碳酸氢盐保护层减弱,因此,疏水性胆汁酸进入BECs,进而损伤细胞[33] [34]。在PBC,受损小胆管的抗凋亡分子Bcl-2表达下降,随着疾病的进展,BECs中的促凋亡分子Bax表达增加,Bax/Bcl-2比值显著升高,使小胆管的BECs对凋亡刺激的敏感性增加,最终导致小胆管进行性减少甚至消失[35]。单核细胞和巨噬细胞清除凋亡的胆管上皮细胞,并可能通过释放促炎细胞因子如TNF-α和IL-1β促进炎症持续。此外,巨噬细胞还可以通过吞噬作用直接损伤胆管上皮细胞。

4. PBC的治疗进展

4.1. 一线治疗

熊去氧胆酸(UDCA)是PBC的一线标准治疗。UDCA约占人体胆汁酸的2%,能刺激胆汁分泌,抑制炎症和细胞凋亡,而且UDCA安全性良好,其不良反应较少,主要包括腹泻、腹胀、体重增加及瘙痒加重等,通常不需要停药,极少数患者会出现过敏,以及不能耐受药物副作用[36]。UDCA通常作为每日口服治疗给药,国际公认推荐剂量为13~15 mg∙kg1∙d1。欧洲肝脏研究协会(EASL)、美国肝病研究协会(AASLD)和亚太肝病研究协会(APASL)的临床实践指南建议对所有PBC和胆汁淤积酶升高的患者进行熊去氧胆酸治疗[37]-[39]。一项由全球PBC小组开展的大规模回顾性队列研究(n = 3902)显示,UDCA治疗可改善PBC患者的无肝脏移植(LT)生存率,包括早期和晚期患者,以及不符合公认的UDCA反应标准的患者[40]。使用UDCA治疗前后的生化检查预测治疗反应和预后,发现长期预后非常好,UDCA治疗提高了PBC患者的生存率,减少了肝移植的需要,并抑制了静脉曲张的发展。然而,大约40%的PBC患者在给予UDCA后治疗反应不足[41]

4.2. 二线治疗

4.2.1. 奥贝胆酸

奥贝胆酸(OCA)是第一个获批、也是目前唯一被欧美国家批准用于对UDCA反应不完全或对UDCA不耐受的PBC患者的二线治疗药物[36]。OCA是核内胆汁酸法尼醇X受体(FXR)的激动剂,可抑制胆汁产生、调节炎症,并抑制肝脏纤维化[42]。在一项针对64名加拿大PBC患者的队列研究中,观察到接受奥贝胆酸治疗12个月后,其肝酶水平显著下降;在有12个月生化数据的17名患者中,有3名(17.6%)达到了POISE标准[43]。在一项对UDCA反应不完全的PBC患者的随机对照研究中,与安慰剂联合UDCA组相比,奥贝胆酸联合UDCA组的生化反应显著性更高[44]。临床上使用OCA最常见的副作用是剂量依赖性瘙痒[45],并且这是停药的主要原因,具体机制尚不清楚。据报道,OCA可能导致肝功能失代偿甚至肝功能衰竭,美国食品和药物管理局(FDA)最近限制了OCA在晚期肝硬化患者中的使用。

4.2.2. 贝特类药物

过氧化物酶体增殖物激活受体(PPAR)激动剂通过特定的核内受体(αβγδ亚型)来传递信号,从而调控包括脂质和胆汁酸在内的多种代谢途径[46]。贝特类药物(非诺贝特、苯扎贝特)可通过PPAR途径抑制胆汁酸生成,其用于治疗PBC为超说明书用药。苯扎贝特是一种泛PPAR激动剂,同时激动PPAR-α、PPAR-β、PPAR-δ [47]。日本学者在2000年报道苯扎贝特是首个用于PBC患者的贝特类药物[48]。最近一项大型、有力、安慰剂对照的III期临床试验证实,在单独使用UDCA反应不足的PBC患者中,苯扎贝特联合UDCA治疗的完全生化反应率显著高于安慰剂和单用UDCA治疗[49]。日本一项关于PBC患者疗效的大型回顾性队列研究(n = 3908)中分析表明,与单独使用UDCA相比,UDCA和苯扎贝特联合使用显著降低了PBC患者全因死亡率和肝脏相关死亡率或肝移植的风险[50]

非诺贝特是一种合成的PPAR-α激动剂。近期两项荟萃分析显示,与UDCA单药治疗相比,UDCA联合非诺贝特能更好地改善碱性磷酸酶(ALP)、γ-谷氨酰胺转肽酶(GGT)、IgM及甘油三酯(TG)水平,但对皮肤瘙痒及丙氨酸氨基转移酶(ALT)水平的改善无统计学差异[51] [52]

近期,两种PPAR激动剂的安慰剂对照、三期随机对照试验(RCT)取得了积极结果:elafibranor (PPAR-α/δ激动剂)和seladelpar (PPAR-δ激动剂) [53] [54]

综上,UDCA联合苯扎贝特可显著降低肝纤维化风险,而联合非诺贝特对肝功能的改善并不十分全面。贝特类药物常见的不良反应是转氨酶和血肌酐升高,所以考虑其潜在的肝肾功能损伤可能,贝特类药物的安全性、长期疗效方面均需要进一步试验。

4.2.3. 布地奈德

布地奈德是一种合成皮质类固醇,对糖皮质激素和异生素孕烷X受体(PXR)具有强效的双重激动作用,口服给药时在肝脏表现出较高(90%)的,从而限制了全身生物利用度和相关副作用[36]。在最近一项针对62名对UDCA反应不足的PBC患者的双盲、随机、安慰剂对照试验中,参与者以2:1的比例随机分配接受附加的布地奈德或安慰剂治疗,整个研究持续了36个月,试验的主要终点是肝脏组织学改善和无纤维化进展。研究结果显示,联合布地奈德并未导致显著的肝脏组织学改善;但是,布地奈德与ALP水平降低有关,35%的患者在治疗后实现了ALP水平的完全正常化,而安慰剂组的这一比例仅为9% [55]。尽管布地奈德在PBC治疗中的作用仍存在争议,但其在与重叠自身免疫性肝炎的病例中展现出一定的治疗潜力[56]

4.3. 生物制剂

现如今,生物制剂在自身免疫性疾病治疗上的优势日益明显。利妥昔单抗是一种靶向CD20抗原的B细胞耗竭单克隆抗体,是第一种在PBC中测试的生物制剂。PBC患者以乏力、疲劳等为主要表现,有研究认为PBC患者高滴度的AMA通过影响肌肉细胞线粒体能量代谢而引起肌肉乏力[57]。一项招募了6名PBC患者进行初步开放标签研究表明,对UDCA应答不完全的患者在接受2剂1000 mg利妥昔单抗治疗36周后,其血清ALP显著降低[58]。然而,随后一项包括14名UDCA难治性PBC患者的开放标签研究显示,经利妥昔单抗治疗后瘙痒虽减轻了60%,但是随访肝脏生化指标仅有轻微改善[59];并且在另一项以疲劳改善为主要结局的II期随机双盲对照试验在第12个月进行随访时未能证明利妥昔单抗的疗效[60]。总体而言,现阶段研究表明利妥昔单抗在PBC中的疗效是有限的,尽管短期安全性良好,但不推荐使用。

白细胞介素(IL)-12信号级联反应与原发性胆汁性胆管炎的发生发展有关[61]。乌司奴单抗是一种靶向抗IL-12和IL-23单克隆抗体,已在一项对20名接受20周治疗的患者进行的开放标签试验中进行了研究,仅观察到患者治疗28周后ALP适度降低,但并没有显著改变,并且最初计划的双盲研究未启动[62]

5. 展望

总之,现在对原发性胆汁性胆管炎的研究以及认识已经取得了很大进展,但其发病机制尚不十分明确,且缺乏大多数地区基于人群的PBC流行病学资料;PBC虽为免疫性疾病,但免疫抑制剂的治疗效果却不理想,其治疗选择单一有限。PBC的许多方面都需要进一步研究,开发新的治疗策略是PBC研究的最终目标,不断探索发病机制是实现这一目标的关键。

NOTES

*通讯作者。

参考文献

[1] Selmi, C., Bowlus, C.L., Gershwin, M.E. and Coppel, R.L. (2011) Primary Biliary Cirrhosis. The Lancet, 377, 1600-1609.
https://doi.org/10.1016/s0140-6736(10)61965-4
[2] Bhandari, B.M., Bayat, H. and Rothstein, K.D. (2011) Primary Biliary Cirrhosis. Gastroenterology Clinics of North America, 40, 373-386.
https://doi.org/10.1016/j.gtc.2011.03.008
[3] Lee, H.E., Churg, A., Ryu, J.H., Bilawich, A.M., Larsen, B.T., Tazelaar, H.D., et al. (2018) Histopathologic Findings in Lung Biopsies from Patients with Primary Biliary Cholangitis. Human Pathology, 82, 177-186.
https://doi.org/10.1016/j.humpath.2018.07.021
[4] Trivella, J., John, B.V. and Levy, C. (2023) Primary Biliary Cholangitis: Epidemiology, Prognosis, and Treatment. Hepatology Communications, 7, e0179.
https://doi.org/10.1097/hc9.0000000000000179
[5] Lv, L., Fang, D., Shi, D., Chen, D., Yan, R., Zhu, Y., et al. (2016) Alterations and Correlations of the Gut Microbiome, Metabolism and Immunity in Patients with Primary Biliary Cirrhosis. Environmental Microbiology, 18, 2272-2286.
https://doi.org/10.1111/1462-2920.13401
[6] Xin, L. and Xin, Y. (2023) Genetic Predisposition of the Gastrointestinal Microbiome and Primary Biliary Cholangitis: A Bi-Directional, Two-Sample Mendelian Randomization Analysis. Frontiers in Endocrinology, 14, Article 1225742.
https://doi.org/10.3389/fendo.2023.1225742
[7] Houri, I. and Hirschfield, G.M. (2024) Primary Biliary Cholangitis. Clinics in Liver Disease, 28, 79-92.
https://doi.org/10.1016/j.cld.2023.06.006
[8] Metcalf, J., Bhopal, R., Gray, J., Howel, D. and James, O. (1997) Incidence and Prevalence of Primary Biliary Cirrhosis in the City of Newcastle Upon Tyne, England. International Journal of Epidemiology, 26, 830-836.
https://doi.org/10.1093/ije/26.4.830
[9] Colapietro, F., Bertazzoni, A. and Lleo, A. (2022) Contemporary Epidemiology of Primary Biliary Cholangitis. Clinics in Liver Disease, 26, 555-570.
https://doi.org/10.1016/j.cld.2022.06.001
[10] Lleo, A., Wang, G., Gershwin, M.E. and Hirschfield, G.M. (2020) Primary Biliary Cholangitis. The Lancet, 396, 1915-1926.
https://doi.org/10.1016/s0140-6736(20)31607-x
[11] Lv, T., Chen, S., Li, M., Zhang, D., Kong, Y. and Jia, J. (2020) Regional Variation and Temporal Trend of Primary Biliary Cholangitis Epidemiology: A Systematic Review and Meta‐Analysis. Journal of Gastroenterology and Hepatology, 36, 1423-1434.
https://doi.org/10.1111/jgh.15329
[12] Murillo Perez, C.F., Goet, J.C., Lammers, W.J., Gulamhusein, A., van Buuren, H.R., Ponsioen, C.Y., et al. (2018) Milder Disease Stage in Patients with Primary Biliary Cholangitis over a 44‐Year Period: A Changing Natural History. Hepatology, 67, 1920-1930.
https://doi.org/10.1002/hep.29717
[13] Gulamhusein, A.F. and Hirschfield, G.M. (2019) Primary Biliary Cholangitis: Pathogenesis and Therapeutic Opportunities. Nature Reviews Gastroenterology & Hepatology, 17, 93-110.
https://doi.org/10.1038/s41575-019-0226-7
[14] Gerussi, A., Asselta, R. and Invernizzi, P. (2022) Genetics of Primary Biliary Cholangitis. Clinics in Liver Disease, 26, 571-582.
https://doi.org/10.1016/j.cld.2022.06.002
[15] Hirschfield, G. and Invernizzi, P. (2011) Progress in the Genetics of Primary Biliary Cirrhosis. Seminars in Liver Disease, 31, 147-156.
https://doi.org/10.1055/s-0031-1276644
[16] Nakamura, M., Nishida, N., Kawashima, M., Aiba, Y., Tanaka, A., Yasunami, M., et al. (2012) Genome-Wide Association Study Identifies TNFSF15 and POU2AF1 as Susceptibility Loci for Primary Biliary Cirrhosis in the Japanese Population. The American Journal of Human Genetics, 91, 721-728.
https://doi.org/10.1016/j.ajhg.2012.08.010
[17] Liu, J.Z., Almarri, M.A., Gaffney, D.J., Mells, G.F., Jostins, L., Cordell, H.J., et al. (2012) Dense Fine-Mapping Study Identifies New Susceptibility Loci for Primary Biliary Cirrhosis. Nature Genetics, 44, 1137-1141.
https://doi.org/10.1038/ng.2395
[18] Tsuchiya, N. and Ohashi, J. (2015) Human Immune System Diversity and Its Implications in Diseases. Journal of Human Genetics, 60, 655-656.
https://doi.org/10.1038/jhg.2015.101
[19] Cordell, H.J., Fryett, J.J., Ueno, K., Darlay, R., Aiba, Y., Hitomi, Y., et al. (2021) An International Genome-Wide Meta-Analysis of Primary Biliary Cholangitis: Novel Risk Loci and Candidate Drugs. Journal of Hepatology, 75, 572-581.
https://doi.org/10.1016/j.jhep.2021.04.055
[20] Asselta, R., Paraboschi, E.M., Gerussi, A., Cordell, H.J., Mells, G.F., Sandford, R.N., et al. (2021) X Chromosome Contribution to the Genetic Architecture of Primary Biliary Cholangitis. Gastroenterology, 160, 2483-2495.E26.
https://doi.org/10.1053/j.gastro.2021.02.061
[21] Tanaka, A., Ma, X., Takahashi, A. and Vierling, J.M. (2024) Primary Biliary Cholangitis. The Lancet, 404, 1053-1066.
https://doi.org/10.1016/s0140-6736(24)01303-5
[22] Wijarnpreecha, K., Werlang, M., Panjawatanan, P., Kroner, P.T., Mousa, O.Y., Pungpapong, S., et al. (2019) Association between Smoking and Risk of Primary Biliary Cholangitis: A Systematic Review and Meta-Analysis. Journal of Gastrointestinal and Liver Diseases, 28, 197-203.
https://doi.org/10.15403/jgld-181
[23] Prince, M.I., Ducker, S.J. and James, O.F.W. (2010) Case-Control Studies of Risk Factors for Primary Biliary Cirrhosis in Two United Kingdom Populations. Gut, 59, 508-512.
https://doi.org/10.1136/gut.2009.184218
[24] Corpechot, C., Chrétien, Y., Chazouillères, O. and Poupon, R. (2010) Demographic, Lifestyle, Medical and Familial Factors Associated with Primary Biliary Cirrhosis. Journal of Hepatology, 53, 162-169.
https://doi.org/10.1016/j.jhep.2010.02.019
[25] Gershwin, E.M., Selmi, C., Worman, H.J., Gold, E.B., Watnik, M., Utts, J., et al. (2005) Risk Factors and Comorbidities in Primary Biliary Cirrhosis: A Controlled Interview-Based Study of 1032 Patients. Hepatology, 42, 1194-1202.
https://doi.org/10.1002/hep.20907
[26] Howel, D., Fischbacher, C.M., Bhopal, R.S., Gray, J., Metcalf, J.V. and James, O.F. (2000) An Exploratory Population-Based Case-Control Study of Primary Biliary Cirrhosis. Hepatology, 31, 1055-1060.
https://doi.org/10.1053/he.2000.7050
[27] Shimoda, S., Nakamura, M., Ishibashi, H., Hayashida, K. and Niho, Y. (1995) HLA DRB4 0101-Restricted Immunodominant T Cell Autoepitope of Pyruvate Dehydrogenase Complex in Primary Biliary Cirrhosis: Evidence of Molecular Mimicry in Human Autoimmune Diseases. The Journal of Experimental Medicine, 181, 1835-1845.
https://doi.org/10.1084/jem.181.5.1835
[28] Matsumoto, K., Ohfuji, S., Abe, M., Komori, A., Takahashi, A., Fujii, H., et al. (2021) Environmental Factors, Medical and Family History, and Comorbidities Associated with Primary Biliary Cholangitis in Japan: A Multicenter Case-Control Study. Journal of Gastroenterology, 57, 19-29.
https://doi.org/10.1007/s00535-021-01836-6
[29] Huang, B., Lyu, Z., Qian, Q., Chen, Y., Zhang, J., Li, B., et al. (2022) NUDT1 Promotes the Accumulation and Longevity of CD103+ TRM Cells in Primary Biliary Cholangitis. Journal of Hepatology, 77, 1311-1324.
https://doi.org/10.1016/j.jhep.2022.06.014
[30] Shimoda, S., Hisamoto, S., Harada, K., Iwasaka, S., Chong, Y., Nakamura, M., et al. (2015) Natural Killer Cells Regulate T Cell Immune Responses in Primary Biliary Cirrhosis. Hepatology, 62, 1817-1827.
https://doi.org/10.1002/hep.28122
[31] Chen, R., Huang, B., Lian, M., Wei, Y., Miao, Q., Liang, J., et al. (2023) A + T Rich Interaction Domain Protein 3a (Arid3a) Impairs Mertk-Mediated Efferocytosis in Cholestasis. Journal of Hepatology, 79, 1478-1490.
https://doi.org/10.1016/j.jhep.2023.08.016
[32] Li, Y., Li, Z., Chen, R., Lian, M., Wang, H., Wei, Y., et al. (2023) A Regulatory Variant at 19p13.3 Is Associated with Primary Biliary Cholangitis Risk and ARID3A Expression. Nature Communications, 14, Article No. 1732.
https://doi.org/10.1038/s41467-023-37213-5
[33] Hohenester, S., de Buy Wenniger, L.M., Paulusma, C.C., van Vliet, S.J., Jefferson, D.M., Oude Elferink, R.P., et al. (2012) A Biliary HCO3 Umbrella Constitutes a Protective Mechanism against Bile Acid-Induced Injury in Human Cholangiocytes. Hepatology, 55, 173-183.
https://doi.org/10.1002/hep.24691
[34] Melero, S., Spirlì, C., Zsembery, Á., Medina, J.F., Joplin, R.E., Duner, E., et al. (2002) Defective Regulation of Cholangiocyte Cl/HCO3 and Na+/H+ Exchanger Activities in Primary Biliary Cirrhosis. Hepatology, 35, 1513-1521.
https://doi.org/10.1053/jhep.2002.33634
[35] Erice, O., Munoz-Garrido, P., Vaquero, J., Perugorria, M.J., Fernandez-Barrena, M.G., Saez, E., et al. (2018) MicroRNA-506 Promotes Primary Biliary Cholangitis-Like Features in Cholangiocytes and Immune Activation. Hepatology, 67, 1420-1440.
https://doi.org/10.1002/hep.29533
[36] 尤红, 段维佳, 李淑香, 等. 原发性胆汁性胆管炎的诊断和治疗指南(2021) [J]. 临床肝胆病杂志, 2022, 38(1): 35-41.
[37] Hirschfield, G.M., Beuers, U., Corpechot, C., Invernizzi, P., Jones, D., Marzioni, M., et al. (2017) EASL Clinical Practice Guidelines: The Diagnosis and Management of Patients with Primary Biliary Cholangitis. Journal of Hepatology, 67, 145-172.
https://doi.org/10.1016/j.jhep.2017.03.022
[38] Lindor, K.D., Bowlus, C.L., Boyer, J., Levy, C. and Mayo, M. (2019) Primary Biliary Cholangitis: Calcium-Induced O-GlcNAc-Dependent Signaling. Hepatology, 69, 394-419.
https://doi.org/10.1002/hep.30145
[39] Hen, S., Duan, W.J., You, H., Ma, X. and Jia, J.D. (2022) Recommendations of APASL Clinical Practice Guidance: The Diagnosis and Management of Patients with Primary Biliary Cholangitis. Chinese Journal of Hepatology, 30, 196-198.
https://doi.org/10.3760/cma.j.cn501113-20220208-00058
[40] Harms, M.H., van Buuren, H.R., Corpechot, C., Thorburn, D., Janssen, H.L.A., Lindor, K.D., et al. (2019) Ursodeoxycholic Acid Therapy and Liver Transplant-Free Survival in Patients with Primary Biliary Cholangitis. Journal of Hepatology, 71, 357-365.
https://doi.org/10.1016/j.jhep.2019.04.001
[41] Kim, K. (2023) Diagnosis and Treatment of Primary Biliary Cholangitis. The Korean Journal of Gastroenterology, 81, 86-90.
https://doi.org/10.4166/kjg.2023.002
[42] Laschtowitz, A., de Veer, R.C., Van der Meer, A.J. and Schramm, C. (2020) Diagnosis and Treatment of Primary Biliary Cholangitis. United European Gastroenterology Journal, 8, 667-674.
https://doi.org/10.1177/2050640620919585
[43] Roberts, S.B., Ismail, M., Kanagalingam, G., Mason, A.L., Swain, M.G., Vincent, C., et al. (2020) Real‐World Effectiveness of Obeticholic Acid in Patients with Primary Biliary Cholangitis. Hepatology Communications, 4, 1332-1345.
https://doi.org/10.1002/hep4.1518
[44] Nevens, F., Andreone, P., Mazzella, G., Strasser, S.I., Bowlus, C., Invernizzi, P., et al. (2016) A Placebo-Controlled Trial of Obeticholic Acid in Primary Biliary Cholangitis. The New England Journal of Medicine, 375, 631-643.
https://doi.org/10.1056/NEJMoa1509840
[45] Kowdley, K.V., Luketic, V., Chapman, R., Hirschfield, G.M., Poupon, R., Schramm, C., et al. (2018) A Randomized Trial of Obeticholic Acid Monotherapy in Patients with Primary Biliary Cholangitis. Hepatology, 67, 1890-1902.
https://doi.org/10.1002/hep.29569
[46] Colapietro, F., Gershwin, M.E. and Lleo, A. (2023) PPAR Agonists for the Treatment of Primary Biliary Cholangitis: Old and New Tales. Journal of Translational Autoimmunity, 6, Article ID: 100188.
https://doi.org/10.1016/j.jtauto.2023.100188
[47] Corpechot, C., Poupon, R. and Chazouillères, O. (2019) New Treatments/Targets for Primary Biliary Cholangitis. JHEP Reports, 1, 203-213.
https://doi.org/10.1016/j.jhepr.2019.05.005
[48] Nakai, S., Masaki, T., Kurokohchi, K., Deguchi, A. and Nishioka, M. (2000) Combination Therapy of Bezafibrate and Ursodeoxycholic Acid in Primary Biliary Cirrhosis: A Preliminary Study. The American Journal of Gastroenterology, 95, 326-327.
https://doi.org/10.1111/j.1572-0241.2000.01667.x
[49] Corpechot, C., Chazouillères, O., Rousseau, A., Le Gruyer, A., Habersetzer, F., Mathurin, P., et al. (2018) A Placebo-Controlled Trial of Bezafibrate in Primary Biliary Cholangitis. New England Journal of Medicine, 378, 2171-2181.
https://doi.org/10.1056/nejmoa1714519
[50] Tanaka, A., Hirohara, J., Nakano, T., Matsumoto, K., Chazouillères, O., Takikawa, H., et al. (2021) Association of Bezafibrate with Transplant-Free Survival in Patients with Primary Biliary Cholangitis. Journal of Hepatology, 75, 565-571.
https://doi.org/10.1016/j.jhep.2021.04.010
[51] Grigorian, A.Y., Mardini, H.E., Corpechot, C., Poupon, R. and Levy, C. (2015) Fenofibrate Is Effective Adjunctive Therapy in the Treatment of Primary Biliary Cirrhosis: A Meta-Analysis. Clinics and Research in Hepatology and Gastroenterology, 39, 296-306.
https://doi.org/10.1016/j.clinre.2015.02.011
[52] Guo, C., Zhang, Y., He, L., Wang, F., Chen, K., Li, J., et al. (2015) Combination Therapy of Fenofibrate and Ursodeoxycholic Acid in Patients with Primary Biliary Cirrhosis Who Respond Incompletely to UDCA Monotherapy: A Meta-Analysis. Drug Design, Development and Therapy, 9, 2757-2766.
https://doi.org/10.2147/dddt.s79837
[53] Kowdley, K.V., Bowlus, C.L., Levy, C., Akarca, U.S., Alvares-da-Silva, M.R., Andreone, P., et al. (2024) Efficacy and Safety of Elafibranor in Primary Biliary Cholangitis. New England Journal of Medicine, 390, 795-805.
https://doi.org/10.1056/nejmoa2306185
[54] Hirschfield, G.M., Bowlus, C.L., Mayo, M.J., Kremer, A.E., Vierling, J.M., Kowdley, K.V., et al. (2024) A Phase 3 Trial of Seladelpar in Primary Biliary Cholangitis. New England Journal of Medicine, 390, 783-794.
https://doi.org/10.1056/nejmoa2312100
[55] Hirschfield, G.M., Beuers, U., Kupcinskas, L., Ott, P., Bergquist, A., Färkkilä, M., et al. (2021) A Placebo-Controlled Randomised Trial of Budesonide for PBC Following an Insufficient Response to UDCA. Journal of Hepatology, 74, 321-329.
https://doi.org/10.1016/j.jhep.2020.09.011
[56] Guo, C., Zhang, H., Yang, J., Zhu, R., Zheng, Y., Dai, W., et al. (2015) Combination Therapy of Ursodeoxycholic Acid and Budesonide for PBC-AIH Overlap Syndrome: A Meta-Analysis. Drug Design, Development and Therapy, 9, 567-574.
https://doi.org/10.2147/dddt.s74515
[57] Al‐Harthy, N., Kumagi, T., Coltescu, C. and Hirschfield, G.M. (2010) The Specificity of Fatigue in Primary Biliary Cirrhosis: Evaluation of a Large Clinic Practice. Hepatology, 52, 562-570.
https://doi.org/10.1002/hep.23683
[58] Tsuda, M., Moritoki, Y., Lian, Z., Zhang, W., Yoshida, K., Wakabayashi, K., et al. (2012) Biochemical and Immunologic Effects of Rituximab in Patients with Primary Biliary Cirrhosis and an Incomplete Response to Ursodeoxycholic Acid. Hepatology, 55, 512-521.
https://doi.org/10.1002/hep.24748
[59] Myers, R.P., Swain, M.G., Lee, S.S., Shaheen, A.A.M. and Burak, K.W. (2013) B-Cell Depletion with Rituximab in Patients with Primary Biliary Cirrhosis Refractory to Ursodeoxycholic Acid. American Journal of Gastroenterology, 108, 933-941.
https://doi.org/10.1038/ajg.2013.51
[60] Khanna, A., Jopson, L., Howel, D., Bryant, A., Blamire, A., Newton, J.L., et al. (2018) Rituximab for the Treatment of Fatigue in Primary Biliary Cholangitis (Formerly Primary Biliary Cirrhosis): A Randomised Controlled Trial. Efficacy and Mechanism Evaluation, 5, 1-78.
https://doi.org/10.3310/eme05020
[61] Yang, C., Ma, X., Tsuneyama, K., Huang, S., Takahashi, T., Chalasani, N.P., et al. (2014) IL-12/Th1 and IL-23/Th17 Biliary Microenvironment in Primary Biliary Cirrhosis: Implications for Therapy. Hepatology, 59, 1944-1953.
https://doi.org/10.1002/hep.26979
[62] Hirschfield, G.M., Gershwin, M.E., Strauss, R., Mayo, M.J., Levy, C., Zou, B., et al. (2016) Ustekinumab for Patients with Primary Biliary Cholangitis Who Have an Inadequate Response to Ursodeoxycholic Acid: A Proof‐of‐Concept Study. Hepatology, 64, 189-199.
https://doi.org/10.1002/hep.28359