肠道微生物群在免疫及乳腺癌中的研究进展
Research Progress of Gut Microbiota in Immunity and Breast Cancer
DOI: 10.12677/acm.2025.153603, PDF, HTML, XML,   
作者: 任俊丽, 刘晶怡, 侯 俊:甘肃中医药大学第一临床医学院,甘肃 兰州;马秀芬*:甘肃省妇幼保健院乳腺一科,甘肃 兰州
关键词: 肠道微生物乳腺癌免疫功能新辅助化疗生物标志物Gut Microbiota Breast Cancer Immune System Neoadjuvant Therapy Biomarkers
摘要: 乳腺癌的发病率逐年上升,其发病机制复杂。研究表明,肠道微生物紊乱与乳腺癌的发生发展相关,主要体现在代谢物的产生、激素代谢、免疫失调、DNA损伤以及改变药物作用等机制上,这些共同促进致癌过程。在进化过程中,肠道微生物与宿主形成和谐的共生关系,对塑造免疫系统和诱导保护性免疫发挥了重要的作用。肠道中的微生物可以提高肿瘤的化疗,同时可预测新辅助化疗的疗效,使之有望成为乳腺癌的无创性生物标志物,用于预测和个体化治疗的工具。
Abstract: The incidence of breast cancer is increasing year by year and its pathogenesis is complex. Studies have shown that gut microbial disorders are associated with the development of breast cancer, mainly in the mechanisms of metabolite production, hormone metabolism, immune dysregulation, DNA damage, and altered drug action, which together promote the carcinogenic process. During evolution, gut microbes have formed a harmonious symbiotic relationship with their hosts, playing an important role in shaping the immune system and inducing protective immunity. Microbes in the gut can enhance chemotherapy for tumors, as well as predict neoadjuvant chemotherapy efficacy, giving it promise as a non-invasive biomarker for breast cancer, for prediction and as a tool for individualized treatment.
文章引用:任俊丽, 刘晶怡, 侯俊, 马秀芬. 肠道微生物群在免疫及乳腺癌中的研究进展[J]. 临床医学进展, 2025, 15(3): 184-191. https://doi.org/10.12677/acm.2025.153603

1. 引言

乳腺癌(breast cancer, BC)是全球范围内影响女性健康最普遍的癌症类型。根据《国际癌症数据统计(2020)》,全球BC发病率大幅上升,新增病例数达到226万例[1]。此外,BC的发病率正以每年0.5%的速度增加,预计到2050年将增至320万例。已知BC的发病是一个复杂且多因素的结果,研究[2]发现:除基因突变带来的遗传易感性之外,激素水平变化、生活方式和环境因素等都可增加BC的发病风险。其中,只有不到10%的BC归因于遗传易感性。因此,探索BC的发病机制,寻找新的生物标志物和治疗靶点,对实现精准化个体治疗尤为重要。

肠道微生物(gut microbiota, GM)是定植于肠道中的异质共生微生物,由古生菌、原生动物、真菌、病毒、细菌组成。据估计,人体GM中含有1014个细菌细胞,是人体细胞数量的10倍[3]。GM具有多种重要功能,包括维生素的产生、膳食化合物的代谢、防止肠道病原体的扩张和全身浸润。然而,当GM出现异常时,会诱发机体出现多种问题,以微生物群落失衡为特征的生态失调与多种疾病有关,如代谢性疾病、炎症性肠病和癌症[4]。最近,新出现的证据表明,微生物是肿瘤组织的一部分,除了存在于结直肠癌[5]中,还存在于胰腺癌[6]、肺癌[7]和乳腺癌[8]。本文就目前关于肠道微生物群与免疫及乳腺癌的研究进展综述如下。

2. 肠道微生物与免疫功能的相关性

微生物在人体的多个部位定植,形成了复杂的微生物群落,这些微生物被称为共生微生物[9],其中肠道微生物种类最为丰富,也是研究最为广泛的。大多数肠道微生物属于非致病性微生物,在进化过程中,与宿主形成和谐的共生关系,通过参与先天性和适应性免疫的发育、成熟和功能调节,从而影响机体健康[10]

GM在肠道和机体免疫系统的发育中起着关键作用,早期研究已经证实了GM在免疫系统以及免疫应答中的作用。免疫缺陷的无菌小鼠实验中,当受到外来抗原或病原体刺激时,T细胞和B细胞反应受限18 [11]。且与对照组小鼠相比,它们的T细胞在应答抗原入侵时产生的细胞因子较少。而GM的重构能够恢复免疫系统和免疫应答。更多研究[12] [13]表明,GM以不同的方式调节免疫反应。如:对Th17细胞的调节来说,分节丝状菌促进其稳态,而柠檬酸杆菌诱导其促炎作用。肠道微生物的衍生代谢物对免疫系统也发挥作用,它们在局部和系统上调节多种免疫细胞的发育和功能[14]

相反,宿主免疫系统塑造了GM的组成,对GM起着调节作用。免疫系统缺陷可能会改变肠道微生物的组成,有研究[15]表明,免疫缺陷小鼠的GM的丰富度和密集度更高。同时,不同肠段内GM的αβ的多样性也不同。当免疫B细胞缺陷时,肠道屏障完整性将会被破坏,小鼠肠道微生物组成存在差异,梭状芽孢杆菌属较少,副球属和乳球属相对丰富[16]-[18]。目前,基于免疫系统完善的动物模型中的研究缺乏。因此,研究特异性免疫细胞在发育成熟的免疫系统中对微生物群的影响是不可缺乏的。

3. 肠道微生物与乳腺癌的研究

目前,许多研究都集中在BC患者GM的检测上。一项病例对照研究[19]提出:抗生素的使用可能增加BC的发病率及死亡率的风险,这项研究首次提出了肠道微生态失调与BC发病风险增加有关。随着宏基因组学和新一代测序技术的出现,人们对人体GM的研究也越来越深入。Luu等人的研究[20]证实GM与BC的分期有关,梭状芽孢杆菌、瘦杆菌群、粪杆菌、双歧杆菌的数量在肿瘤的第三阶段较大,而在初期阶段较低。且患者的身体质量指数不同,BC患者的GM也是不同的。Banerjee等人的研究[21]表明,在BC的亚型中具有独特或共同的肠道微生物特征。这些独特的特征可能为不同类型BC的特异性诊断和治疗提供新的思路。研究[22]发现:BC患者的微生物多样性高于对照组,绝经后BC患者和对照组相比微生物群的相对丰度存在显著差异。绝经后BC患者的GM中大肠杆菌、克雷伯氏菌、肠球菌、腐坏希瓦氏菌、淀粉杆菌、放线菌HPA0247的丰度较高,而真杆菌和阴道乳杆菌等微生物的丰度较低。腐坏希瓦氏菌和阿米洛沃拉欧文氏菌与雌二醇呈正相关,但相关性较弱,这表明这两种微生物可能参与雌激素代谢。以上研究通过对肠道菌群的检测为乳腺癌的诊断提供了临床参考。

4. 肠道微生物在乳腺癌发生发展中的角色

GM及其代谢物有助于保护宿主和维持肠道稳态,但在病理性生态失调的情况下,某些微生物亚群会迅速扩大,释放大量毒素,导致炎症和肿瘤的发生[23]。此外,GM在致癌过程中起着双重作用,既促癌又抑癌,这取决于微生物的存在以及群落丰度差异的改变[24] [25]

4.1. 肠道微生物群的有害作用

1) 肠道微生物参与雌激素代谢

内源性雌激素已被认为是BC发病的重要危险因素之一[26]。雌激素可通过肝肠循环代谢,在肝脏中通过葡萄糖醛酸化或磺化后,大部分被胆汁重吸收,小部分以共轭形式通过粪便或尿液排出,而剩余部分则被重吸收进入循环系统,被分布到其他组织,包括乳房。研究发现,雌激素代谢受GM多样性的影响,GM参与调控雌激素水平[27]。在2011年,“雌激素代谢组”被广泛讨论,指部分肠道菌群具有β-葡萄糖醛酸酶活性,可以使共轭形式的雌激素解偶联,以活性游离雌激素的形式重吸收入循环系统中,使体内雌激素水平增加,这部分微生物群被称为雌激素组[28],包括瘤胃球菌科、梭状芽孢杆菌、埃希氏菌/志贺氏菌、瘦梭状芽孢杆菌和球虫梭状芽孢杆菌生物群落[29]。而且β-葡萄糖醛酸酶数量及活性的增加可促进雌激素经肠肝循环入血,使人体内雌激素浓度增加,加速促进激素受体阳性BC的发生[30] [31]。如:化脓链球菌通过β-葡萄糖醛酸酶活性提高BC中的雌激素水平[32]。新的数据表明,绝经后的雌激素代谢和肠道微生物的多样性是相互关联的[33]。例如:肥胖增加绝经后妇女患BC的风险[34]。此外,其他雌激素样代谢物也可以通过氧化还原反应和诱导肠道雌激素合成来诱导生长因子的产生,这可能具有致癌潜力。

2) 肠道微生物引起的DNA损伤

DNA双链断裂是由基因毒素、活性氧以及电离辐射引起的最有害的DNA损伤类型[35]。Urbaniak等人[8]研究发现,大肠杆菌分离株和表皮葡萄球菌分离株通过产生大肠杆菌蛋白诱导DNA双链断链,且肠杆菌和葡萄球菌这两类细菌在BC患者中表达更丰富。由大肠杆菌和幽门螺杆菌等某些菌株引起的DNA双链断裂在长期暴露后可能会导致染色体不稳定,影响转录和翻译,导致基因突变,促进肿瘤发生、发展[36],而芽孢杆菌、微球菌和丙酸杆菌分离株不诱导双链断裂[8]。另外,革兰氏阴性菌会产生一种细胞致死性膨胀毒素,它是另一种具有DNAse活性的毒素。当这种毒素在胃肠道上皮附近释放时,会使上皮细胞DNA双链断裂,从而进入短暂的细胞周期停滞,并出现导致肿瘤形成的突变[23]。已被证实在大肠杆菌和空肠弯曲杆菌等中会产生此毒素[37]

3) 肠道微生物参与的信号通路

部分肠道细菌可以调节不同的细胞增殖和存活途径,从而促进癌症的发生。GM的代谢产物参与调控关键的信号通路导致细胞生长失调,获得干细胞样特征,以及细胞极性丧失。这一途径被称为β-catenin通路[38],指不同的毒素,如来自幽门螺杆菌的CagA蛋白、来自核梭杆菌的FaDa粘附因子,以及来自脆弱拟杆菌的金属蛋白酶(MP)毒素,可以直接或间接地与宿主上皮细胞粘附分子E-cadherin相互作用,破坏细胞间连接并激活β-catenin信号传导。同时,来自肠沙门氏菌的毒力因子A能够转运到宿主细胞中,并通过其去泛素酶活性激活β-catenin信号传导[39]。而且,有研究[40]表明,肠道中的脆弱拟杆菌产生的脆弱芽孢毒素可促进乳腺上皮细胞增生和炎症反应并能够促进BC的转移。

4.2. 肠道微生物发挥的有益作用

1) 肠道微生物的自身代谢物

GM能够产生多种短链脂肪酸,是免疫系统中重要的微生物信使,其参与复杂的宿主–微生物代谢和肠道免疫反应。SCFAs包括丙酸钠、丁酸钠、醋酸钠,可作为表观遗传调节剂[41]。SCFAs通过多种途径维持细胞稳态,如:丁酸钠抑制组蛋白去乙酰化酶的活性,促进BC细胞的凋亡,从而诱导肿瘤细胞死亡。此外,还可引起表观遗传修饰,从而激活p21等肿瘤抑制基因[42]。丙酸钠通过信号通路调节细胞周期,促进p38磷酸化诱导BC细胞凋亡[43]。一项研究表明,与健康对照组相比,绝经前BC患者肠道微生物的组成和共生关系发生了显著变化,BC患者中SCFAs产生细菌和相关酶的丰度显著减少。与正常乳腺细胞相比,丁酸盐以剂量和时间依赖的方式降低BC细胞的活性[44]

2) 宿主代谢物的修饰作用

胆汁酸由肝脏产生的胆固醇的可溶性衍生物,经肠道微生物转化,形成多种代谢物。在肠道内,一部分胆汁酸被肠道细菌转化为次级胆汁酸,对BC细胞起抑制作用。次级胆汁酸包括:脱氧胆酸(DCA)和石胆酸(LCA)。LCA能够抑制间质–上皮转化和血管内皮生长因子的表达,发挥细胞抑制作用,降低BC细胞的转移潜力[45]。此后,还发现LCA能够调节氧化应激的同时,增加抗肿瘤免疫反应、氧化磷酸化和三羧酸循环[46]。同时,它还可通过激活g蛋白偶联胆汁酸受体1来减少BC细胞的增殖[47]。而BC患者血中的LCA水平与梭菌属和拟杆菌属的高丰度有关。与健康女性相比,早期BC患者的LCA水平较低,同时梭菌属和拟杆菌属的丰度也较低。

3) 维生素的作用

研究发现,几种微生物菌群还可在某些维生素和辅助因子的合成中发挥作用。维生素A作为一种强大的抗氧化剂,可以调节氧化应激和癌症的发展,其摄入量或血浆浓度与GM组成之间存在关联,且在BC的发展中具有潜在的保护作用[48]。而维生素D3可以影响GM,促进抗炎环境,潜在地降低患BC的风险[49]。此外,GM会影响维生素D3的代谢,与BC风险增加有关[50]。另一方面,最新的研究报告了维生素B1与BC的正相关,以及其他B族维生素在确定肠道菌群的多样性和丰富性方面至关重要[51]。维生素与GM之间的具体作用机制,仍需进一步研究探索,但现有研究表明,维生素对GM的影响不容忽视。

5. 肠道微生物与新辅助化疗疗效之间的关系

新辅助化疗(NAC)是局部晚期BC患者通常采用的治疗方式。抗肿瘤治疗和GM组成的作用是双向的,药物可以直接破坏肠道隐窝细胞,破坏肠道屏障功能,引起肠道菌群失调[52]。同时,这种失衡也会影响抗肿瘤治疗的疗效[53]。为了解GM与NAC之间的反应,一项前瞻性多中心队列研究[54]发现,激素受体阳性的绝经后BC患者,在NAC期间GM的丰富度降低。之后,一项宏基因组粪便分析研究[55]表明,与对照组相比,NAC无效组GM呈现出低多样性、低丰度的特点,丁酸菌和吲哚丙酸菌减少,同时潜在致病菌增加。最终他们构建了一个随机森林模型来预测NAC的反应,发现粪球菌、Dorea和瘤胃球菌三种菌可用于预测NAC的疗效。同时发现,GM对宿主CD4+ T淋巴细胞的调节可能是NAC化疗敏感和病理反应的关键机制之一。本研究为横断面研究,涉及的样本量少,无法提供肠道菌群与NAC疗效之间的动态关系,未来需要一项前瞻性队列研究显示与NAC疗效相关的微生物群的纵向研究。但本研究确定了NAC无效组与有效组肠道菌群的组成差异,并建立了新辅助化疗反应的预测模型,提出了使用GM可作为生物标志物来评估BC对NAC的治疗反应,提出为NAC无效的BC患者的治疗提供新的作用靶点的新思路。

6. 总结与展望

综上所述,GM在人类的健康中起着关键作用,在过去的十年里,系统性的癌症与人类GM之间相互作用的研究迅速扩大,大量研究表明,GM通过调控宿主代谢物及塑造免疫系统来影响BC的进展。且有研究证实,GM与NAC疗效之间具有相关性,这些研究指出了可以使用微生物群生物标志物来评估BC患者的诊断和治疗,并提出了GM作为潜在治疗靶点的新策略。

然而,目前的研究仍处于早期阶段,GM与BC之间的因果关系尚不明确,大多数的临床实验样本量较少,个体的差异等,使结果存在不同的争议,未来还需要更多的临床研究将循证医学证据转为临床实践,最终改善BC患者的临床结果。

NOTES

*通讯作者。

参考文献

[1] Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D.M., Piñeros, M., Znaor, A., et al. (2021) Cancer Statistics for the Year 2020: An Overview. International Journal of Cancer, 149, 778-789.
https://doi.org/10.1002/ijc.33588
[2] Cardoso, F., Kyriakides, S., Ohno, S., Penault-Llorca, F., Poortmans, P., Rubio, I.T., et al. (2019) Early Breast Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up. Annals of Oncology, 30, 1194-1220.
https://doi.org/10.1093/annonc/mdz173
[3] Sommer, F., Anderson, J.M., Bharti, R., Raes, J. and Rosenstiel, P. (2017) The Resilience of the Intestinal Microbiota Influences Health and Disease. Nature Reviews Microbiology, 15, 630-638.
https://doi.org/10.1038/nrmicro.2017.58
[4] Nejman, D., Livyatan, I., Fuks, G., Gavert, N., Zwang, Y., Geller, L.T., et al. (2020) The Human Tumor Microbiome Is Composed of Tumor Type-Specific Intracellular Bacteria. Science, 368, 973-980.
https://doi.org/10.1126/science.aay9189
[5] Omar Al-Hassi, H., Ng, O. and Brookes, M. (2017) Tumour-Associated and Non-Tumour-Associated Microbiota in Colorectal Cancer. Gut, 67, 395.2-395.
https://doi.org/10.1136/gutjnl-2017-314219
[6] Riquelme, E., Zhang, Y., Zhang, L., Montiel, M., Zoltan, M., Dong, W., et al. (2019) Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell, 178, 795-806.e12.
https://doi.org/10.1016/j.cell.2019.07.008
[7] Jin, C., Lagoudas, G.K., Zhao, C., Bullman, S., Bhutkar, A., Hu, B., et al. (2019) Commensal Microbiota Promote Lung Cancer Development via γδ T Cells. Cell, 176, 998-1013.e16.
https://doi.org/10.1016/j.cell.2018.12.040
[8] Urbaniak, C., Gloor, G.B., Brackstone, M., Scott, L., Tangney, M. and Reid, G. (2016) The Microbiota of Breast Tissue and Its Association with Breast Cancer. Applied and Environmental Microbiology, 82, 5039-5048.
https://doi.org/10.1128/aem.01235-16
[9] Ganal-Vonarburg, S.C., Hornef, M.W. and Macpherson, A.J. (2020) Microbial-Host Molecular Exchange and Its Functional Consequences in Early Mammalian Life. Science, 368, 604-607.
https://doi.org/10.1126/science.aba0478
[10] Ruan, W., Engevik, M.A., Spinler, J.K. and Versalovic, J. (2020) Healthy Human Gastrointestinal Microbiome: Composition and Function after a Decade of Exploration. Digestive Diseases and Sciences, 65, 695-705.
https://doi.org/10.1007/s10620-020-06118-4
[11] Mazmanian, S.K., Round, J.L. and Kasper, D.L. (2008) A Microbial Symbiosis Factor Prevents Intestinal Inflammatory Disease. Nature, 453, 620-625.
https://doi.org/10.1038/nature07008
[12] Wang, Y., Yin, Y., Chen, X., Zhao, Y., Wu, Y., Li, Y., et al. (2019) Induction of Intestinal Th17 Cells by Flagellins from Segmented Filamentous Bacteria. Frontiers in Immunology, 10, Article 2750.
https://doi.org/10.3389/fimmu.2019.02750
[13] Atarashi, K., Tanoue, T., Shima, T., Imaoka, A., Kuwahara, T., Momose, Y., et al. (2011) Induction of Colonic Regulatory T Cells by Indigenous Clostridium Species. Science, 331, 337-341.
https://doi.org/10.1126/science.1198469
[14] Yang, W. and Cong, Y. (2021) Gut Microbiota-Derived Metabolites in the Regulation of Host Immune Responses and Immune-Related Inflammatory Diseases. Cellular & Molecular Immunology, 18, 866-877.
https://doi.org/10.1038/s41423-021-00661-4
[15] Gu, M., Samuelson, D.R., de la Rua, N.M., Charles, T.P., Taylor, C.M., Luo, M., et al. (2022) Host Innate and Adaptive Immunity Shapes the Gut Microbiota Biogeography. Microbiology and Immunology, 66, 330-341.
https://doi.org/10.1111/1348-0421.12963
[16] Schuhmann, M.K., Langhauser, F., Kraft, P. and Kleinschnitz, C. (2017) B Cells Do Not Have a Major Pathophysiologic Role in Acute Ischemic Stroke in Mice. Journal of Neuroinflammation, 14, Article No. 112.
https://doi.org/10.1186/s12974-017-0890-x
[17] Zhou, W., Liesz, A., Bauer, H., Sommer, C., Lahrmann, B., Valous, N., et al. (2012) Postischemic Brain Infiltration of Leukocyte Subpopulations Differs among Murine Permanent and Transient Focal Cerebral Ischemia Models. Brain Pathology, 23, 34-44.
https://doi.org/10.1111/j.1750-3639.2012.00614.x
[18] Gan, Y., Liu, Q., Wu, W., Yin, J., Bai, X., Shen, R., et al. (2014) Ischemic Neurons Recruit Natural Killer Cells That Accelerate Brain Infarction. Proceedings of the National Academy of Sciences of the United States of America, 111, 2704-2709.
https://doi.org/10.1073/pnas.1315943111
[19] Velicer, C.M. (2004) Antibiotic Use in Relation to the Risk of Breast Cancer. JAMA, 291, 827-835.
https://doi.org/10.1001/jama.291.7.827
[20] Luu, T.H., Michel, C., Bard, J., Dravet, F., Nazih, H. and Bobin-Dubigeon, C. (2017) Intestinal Proportion of Blautia sp. Is Associated with Clinical Stage and Histoprognostic Grade in Patients with Early-Stage Breast Cancer. Nutrition and Cancer, 69, 267-275.
https://doi.org/10.1080/01635581.2017.1263750
[21] Banerjee, S., Tian, T., Wei, Z., Shih, N., Feldman, M.D., Peck, K.N., et al. (2018) Distinct Microbial Signatures Associated with Different Breast Cancer Types. Frontiers in Microbiology, 9, Article 951.
https://doi.org/10.3389/fmicb.2018.00951
[22] Zhu, J., Liao, M., Yao, Z., Liang, W., Li, Q., Liu, J., et al. (2018) Breast Cancer in Postmenopausal Women Is Associated with an Altered Gut Metagenome. Microbiome, 6, Article No. 136.
https://doi.org/10.1186/s40168-018-0515-3
[23] Vivarelli, S., Salemi, R., Candido, S., Falzone, L., Santagati, M., Stefani, S., et al. (2019) Gut Microbiota and Cancer: From Pathogenesis to Therapy. Cancers, 11, Article 38.
https://doi.org/10.3390/cancers11010038
[24] Rahman, M.M., Islam, M.R., Shohag, S., Ahasan, M.T., Sarkar, N., Khan, H., et al. (2022) Microbiome in Cancer: Role in Carcinogenesis and Impact in Therapeutic Strategies. Biomedicine & Pharmacotherapy, 149, Article ID: 112898.
https://doi.org/10.1016/j.biopha.2022.112898
[25] Doocey, C.M., Finn, K., Murphy, C. and Guinane, C.M. (2022) The Impact of the Human Microbiome in Tumorigenesis, Cancer Progression, and Biotherapeutic Development. BMC Microbiology, 22, Article No. 53.
https://doi.org/10.1186/s12866-022-02465-6
[26] Kwa, M., Blaser, M.J. and Adams, S. (2016) The Intestinal Microbiome and Estrogen Receptor-Positive Female Breast Cancer. Journal of the National Cancer Institute, 108, djw029.
[27] Komorowski, A.S. and Pezo, R.C. (2019) Untapped “-Omics”: The Microbial Metagenome, Estrobolome, and Their Influence on the Development of Breast Cancer and Response to Treatment. Breast Cancer Research and Treatment, 179, 287-300.
https://doi.org/10.1007/s10549-019-05472-w
[28] Plottel, C.S. and Blaser, M.J. (2011) Microbiome and Malignancy. Cell Host & Microbe, 10, 324-335.
https://doi.org/10.1016/j.chom.2011.10.003
[29] Laborda-Illanes, A., Sanchez-Alcoholado, L., Dominguez-Recio, M.E., Jimenez-Rodriguez, B., Lavado, R., Comino-Méndez, I., et al. (2020) Breast and Gut Microbiota Action Mechanisms in Breast Cancer Pathogenesis and Treatment. Cancers, 12, Article 2465.
https://doi.org/10.3390/cancers12092465
[30] Hu, S., Ding, Q., Zhang, W., Kang, M., Ma, J. and Zhao, L. (2023) Gut Microbial β-Glucuronidase: A Vital Regulator in Female Estrogen Metabolism. Gut Microbes, 15, Article ID: 2236749.
https://doi.org/10.1080/19490976.2023.2236749
[31] Rosenberg, L., Bethea, T.N., Viscidi, E., Hong, C., Troester, M.A., Bandera, E.V., et al. (2015) Postmenopausal Female Hormone Use and Estrogen Receptor-Positive and-Negative Breast Cancer in African American Women. Journal of the National Cancer Institute, 108, djv361.
https://doi.org/10.1093/jnci/djv361
[32] Thompson, K.J., Ingle, J.N., Tang, X., Chia, N., Jeraldo, P.R., Walther-Antonio, M.R., et al. (2017) A Comprehensive Analysis of Breast Cancer Microbiota and Host Gene Expression. PLOS ONE, 12, e0188873.
https://doi.org/10.1371/journal.pone.0188873
[33] Chen, K.L.A., Liu, X., Zhao, Y.C., Hieronymi, K., Rossi, G., Auvil, L.S., et al. (2018) Long-Term Administration of Conjugated Estrogen and Bazedoxifene Decreased Murine Fecal β-Glucuronidase Activity without Impacting Overall Microbiome Community. Scientific Reports, 8, Article No. 8166.
https://doi.org/10.1038/s41598-018-26506-1
[34] Keum, N., Greenwood, D.C., Lee, D.H., Kim, R., Aune, D., Ju, W., et al. (2015) Adult Weight Gain and Adiposity-Related Cancers: A Dose-Response Meta-Analysis of Prospective Observational Studies. JNCI: Journal of the National Cancer Institute, 107, djv088.
https://doi.org/10.1093/jnci/djv088
[35] Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674.
https://doi.org/10.1016/j.cell.2011.02.013
[36] Meng, Z., Ye, Z., Zhu, P., Zhu, J., Fang, S., Qiu, T., et al. (2022) New Developments and Opportunities of Microbiota in Treating Breast Cancers. Frontiers in Microbiology, 13, Article 818793.
https://doi.org/10.3389/fmicb.2022.818793
[37] Scott, A.J., Alexander, J.L., Merrifield, C.A., Cunningham, D., Jobin, C., Brown, R., et al. (2019) International Cancer Microbiome Consortium Consensus Statement on the Role of the Human Microbiome in Carcinogenesis. Gut, 68, 1624-1632.
https://doi.org/10.1136/gutjnl-2019-318556
[38] Álvarez-Mercado, A.I., del Valle Cano, A., Fernández, M.F. and Fontana, L. (2023) Gut Microbiota and Breast Cancer: The Dual Role of Microbes. Cancers, 15, Article 443.
https://doi.org/10.3390/cancers15020443
[39] Lu, R., Wu, S., Zhang, Y., Xia, Y., Liu, X., Zheng, Y., et al. (2014) Enteric Bacterial Protein Avra Promotes Colonic Tumorigenesis and Activates Colonic Beta-Catenin Signaling Pathway. Oncogenesis, 3, e105-e105.
https://doi.org/10.1038/oncsis.2014.20
[40] Parida, S., Wu, S., Siddharth, S., Wang, G., Muniraj, N., Nagalingam, A., et al. (2021) A Procarcinogenic Colon Microbe Promotes Breast Tumorigenesis and Metastatic Progression and Concomitantly Activates Notch and β-Catenin Axes. Cancer Discovery, 11, 1138-1157.
https://doi.org/10.1158/2159-8290.cd-20-0537
[41] Carlos-Reyes, Á., López-González, J.S., Meneses-Flores, M., Gallardo-Rincón, D., Ruíz-García, E., Marchat, L.A., et al. (2019) Dietary Compounds as Epigenetic Modulating Agents in Cancer. Frontiers in Genetics, 10, Article 79.
https://doi.org/10.3389/fgene.2019.00079
[42] Shankar, S., Kumar, D. and Srivastava, R.K. (2013) Epigenetic Modifications by Dietary Phytochemicals: Implications for Personalized Nutrition. Pharmacology & Therapeutics, 138, 1-17.
https://doi.org/10.1016/j.pharmthera.2012.11.002
[43] Mirzaei, R., Afaghi, A., Babakhani, S., Sohrabi, M.R., Hosseini-Fard, S.R., Babolhavaeji, K., et al. (2021) Role of Microbiota-Derived Short-Chain Fatty Acids in Cancer Development and Prevention. Biomedicine & Pharmacotherapy, 139, Article ID: 111619.
https://doi.org/10.1016/j.biopha.2021.111619
[44] Park, H., Han, J., Park, J.W., Lee, D., Jang, K., Lee, M., et al. (2020) Sodium Propionate Exerts Anticancer Effect in Mice Bearing Breast Cancer Cell Xenograft by Regulating JAK2/STAT3/ROS/p38 MAPK Signaling. Acta Pharmacologica Sinica, 42, 1311-1323.
https://doi.org/10.1038/s41401-020-00522-2
[45] Semaan, J., El-Hakim, S., Ibrahim, J., Safi, R., Elnar, A.A. and El Boustany, C. (2020) Comparative Effect of Sodium Butyrate and Sodium Propionate on Proliferation, Cell Cycle and Apoptosis in Human Breast Cancer Cells MCF-7. Breast Cancer, 27, 696-705.
https://doi.org/10.1007/s12282-020-01063-6
[46] Mikó, E., Vida, A., Kovács, T., Ujlaki, G., Trencsényi, G., Márton, J., et al. (2018) Lithocholic Acid, a Bacterial Metabolite Reduces Breast Cancer Cell Proliferation and Aggressiveness. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1859, 958-974.
https://doi.org/10.1016/j.bbabio.2018.04.002
[47] Kovács, P., Csonka, T., Kovács, T., Sári, Z., Ujlaki, G., Sipos, A., et al. (2019) Lithocholic Acid, a Metabolite of the Microbiome, Increases Oxidative Stress in Breast Cancer. Cancers, 11, Article 1255.
https://doi.org/10.3390/cancers11091255
[48] Cantorna, M.T., Snyder, L. and Arora, J. (2019) Vitamin a and Vitamin D Regulate the Microbial Complexity, Barrier Function, and the Mucosal Immune Responses to Ensure Intestinal Homeostasis. Critical Reviews in Biochemistry and Molecular Biology, 54, 184-192.
https://doi.org/10.1080/10409238.2019.1611734
[49] Akimbekov, N.S., Digel, I., Sherelkhan, D.K., Lutfor, A.B. and Razzaque, M.S. (2020) Vitamin D and the Host-Gut Microbiome: A Brief Overview. Acta Histochemica et Cytochemica, 53, 33-42.
https://doi.org/10.1267/ahc.20011
[50] Zhang, Y., Xia, Y., Zhang, J., Deb, S., Garrett, S. and Sun, J. (2023) Intestinal Vitamin D Receptor Protects against Extraintestinal Breast Cancer Tumorigenesis. Gut Microbes, 15, Article ID: 2202593.
https://doi.org/10.1080/19490976.2023.2202593
[51] Xie, S., Tan, M., Li, H., Li, L., Zhang, H., Wang, Q., et al. (2023) Study on the Correlation between B Vitamins and Breast Cancer. Cancer Cell International, 23, Article No. 22.
https://doi.org/10.1186/s12935-023-02860-7
[52] Montassier, E., Gastinne, T., Vangay, P., Al‐Ghalith, G.A., Bruley des Varannes, S., Massart, S., et al. (2015) Chemotherapy‐Driven Dysbiosis in the Intestinal Microbiome. Alimentary Pharmacology & Therapeutics, 42, 515-528.
https://doi.org/10.1111/apt.13302
[53] Panebianco, C., Andriulli, A. and Pazienza, V. (2018) Pharmacomicrobiomics: Exploiting the Drug-Microbiota Interactions in Anticancer Therapies. Microbiome, 6, Article No. 92.
https://doi.org/10.1186/s40168-018-0483-7
[54] Aarnoutse, R., Ziemons, J., Hillege, L.E., de Vos-Geelen, J., de Boer, M., Bisschop, S.M.P., et al. (2022) Changes in Intestinal Microbiota in Postmenopausal Oestrogen Receptor-Positive Breast Cancer Patients Treated with (Neo)adjuvant Chemotherapy. NPJ Breast Cancer, 8, Article No. 89.
https://doi.org/10.1038/s41523-022-00455-5
[55] Li, Y., Dong, B., Wu, W., Wang, J., Jin, H., Chen, K., et al. (2022) Metagenomic Analyses Reveal Distinct Gut Microbiota Signature for Predicting the Neoadjuvant Chemotherapy Responsiveness in Breast Cancer Patients. Frontiers in Oncology, 12, Article 865121.
https://doi.org/10.3389/fonc.2022.865121