[1]
|
Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D.M., Piñeros, M., Znaor, A., et al. (2021) Cancer Statistics for the Year 2020: An Overview. International Journal of Cancer, 149, 778-789. https://doi.org/10.1002/ijc.33588
|
[2]
|
Cardoso, F., Kyriakides, S., Ohno, S., Penault-Llorca, F., Poortmans, P., Rubio, I.T., et al. (2019) Early Breast Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-up. Annals of Oncology, 30, 1194-1220. https://doi.org/10.1093/annonc/mdz173
|
[3]
|
Sommer, F., Anderson, J.M., Bharti, R., Raes, J. and Rosenstiel, P. (2017) The Resilience of the Intestinal Microbiota Influences Health and Disease. Nature Reviews Microbiology, 15, 630-638. https://doi.org/10.1038/nrmicro.2017.58
|
[4]
|
Nejman, D., Livyatan, I., Fuks, G., Gavert, N., Zwang, Y., Geller, L.T., et al. (2020) The Human Tumor Microbiome Is Composed of Tumor Type-Specific Intracellular Bacteria. Science, 368, 973-980. https://doi.org/10.1126/science.aay9189
|
[5]
|
Omar Al-Hassi, H., Ng, O. and Brookes, M. (2017) Tumour-Associated and Non-Tumour-Associated Microbiota in Colorectal Cancer. Gut, 67, 395.2-395. https://doi.org/10.1136/gutjnl-2017-314219
|
[6]
|
Riquelme, E., Zhang, Y., Zhang, L., Montiel, M., Zoltan, M., Dong, W., et al. (2019) Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes. Cell, 178, 795-806.e12. https://doi.org/10.1016/j.cell.2019.07.008
|
[7]
|
Jin, C., Lagoudas, G.K., Zhao, C., Bullman, S., Bhutkar, A., Hu, B., et al. (2019) Commensal Microbiota Promote Lung Cancer Development via γδ T Cells. Cell, 176, 998-1013.e16. https://doi.org/10.1016/j.cell.2018.12.040
|
[8]
|
Urbaniak, C., Gloor, G.B., Brackstone, M., Scott, L., Tangney, M. and Reid, G. (2016) The Microbiota of Breast Tissue and Its Association with Breast Cancer. Applied and Environmental Microbiology, 82, 5039-5048. https://doi.org/10.1128/aem.01235-16
|
[9]
|
Ganal-Vonarburg, S.C., Hornef, M.W. and Macpherson, A.J. (2020) Microbial-Host Molecular Exchange and Its Functional Consequences in Early Mammalian Life. Science, 368, 604-607. https://doi.org/10.1126/science.aba0478
|
[10]
|
Ruan, W., Engevik, M.A., Spinler, J.K. and Versalovic, J. (2020) Healthy Human Gastrointestinal Microbiome: Composition and Function after a Decade of Exploration. Digestive Diseases and Sciences, 65, 695-705. https://doi.org/10.1007/s10620-020-06118-4
|
[11]
|
Mazmanian, S.K., Round, J.L. and Kasper, D.L. (2008) A Microbial Symbiosis Factor Prevents Intestinal Inflammatory Disease. Nature, 453, 620-625. https://doi.org/10.1038/nature07008
|
[12]
|
Wang, Y., Yin, Y., Chen, X., Zhao, Y., Wu, Y., Li, Y., et al. (2019) Induction of Intestinal Th17 Cells by Flagellins from Segmented Filamentous Bacteria. Frontiers in Immunology, 10, Article 2750. https://doi.org/10.3389/fimmu.2019.02750
|
[13]
|
Atarashi, K., Tanoue, T., Shima, T., Imaoka, A., Kuwahara, T., Momose, Y., et al. (2011) Induction of Colonic Regulatory T Cells by Indigenous Clostridium Species. Science, 331, 337-341. https://doi.org/10.1126/science.1198469
|
[14]
|
Yang, W. and Cong, Y. (2021) Gut Microbiota-Derived Metabolites in the Regulation of Host Immune Responses and Immune-Related Inflammatory Diseases. Cellular & Molecular Immunology, 18, 866-877. https://doi.org/10.1038/s41423-021-00661-4
|
[15]
|
Gu, M., Samuelson, D.R., de la Rua, N.M., Charles, T.P., Taylor, C.M., Luo, M., et al. (2022) Host Innate and Adaptive Immunity Shapes the Gut Microbiota Biogeography. Microbiology and Immunology, 66, 330-341. https://doi.org/10.1111/1348-0421.12963
|
[16]
|
Schuhmann, M.K., Langhauser, F., Kraft, P. and Kleinschnitz, C. (2017) B Cells Do Not Have a Major Pathophysiologic Role in Acute Ischemic Stroke in Mice. Journal of Neuroinflammation, 14, Article No. 112. https://doi.org/10.1186/s12974-017-0890-x
|
[17]
|
Zhou, W., Liesz, A., Bauer, H., Sommer, C., Lahrmann, B., Valous, N., et al. (2012) Postischemic Brain Infiltration of Leukocyte Subpopulations Differs among Murine Permanent and Transient Focal Cerebral Ischemia Models. Brain Pathology, 23, 34-44. https://doi.org/10.1111/j.1750-3639.2012.00614.x
|
[18]
|
Gan, Y., Liu, Q., Wu, W., Yin, J., Bai, X., Shen, R., et al. (2014) Ischemic Neurons Recruit Natural Killer Cells That Accelerate Brain Infarction. Proceedings of the National Academy of Sciences of the United States of America, 111, 2704-2709. https://doi.org/10.1073/pnas.1315943111
|
[19]
|
Velicer, C.M. (2004) Antibiotic Use in Relation to the Risk of Breast Cancer. JAMA, 291, 827-835. https://doi.org/10.1001/jama.291.7.827
|
[20]
|
Luu, T.H., Michel, C., Bard, J., Dravet, F., Nazih, H. and Bobin-Dubigeon, C. (2017) Intestinal Proportion of Blautia sp. Is Associated with Clinical Stage and Histoprognostic Grade in Patients with Early-Stage Breast Cancer. Nutrition and Cancer, 69, 267-275. https://doi.org/10.1080/01635581.2017.1263750
|
[21]
|
Banerjee, S., Tian, T., Wei, Z., Shih, N., Feldman, M.D., Peck, K.N., et al. (2018) Distinct Microbial Signatures Associated with Different Breast Cancer Types. Frontiers in Microbiology, 9, Article 951. https://doi.org/10.3389/fmicb.2018.00951
|
[22]
|
Zhu, J., Liao, M., Yao, Z., Liang, W., Li, Q., Liu, J., et al. (2018) Breast Cancer in Postmenopausal Women Is Associated with an Altered Gut Metagenome. Microbiome, 6, Article No. 136. https://doi.org/10.1186/s40168-018-0515-3
|
[23]
|
Vivarelli, S., Salemi, R., Candido, S., Falzone, L., Santagati, M., Stefani, S., et al. (2019) Gut Microbiota and Cancer: From Pathogenesis to Therapy. Cancers, 11, Article 38. https://doi.org/10.3390/cancers11010038
|
[24]
|
Rahman, M.M., Islam, M.R., Shohag, S., Ahasan, M.T., Sarkar, N., Khan, H., et al. (2022) Microbiome in Cancer: Role in Carcinogenesis and Impact in Therapeutic Strategies. Biomedicine & Pharmacotherapy, 149, Article ID: 112898. https://doi.org/10.1016/j.biopha.2022.112898
|
[25]
|
Doocey, C.M., Finn, K., Murphy, C. and Guinane, C.M. (2022) The Impact of the Human Microbiome in Tumorigenesis, Cancer Progression, and Biotherapeutic Development. BMC Microbiology, 22, Article No. 53. https://doi.org/10.1186/s12866-022-02465-6
|
[26]
|
Kwa, M., Blaser, M.J. and Adams, S. (2016) The Intestinal Microbiome and Estrogen Receptor-Positive Female Breast Cancer. Journal of the National Cancer Institute, 108, djw029.
|
[27]
|
Komorowski, A.S. and Pezo, R.C. (2019) Untapped “-Omics”: The Microbial Metagenome, Estrobolome, and Their Influence on the Development of Breast Cancer and Response to Treatment. Breast Cancer Research and Treatment, 179, 287-300. https://doi.org/10.1007/s10549-019-05472-w
|
[28]
|
Plottel, C.S. and Blaser, M.J. (2011) Microbiome and Malignancy. Cell Host & Microbe, 10, 324-335. https://doi.org/10.1016/j.chom.2011.10.003
|
[29]
|
Laborda-Illanes, A., Sanchez-Alcoholado, L., Dominguez-Recio, M.E., Jimenez-Rodriguez, B., Lavado, R., Comino-Méndez, I., et al. (2020) Breast and Gut Microbiota Action Mechanisms in Breast Cancer Pathogenesis and Treatment. Cancers, 12, Article 2465. https://doi.org/10.3390/cancers12092465
|
[30]
|
Hu, S., Ding, Q., Zhang, W., Kang, M., Ma, J. and Zhao, L. (2023) Gut Microbial β-Glucuronidase: A Vital Regulator in Female Estrogen Metabolism. Gut Microbes, 15, Article ID: 2236749. https://doi.org/10.1080/19490976.2023.2236749
|
[31]
|
Rosenberg, L., Bethea, T.N., Viscidi, E., Hong, C., Troester, M.A., Bandera, E.V., et al. (2015) Postmenopausal Female Hormone Use and Estrogen Receptor-Positive and-Negative Breast Cancer in African American Women. Journal of the National Cancer Institute, 108, djv361. https://doi.org/10.1093/jnci/djv361
|
[32]
|
Thompson, K.J., Ingle, J.N., Tang, X., Chia, N., Jeraldo, P.R., Walther-Antonio, M.R., et al. (2017) A Comprehensive Analysis of Breast Cancer Microbiota and Host Gene Expression. PLOS ONE, 12, e0188873. https://doi.org/10.1371/journal.pone.0188873
|
[33]
|
Chen, K.L.A., Liu, X., Zhao, Y.C., Hieronymi, K., Rossi, G., Auvil, L.S., et al. (2018) Long-Term Administration of Conjugated Estrogen and Bazedoxifene Decreased Murine Fecal β-Glucuronidase Activity without Impacting Overall Microbiome Community. Scientific Reports, 8, Article No. 8166. https://doi.org/10.1038/s41598-018-26506-1
|
[34]
|
Keum, N., Greenwood, D.C., Lee, D.H., Kim, R., Aune, D., Ju, W., et al. (2015) Adult Weight Gain and Adiposity-Related Cancers: A Dose-Response Meta-Analysis of Prospective Observational Studies. JNCI: Journal of the National Cancer Institute, 107, djv088. https://doi.org/10.1093/jnci/djv088
|
[35]
|
Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013
|
[36]
|
Meng, Z., Ye, Z., Zhu, P., Zhu, J., Fang, S., Qiu, T., et al. (2022) New Developments and Opportunities of Microbiota in Treating Breast Cancers. Frontiers in Microbiology, 13, Article 818793. https://doi.org/10.3389/fmicb.2022.818793
|
[37]
|
Scott, A.J., Alexander, J.L., Merrifield, C.A., Cunningham, D., Jobin, C., Brown, R., et al. (2019) International Cancer Microbiome Consortium Consensus Statement on the Role of the Human Microbiome in Carcinogenesis. Gut, 68, 1624-1632. https://doi.org/10.1136/gutjnl-2019-318556
|
[38]
|
Álvarez-Mercado, A.I., del Valle Cano, A., Fernández, M.F. and Fontana, L. (2023) Gut Microbiota and Breast Cancer: The Dual Role of Microbes. Cancers, 15, Article 443. https://doi.org/10.3390/cancers15020443
|
[39]
|
Lu, R., Wu, S., Zhang, Y., Xia, Y., Liu, X., Zheng, Y., et al. (2014) Enteric Bacterial Protein Avra Promotes Colonic Tumorigenesis and Activates Colonic Beta-Catenin Signaling Pathway. Oncogenesis, 3, e105-e105. https://doi.org/10.1038/oncsis.2014.20
|
[40]
|
Parida, S., Wu, S., Siddharth, S., Wang, G., Muniraj, N., Nagalingam, A., et al. (2021) A Procarcinogenic Colon Microbe Promotes Breast Tumorigenesis and Metastatic Progression and Concomitantly Activates Notch and β-Catenin Axes. Cancer Discovery, 11, 1138-1157. https://doi.org/10.1158/2159-8290.cd-20-0537
|
[41]
|
Carlos-Reyes, Á., López-González, J.S., Meneses-Flores, M., Gallardo-Rincón, D., Ruíz-García, E., Marchat, L.A., et al. (2019) Dietary Compounds as Epigenetic Modulating Agents in Cancer. Frontiers in Genetics, 10, Article 79. https://doi.org/10.3389/fgene.2019.00079
|
[42]
|
Shankar, S., Kumar, D. and Srivastava, R.K. (2013) Epigenetic Modifications by Dietary Phytochemicals: Implications for Personalized Nutrition. Pharmacology & Therapeutics, 138, 1-17. https://doi.org/10.1016/j.pharmthera.2012.11.002
|
[43]
|
Mirzaei, R., Afaghi, A., Babakhani, S., Sohrabi, M.R., Hosseini-Fard, S.R., Babolhavaeji, K., et al. (2021) Role of Microbiota-Derived Short-Chain Fatty Acids in Cancer Development and Prevention. Biomedicine & Pharmacotherapy, 139, Article ID: 111619. https://doi.org/10.1016/j.biopha.2021.111619
|
[44]
|
Park, H., Han, J., Park, J.W., Lee, D., Jang, K., Lee, M., et al. (2020) Sodium Propionate Exerts Anticancer Effect in Mice Bearing Breast Cancer Cell Xenograft by Regulating JAK2/STAT3/ROS/p38 MAPK Signaling. Acta Pharmacologica Sinica, 42, 1311-1323. https://doi.org/10.1038/s41401-020-00522-2
|
[45]
|
Semaan, J., El-Hakim, S., Ibrahim, J., Safi, R., Elnar, A.A. and El Boustany, C. (2020) Comparative Effect of Sodium Butyrate and Sodium Propionate on Proliferation, Cell Cycle and Apoptosis in Human Breast Cancer Cells MCF-7. Breast Cancer, 27, 696-705. https://doi.org/10.1007/s12282-020-01063-6
|
[46]
|
Mikó, E., Vida, A., Kovács, T., Ujlaki, G., Trencsényi, G., Márton, J., et al. (2018) Lithocholic Acid, a Bacterial Metabolite Reduces Breast Cancer Cell Proliferation and Aggressiveness. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1859, 958-974. https://doi.org/10.1016/j.bbabio.2018.04.002
|
[47]
|
Kovács, P., Csonka, T., Kovács, T., Sári, Z., Ujlaki, G., Sipos, A., et al. (2019) Lithocholic Acid, a Metabolite of the Microbiome, Increases Oxidative Stress in Breast Cancer. Cancers, 11, Article 1255. https://doi.org/10.3390/cancers11091255
|
[48]
|
Cantorna, M.T., Snyder, L. and Arora, J. (2019) Vitamin a and Vitamin D Regulate the Microbial Complexity, Barrier Function, and the Mucosal Immune Responses to Ensure Intestinal Homeostasis. Critical Reviews in Biochemistry and Molecular Biology, 54, 184-192. https://doi.org/10.1080/10409238.2019.1611734
|
[49]
|
Akimbekov, N.S., Digel, I., Sherelkhan, D.K., Lutfor, A.B. and Razzaque, M.S. (2020) Vitamin D and the Host-Gut Microbiome: A Brief Overview. Acta Histochemica et Cytochemica, 53, 33-42. https://doi.org/10.1267/ahc.20011
|
[50]
|
Zhang, Y., Xia, Y., Zhang, J., Deb, S., Garrett, S. and Sun, J. (2023) Intestinal Vitamin D Receptor Protects against Extraintestinal Breast Cancer Tumorigenesis. Gut Microbes, 15, Article ID: 2202593. https://doi.org/10.1080/19490976.2023.2202593
|
[51]
|
Xie, S., Tan, M., Li, H., Li, L., Zhang, H., Wang, Q., et al. (2023) Study on the Correlation between B Vitamins and Breast Cancer. Cancer Cell International, 23, Article No. 22. https://doi.org/10.1186/s12935-023-02860-7
|
[52]
|
Montassier, E., Gastinne, T., Vangay, P., Al‐Ghalith, G.A., Bruley des Varannes, S., Massart, S., et al. (2015) Chemotherapy‐Driven Dysbiosis in the Intestinal Microbiome. Alimentary Pharmacology & Therapeutics, 42, 515-528. https://doi.org/10.1111/apt.13302
|
[53]
|
Panebianco, C., Andriulli, A. and Pazienza, V. (2018) Pharmacomicrobiomics: Exploiting the Drug-Microbiota Interactions in Anticancer Therapies. Microbiome, 6, Article No. 92. https://doi.org/10.1186/s40168-018-0483-7
|
[54]
|
Aarnoutse, R., Ziemons, J., Hillege, L.E., de Vos-Geelen, J., de Boer, M., Bisschop, S.M.P., et al. (2022) Changes in Intestinal Microbiota in Postmenopausal Oestrogen Receptor-Positive Breast Cancer Patients Treated with (Neo)adjuvant Chemotherapy. NPJ Breast Cancer, 8, Article No. 89. https://doi.org/10.1038/s41523-022-00455-5
|
[55]
|
Li, Y., Dong, B., Wu, W., Wang, J., Jin, H., Chen, K., et al. (2022) Metagenomic Analyses Reveal Distinct Gut Microbiota Signature for Predicting the Neoadjuvant Chemotherapy Responsiveness in Breast Cancer Patients. Frontiers in Oncology, 12, Article 865121. https://doi.org/10.3389/fonc.2022.865121
|