影响乳腺癌复发的宿主相关因素研究进展
Research Progress on Host-Related Factors Affecting Breast Cancer Recurrence
DOI: 10.12677/acm.2025.153604, PDF, HTML, XML,    科研立项经费支持
作者: 朱志博, 董亚玲:甘肃中医药大学第一临床医学院,甘肃 兰州;中国人民解放军联勤保障部队第九四〇医院肿瘤科,甘肃 兰州;马澜婧*, 曾伟华, 张百红*:中国人民解放军联勤保障部队第九四〇医院肿瘤科,甘肃 兰州
关键词: 乳腺癌休眠复发炎症肥胖饮食体力活动情绪障碍Breast Cancer Dormancy Recurrence Inflammation Obesity Diet Physical Activity Emotional Disorder
摘要: 肿瘤复发是乳腺癌相关死亡的主要原因。靶向可改变的风险因素以降低乳腺癌复发率是新的研究热点。本综述介绍了影响乳腺癌复发的宿主相关因素的最新发现,目的是为临床医生提供乳腺癌全程管理的新思路,引导他们进一步关注可能改善乳腺癌预后的全方位临床干预措施。
Abstract: Tumor recurrence is the main cause of breast cancer-related death. Targeting modifiable risk factors to reduce breast cancer recurrence rate has become a new research hotspot. In this review, we illustrate the latest discoveries on host-related factors that may influence the recurrence of breast cancer. The aim of this review is to offer clinicians recent insights into breast cancer whole process management and further guide them to focus on the complete clinical intervention measures that might improve breast cancer prognosis.
文章引用:朱志博, 马澜婧, 董亚玲, 曾伟华, 张百红. 影响乳腺癌复发的宿主相关因素研究进展[J]. 临床医学进展, 2025, 15(3): 192-199. https://doi.org/10.12677/acm.2025.153604

1. 前言

根据国际癌症研究机构的数据,2020年起乳腺癌首次超过肺癌成为全球最常见的恶性肿瘤[1]。大部分乳腺癌患者诊断时为早中期或者局部晚期的潜在可治愈病例,并且随着近年来外科技术、放疗及抗肿瘤药物的发展,乳腺癌幸存者(Breast Cancer Survivors, BCS)的预后大为改善,但最新的数据表明,根治治疗后累积复发率仍高达16.6% [2]。而转移性复发是90%以上乳腺癌相关死亡的原因[3]。近年来越来越多的证据表明,全身炎症状态、体重、饮食、体力活动和情绪等可改变的风险因素会影响乳腺癌复发。这些宿主相关因素有望成为降低BCS复发率的临床干预靶点,本文将相关研究进展做一简要综述。

2. 炎症

2.1. 炎症与休眠

肿瘤复发的主要原因之一是乳腺癌患者在诊断时即携带微转移,这部分播散性肿瘤细胞能够逃避初级治疗以静止状态长期存在,成为休眠癌细胞(Dormant Cancer Cell, DCC) [4]。DCC的特点是可逆的有丝分裂停滞,在适当的环境下DCC能够“苏醒”,恢复其增殖,最终导致肿瘤复发转移[5]。近年来研究炎症在促进乳腺癌休眠细胞的生长和觉醒方面发挥重要作用。

有研究发现利用3D离体肝脏微生理系统,对肝细胞、非实质细胞及乳腺癌细胞进行共培养,观察到乳腺癌细胞在该系统中能够实现自发休眠,并且较之聚苯乙烯支架,采用水凝胶支架进入休眠状态的肿瘤细胞比例显著增加,这可能与水凝胶支架促炎因子分泌水平更低有关[6]。利用上述3D立体肝脏微生理系统共培养肝星状细胞和乳腺癌细胞,发现活化的肝星状细胞可以通过分泌炎性细胞因子白介素-8,诱导乳腺癌细胞从休眠状态中苏醒[7]。在乳腺癌肝转移的小鼠模型中,发现在休眠环境中自然杀伤细胞有选择性地增加,自然杀伤细胞通过干扰素-γ信号通路维持休眠,若自然杀伤细胞明显收缩,则活化的肝星状细胞开始积聚,进而导致肝脏中的DCC结束休眠[8]

除了肝星状细胞,中性粒细胞也是最常见的炎症细胞之一,可以通过向细胞外空间释放中性粒细胞外陷阱来杀死有害微生物。在小鼠乳腺癌模型中,烟雾暴露或经鼻滴注脂多糖诱发的持续实验性肺部炎症导致中性粒细胞外陷阱的形成,进一步诱导小鼠肺脏中的DCC转化为侵袭性肺转移,抑制中性粒细胞外陷阱形成或消化中性粒细胞外陷阱的支架可以阻断此过程,提示中性粒细胞外陷阱可能是炎症诱导DCC觉醒的关键介质[9]

有研究在小鼠身上建立了一个能够在受控的实验环境中观察原发肿瘤切除产生的手术创伤是否会引发远处解剖部位播散性肿瘤细胞生长的模型,发现手术后诱导的全身炎性反应促进了远隔部位肿瘤的出现,并且围手术期抗炎治疗可显著减少该模型中的肿瘤生长[10]。亦有研究证实乳腺癌原发肿瘤切除可导致微转移爆发,消除炎性分泌因子或在围手术期抗炎治疗可使微转移消退到非生长状态[11]

2.2. 抗炎治疗

环氧化酶(Cyclo-Oxygenases, COXs)抑制剂是最常见的抗炎药物,目前已有一些应用COXs抑制剂改善乳腺癌预后的临床研究[12]。一项转化研究对38名早期乳腺癌患者进行为期11天的围手术期β-肾上腺素能拮抗剂(普萘洛尔)和COX-2抑制剂(乙哚乙酸)治疗,发现多种与乳腺癌转移复发相关的信号通路被抑制[13]。另一项研究也发现对肥胖患者术中使用非选择性COX抑制剂酮咯酸可降低远处转移的发生率[14]

2.3. 膳食炎症指数

促炎饮食可引起组织水平的炎症,与乳腺癌不良预后有关,而抗炎饮食可以改善炎症以及BCS的整体预后[15]。膳食炎症指数是为了标准化评估饮食的炎症潜能而创立的指标。一项研究分析了530名接受根治手术的BCS的数据,发现术后复发患者的膳食炎症指数显著高于无复发患者,膳食炎症指数与乳腺癌复发风险呈正相关,膳食炎症指数评分较高患者的无病生存率和总生存率明显降低[16]。另一项Meta分析亦报告膳食炎症指数与BCS复发率和全因死亡率正相关[17]。国内和欧洲的前瞻性队列研究均发现BCS的膳食炎症指数越高,全因死亡率和乳腺癌特异性死亡率越高[18] [19]

C反应蛋白是最常用的炎症指标,已有研究发现C反应蛋白是可以独立预测乳腺癌长期存活的生物标志物[20]。术后辅助治疗期间血清C反应蛋白水平与HR+/HER2-乳腺癌复发风险呈显著正相关[21]。Wu等发现膳食酸负荷与C反应蛋白和HbA1c呈正相关,膳食酸负荷可能导致炎症和高血糖的新型饮食因素,其两者都是BCS复发和合并症的重要危险因素[22],该发现为饮食如何影响全身炎症状态提供了一个可能的连接点。

3. 体重

已有多项临床试验证实肥胖和体重增加与BCS复发和死亡风险增加有关。Tulay等的研究表明脂肪肝是乳腺癌复发的危险因素[23]。一项前瞻性研究纳入6295名生存期超过5年的ER阳性BCS,发现体重增加 ≥ 10%、BMI = 30~34.99 kg/m2和BMI ≥ 35 kg/m2与晚期复发风险增加相关,风险比(hazard ratio, HR)分别为1.24、1.40和1.41 [24]。一项Meta分析纳入21项研究,进一步发现BMI与乳腺癌复发风险呈正线性相关,BMI每增加1 kg/m2,复发风险增加约2%;并且亚组分析发现BMI对亚洲女性影响更大,BMI每增加1 kg/m2,亚洲组BCS复发风险增加3.41% [25]。ELIA等也发现与正常体重BCS相比,超重/肥胖BCS无转移生存期更短[26]。欧洲一项研究对13624名BCS平均随访8.6年,发现BMI每增加5 kg/m2,全因死亡率和乳腺癌特异性死亡率分别增加10% (95% CI: 5%~15%)和7% (95% CI: 0~15%);且无论BMI如何,腹部肥胖BCS的全因死亡率增加了23% (95% CI: 11%~37%) [27]

不幸的是目前研究数据显示63.7%的BCS在确诊后体重增加,平均增加9.07 kg,60.7%的幸存者BMI增加 > 1 kg/m2,超重/肥胖的比例从诊断时的48.5%上升到调查时的67.4% [28]。针对这一现状,有研究检验了在接受新辅助化疗的BCS中采取预防原发性体重增加的干预措施的可行性和初步疗效,结果显示88%的参与者对在化疗期间的干预感到满意,干预组的腰围缩小幅度和自我报告的活力得分明显高于对照组,表明在新辅助化疗期间即对BCS开始预防性体重管理是可行的,并对患者产生有益影响[29]

目前对肥胖影响乳腺癌预后的潜在机制仍然知之甚少。已有研究表明肥胖是引起全身和组织水平慢性炎症的常见原因,肥胖患者的局部白色脂肪组织被免疫细胞浸润,包括巨噬细胞和淋巴细胞。因此肥胖脂肪垫类似于慢性损伤组织,可以成为促炎介质的丰富来源,潜在地促进肿瘤生长[30]。Quail等的研究发现在用高脂饮食诱导肥胖乳腺癌小鼠时,其肺组织中的中性粒细胞浸润,进而促进乳腺癌向肺转移,并且体重减轻可以逆转这种影响[31]。Patricia等也发现高脂饮食增加了肺脏和肝脏微环境中棕榈酸的可得性,这可能有助于肿瘤转移性生长[32]。ECKER等进一步发现在自发性乳腺癌小鼠模型中,与瘦小鼠对比,肥胖小鼠的复发速度更快[33]。Roy等构建了一个绝经后乳腺癌小鼠模型,对小鼠进行高脂饮食诱导后观察到,与瘦小鼠相比,肥胖小鼠肿瘤潜伏时间更短;其潜在机制可能与肥胖诱发的促血管生成和炎性环境有关;并且应用舒尼替尼靶向治疗可以延长肿瘤潜伏期、增加无瘤生存率[34]

4. 饮食

4.1. 地中海饮食

地中海饮食(Mediterranean Diet, MD)被认为是最健康的饮食模式之一。一项名为DIANA-5的随机对照临床试验评估了地中海饮食在减少乳腺癌复发方面的有效性,该试验纳入1542名ER阴性且具有高复发风险的BCS,建议她们坚持MD,并用健康饮食指数将依从性分为高中低三组,随访5年后发现依从性好的亚组复发风险显著低于依从性差的亚组(HR = 0.59, 95% CI: 0.36~0.92) [35]。一项回顾性研究调查了不列颠哥伦比亚省BCS坚持MD与长期预后之间的关系,发现MD依存性高的BCS其15年生存率(63.1%)高于依存性低者(53.6%) [36]。另有多项最新研究亦证实BCS对MD的依从度与死亡率呈明显负相关[37] [38]

MD的保护机制尚未完全阐明,可能与MD中富含的多种营养成分被证实有抗肿瘤活性有关[39]。此外研究表明MD可对肠道菌群产生显著且有益的影响,进而发挥抗癌作用[40]。也有学者认为与MD可降低氧化应激、提高胰岛素敏感性以及减少促炎细胞因子的分泌有关[41]。有研究发现接受内分泌治疗的BCS在食用鱼油、橄榄提取物和姜黄素提取物的混合物30天后,血浆CRP水平显著降低[42],这几种食物成分恰恰是MD所富含的。

4.2. 其他饮食模式

Foroutan-ghaznavi等研究了纯素食、“谨慎”(健康)饮食和“西方”(不健康)饮食等三种饮食模式与BCS中促转移基因表达水平之间的关系,发现坚持纯素食和“谨慎”饮食模式与BCS促转移基因的下调显著相关,而坚持“西方”饮食模式是促转移基因表达上调的风险因素[43]。有Meta分析进一步发现,较之“西方”饮食,对“谨慎”饮食更高依从性的BCS全因死亡率降低了22% (HR = 0.78, 95% CI: 0.73~0.84) [44]

上海一项研究数据显示,对中国膳食宝塔饮食指南和终止高血压膳食疗法依从性更高的BCS,其总体死亡率和乳腺癌特异性复发/死亡风险降低[45]。亦有研究发现热量限制似乎可以提高BCS抗肿瘤免疫力,采用长期斋戒饮食有助于减少肿瘤复发,改善长期预后[46]

5. 体力活动

越来越多的流行病学数据提示体力活动能够防止BCS复发[47]。一些前瞻性观察性研究发现,癌症诊断后的体力活动可能会降低乳腺癌死亡率[48]。另有Meta分析显示,体力活动可使BCS复发风险降低48%,全因死亡率降低24% [49]。其保护机制可能与体力活动能够减重、改善胰岛素抵抗、减轻全身炎症反应、减轻氧化应激等益处有关[50]。最新的研究发现体力活动可诱导内脏代谢重编程,通过限制肿瘤的营养供应来防止转移定植,即产生运动诱导的代谢屏障[51]。另外体力活动可以改善BCS焦虑水平和减轻内分泌治疗副反应,有助于提高治疗依从性[52]

虽然Wang等研究显示,与不活动相比,即使少量的体力活动也能降低死亡率[53]。有Meta分析进一步发现,较之低强度体力活动(<300 min/周),中强度(300~500 min/周)和高强度(>500 min/周)的体力活动可以更大程度地降低乳腺癌特异性死亡率和全因死亡率的风险,然而随着体力活动量的增加,收益的增加趋于平稳[54]。尤其值得关注的是,从诊断前到诊断后减少体力活动可使全因死亡率增加236% (HR = 2.36, 95% CI: 1.09~5.12) [54]。体力活动和其条件血清已被证明可通过肾上腺素依赖性机制,使乳腺癌细胞中的Hippo/YAP信号传导失活,这表明与儿茶酚胺水平升高相关的体力活动可以降低癌细胞在远处组织中形成肿瘤的能力[55]。已有大量研究表明,体力活动能够诱导免疫细胞的抗肿瘤作用,免疫系统对体力活动有很高的反应,在进行体力活动的过程中,大量具有抗肿瘤功能的细胞毒性免疫细胞被动员到循环中杀死循环肿瘤细胞[56],随着对体力活动对肿瘤转移机制影响的研究不断深入,新的治疗策略将被确定和验证,可能有助于降低BCS的复发、转移率,以提高癌症患者的生存率。

6. 情绪

情绪障碍亦会对乳腺癌预后产生不良影响。有Meta分析纳入17项研究共282,203名BCS,发现抑郁症与BCS复发率(HR = 1.24, 95% CI: 1.07~1.43)、全因死亡率(HR = 1.30, 95% CI: 1.23~1.36)和乳腺癌特异性死亡率(HR = 1.29, 95% CI: 1.11~1.49)呈显著正相关;焦虑症与BCS复发率(HR = 1.17, 95% CI: 1.02~1.34)和全因死亡率(HR = 1.13, 95% CI: 1.07~1.19)呈正相关,但与乳腺癌特异性死亡率无关;抑郁和焦虑合并症患者全因死亡率(HR = 1.34, 95% CI: 1.24~1.45)和乳腺癌特异性死亡率(HR = 1.45, 95% CI: 1.11~1.90)更高;并且亚组分析表明,临床诊断抑郁症和焦虑症时年龄较小(<60岁)的患者预后更差;综上,抑郁症和焦虑症是预测乳腺癌复发和存活的独立影响因素[57]

近年来越来越多的学者认为BCS对癌症复发的恐惧是一种独立的情绪障碍,并且与抑郁和焦虑等症状是高度互动的;引导患者应用可增强个人控制感的干预措施有助于预防或减少对癌症复发的恐惧[58] [59]。通过心理治疗等手段减轻BCS对癌症复发的恐惧水平成为新的干预靶点[60]

7. 结语

综合本文研究结果,健康生活方式可以减少BCS复发的风险因素,并改善总体健康,这可能转化为预后优势。而且对于BCS来说,“术后”阶段是一个漫长而艰难的时期,纳入生活方式干预有助于建立一个生理–心理支持网络。但是目前临床实践中医生很少与患者探讨非药物干预手段,主要原因是缺乏指南指导和重视程度不够。乳腺癌的管理尚未充分发挥其潜力,希望将来风险因素控制逐渐纳入到乳腺癌全程管理体系当中。目前通过风险因素干预减少乳腺癌复发率已进行临床试验,情况见表1

Table 1. List of ongoing clinical trials of reducing breast cancer recurrence rate through risk factor intervention

1. 通过风险因素干预减少乳腺癌复发率的在研临床试验列表

干预措施

受试人群

试验阶段

试验编号

阿司匹林

HER2阴性II-III期BCS

III期

NCT02927249

减重

超重/肥胖BCS

III期

NCT02750826

二甲双胍

早期BCS

III期

NCT01101438

减重 + MD + 体力活动

非转移性BCS

III期

NCT02035631

体力活动

0-Ⅲ期高复发风险BCS

未描述

NCT04818359

MD + 体力活动 + 维生素D

意大利地区BCS

未描述

NCT02786875

来源:ClinicalTrials.gov。

基金项目

甘肃省青年科技基金计划(22JR5RA021)。

NOTES

*通讯作者。

参考文献

[1] Giaquinto, A.N., Sung, H., Miller, K.D., et al. (2022) Breast Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 524-541.
https://doi.org/10.3322/caac.21754
[2] Pedersen, R.N., Esen, B., Mellemkjær, L., et al. (2022) The Incidence of Breast Cancer Recurrence 10-32 Years after Primary Diagnosis. Journal of the National Cancer Institute, 114, 391-399.
https://doi.org/10.1093/jnci/djab202
[3] Riggio, A.I., Varley, K.E. and Welm, A.L. (2021) The Lingering Mysteries of Metastatic Recurrence in Breast Cancer. British Journal of Cancer, 124, 13-26.
https://doi.org/10.1038/s41416-020-01161-4
[4] Jahangiri, L. and Ishola, T. (2022) Dormancy in Breast Cancer, the Role of Autophagy, lncRNAs, miRNAs and Exosomes. International Journal of Molecular Sciences, 23, Article 5271.
https://doi.org/10.3390/ijms23095271
[5] Tamamouna, V., Pavlou, E., Neophytou, C.M., et al. (2022) Regulation of Metastatic Tumor Dormancy and Emerging Opportunities for Therapeutic Intervention. International Journal of Molecular Sciences, 23, Article 13931.
https://doi.org/10.3390/ijms232213931
[6] Clark, A.M., Wheeler, S.E., Young, C.L., et al. (2017) A Liver Microphysiological System of Tumor Cell Dormancy and Inflammatory Responsiveness Is Affected by Scaffold Properties. Lab on a Chip, 17, 156-168.
https://doi.org/10.1039/C6LC01171C
[7] Khazali, A.S., Clark, A.M. and Wells, A. (2018) Inflammatory Cytokine IL-8/CXCL8 Promotes Tumour Escape from Hepatocyte-Induced Dormancy. British Journal of Cancer, 118, 566-576.
https://doi.org/10.1038/bjc.2017.414
[8] Correia, A.L., Guimaraes, J.C., Auf Der Maur, P., et al. (2021) Hepatic Stellate Cells Suppress NK Cell-Sustained Breast Cancer Dormancy. Nature, 594, 566-571.
https://doi.org/10.1038/s41586-021-03614-z
[9] Albrengues, J., Shields, M.A., Ng, D., et al. (2018) Neutrophil Extracellular Traps Produced during Inflammation Awaken Dormant Cancer Cells in Mice. Science, 361, eaao4227.
https://doi.org/10.1126/science.aao4227
[10] Krall, J.A., Reinhardt, F., Mercury, O.A., et al. (2018) The Systemic Response to Surgery Triggers the Outgrowth of Distant Immune-Controlled Tumors in Mouse Models of Dormancy. Science Translational Medicine, 10, eaan3464.
https://doi.org/10.1126/scitranslmed.aan3464
[11] Haldar, R., Berger, L.S., Rossenne, E., et al. (2023) Perioperative Escape from Dormancy of Spontaneous Micro-Metastases: A Role for Malignant Secretion of IL-6, IL-8, and VEGF, through Adrenergic and Prostaglandin Signaling. Brain, Behavior, and Immunity, 109, 175-187.
https://doi.org/10.1016/j.bbi.2023.01.005
[12] Ricon, I., Hanalis-Miller, T., Haldar, R., et al. (2019) Perioperative Biobehavioral Interventions to Prevent Cancer Recurrence through Combined Inhibition of β-Adrenergic and Cyclooxygenase 2 Signaling. Cancer, 125, 45-56.
https://doi.org/10.1002/cncr.31594
[13] Shaashua, L., Shabat-Simon, M., Haldar, R., et al. (2017) Perioperative COX-2 and β-Adrenergic Blockade Improves Metastatic Biomarkers in Breast Cancer Patients in a Phase-II Randomized Trial. Clinical Cancer Research, 23, 4651-4661.
https://doi.org/10.1158/1078-0432.CCR-17-0152
[14] Desmedt, C., Demicheli, R., Fornili, M., et al. (2018) Potential Benefit of Intra-Operative Administration of Ketorolac on Breast Cancer Recurrence according to the Patient’s Body Mass Index. JNCI: Journal of the National Cancer Institute, 110, 1115-1122.
https://doi.org/10.1093/jnci/djy042
[15] Pannu, M.K. and Constantinou, C. (2023) Inflammation, Nutrition, and Clinical Outcomes in Breast Cancer Survivors: A Narrative Review. Current Nutrition Reports, 12, 643-661.
https://doi.org/10.1007/s13668-023-00495-8
[16] Jang, H., Chung, M.S., Kang, S.S., et al. (2018) Association between the Dietary Inflammatory Index and Risk for Cancer Recurrence and Mortality among Patients with Breast Cancer. Nutrients, 10, Article 1095.
https://doi.org/10.3390/nu10081095
[17] Castro-Espin, C. and Agudo, A. (2022) The Role of Diet in Prognosis among Cancer Survivors: A Systematic Review and Meta-Analysis of Dietary Patterns and Diet Interventions. Nutrients, 14, Article 348.
https://doi.org/10.3390/nu14020348
[18] Wang, K., Sun, J.Z., Wu, Q.X., et al. (2020) Long-Term Anti-Inflammatory Diet in Relation to Improved Breast Cancer Prognosis: A Prospective Cohort Study. NPJ Breast Cancer, 6, Article No. 36.
https://doi.org/10.1038/s41523-020-00179-4
[19] Castro-Espin, C., Bonet, C., Crous-Bou, M., et al. (2023) Dietary Patterns Related to Biological Mechanisms and Survival after Breast Cancer Diagnosis: Results from a Cohort Study. British Journal of Cancer, 128, 1301-1310.
https://doi.org/10.1038/s41416-023-02169-2
[20] Mikkelsen, M.K., Lindblom, N.A.F., Dyhl-Polk, A., et al. (2022) Systematic Review and Meta-Analysis of C-Reactive Protein as a Biomarker in Breast Cancer. Critical Reviews in Clinical Laboratory Sciences, 59, 480-500.
https://doi.org/10.1080/10408363.2022.2050886
[21] Mcandrew, N.P., Bottalico, L., Mesaros, C., et al. (2021) Effects of Systemic Inflammation on Relapse in Early Breast Cancer. NPJ Breast Cancer, 7, Article No. 7.
https://doi.org/10.1038/s41523-020-00212-6
[22] Wu, T., Seaver, P., Lemus, H., et al. (2019) Associations between Dietary Acid Load and Biomarkers of Inflammation and Hyperglycemia in Breast Cancer Survivors. Nutrients, 11, Article 1913.
https://doi.org/10.3390/nu11081913
[23] Kus, T., Cinkir, H.Y., Aktas, G., et al. (2019) Hepatosteatosis May Predict Late Recurrence of Breast Cancer: A Single-Center Observational Study. Current Problems in Cancer, 43, Article 100461.
https://doi.org/10.1016/j.currproblcancer.2019.01.002
[24] Nechuta, S., Chen, W.Y., Cai, H., et al. (2016) A Pooled Analysis of Post-Diagnosis Lifestyle Factors in Association with Late Estrogen-Receptor—Positive Breast Cancer Prognosis. International Journal of Cancer, 138, 2088-2097.
https://doi.org/10.1002/ijc.29940
[25] Guo, Z., Wang, J., Tian, X., et al. (2022) Body Mass Index Increases the Recurrence Risk of Breast Cancer: A Dose-Response Meta-Analysis from 21 Prospective Cohort Studies. Public Health, 210, 26-33.
https://doi.org/10.1016/j.puhe.2022.06.014
[26] Biganzoli, E., Desmedt, C., Fornili, M., et al. (2017) Recurrence Dynamics of Breast Cancer according to Baseline Body Mass Index. European Journal of Cancer, 87, 10-20.
https://doi.org/10.1016/j.ejca.2017.10.007
[27] Bonet, C., Crous-Bou, M., Tsilidis, K.K., et al. (2023) The Association between Body Fatness and Mortality among Breast Cancer Survivors: Results from a Prospective Cohort Study. European Journal of Epidemiology, 38, 545-557.
https://doi.org/10.1007/s10654-023-00979-5
[28] Ee, C., Cave, A.E., Naidoo, D., et al. (2020) Weight before and after a Diagnosis of Breast Cancer or Ductal Carcinoma in Situ: A National Australian Survey. BMC Cancer, 20, Article No. 113.
https://doi.org/10.1186/s12885-020-6566-4
[29] Basen-Engquist, K.M., Raber, M., Carmack, C.L., et al. (2020) Feasibility and Efficacy of a Weight Gain Prevention Intervention for Breast Cancer Patients Receiving Neoadjuvant Chemotherapy: A Randomized Controlled Pilot Study. Supportive Care in Cancer, 28, 5821-5832.
https://doi.org/10.1007/s00520-020-05411-2
[30] Iyengar, N.M., Gucalp, A., Dannenberg, A.J., et al. (2016) Obesity and Cancer Mechanisms: Tumor Microenvironment and Inflammation. Journal of Clinical Oncology, 34, 4270-4276.
https://doi.org/10.1200/JCO.2016.67.4283
[31] Quail, D.F., Olson, O.C., Bhardwaj, P., et al. (2017) Obesity Alters the Lung Myeloid Cell Landscape to Enhance Breast Cancer Metastasis through IL5 and GM-CSF. Nature Cell Biology, 19, 974-987.
https://doi.org/10.1038/ncb3578
[32] Altea-Manzano, P., Doglioni, G., Liu, Y., et al. (2023) A Palmitate-Rich Metastatic Niche Enables Metastasis Growth via p65 Acetylation Resulting in PRO-Metastatic NF-κB Signaling. Nature Cancer, 4, 344-364.
https://doi.org/10.1038/s43018-023-00513-2
[33] Ecker, B.L., Lee, J.Y., Sterner, C.J., et al. (2019) Impact of Obesity on Breast Cancer Recurrence and Minimal Residual Disease. Breast Cancer Research, 21, Article No. 41.
https://doi.org/10.1186/s13058-018-1087-7
[34] Roy, R., Yang, J., Shimura, T., et al. (2022) Escape from Breast Tumor Dormancy: The Convergence of Obesity and Menopause. Applied Biological Sciences, 119, e2204758119.
https://doi.org/10.1073/pnas.2204758119
[35] Berrino, F., Villarini, A., Gargano, G., et al. (2023) The Effect of Diet on Breast Cancer Recurrence: The DIANA-5 Randomized Trial. Clinical Cancer Research, 30, 965-974.
https://doi.org/10.1158/1078-0432.CCR-23-1615
[36] Di Maso, M., Dal Maso, L., Augustin, L.S.A., et al. (2020) Adherence to the Mediterranean Diet and Mortality after Breast Cancer. Nutrients, 12, Article 3649.
https://doi.org/10.3390/nu12123649
[37] Castro-Espin, C., Bonet, C., Crous-Bou, M., et al. (2023) Association of Mediterranean Diet with Survival after Breast Cancer Diagnosis in Women from Nine European Countries: Results from the EPIC Cohort Study. BMC Medicine, 21, Article No. 225.
https://doi.org/10.1186/s12916-023-02934-3
[38] Chen, G., Leary, S., Niu, J., et al. (2023) The Role of the Mediterranean Diet in Breast Cancer Survivorship: A Systematic Review and Meta-Analysis of Observational Studies and Randomised Controlled Trials. Nutrients, 15, Article 2099.
https://doi.org/10.3390/nu15092099
[39] Flore, G., Deledda, A., Lombardo, M., et al. (2023) Effects of Functional and Nutraceutical Foods in the Context of the Mediterranean Diet in Patients Diagnosed with Breast Cancer. Antioxidants, 12, Article 1845.
https://doi.org/10.3390/antiox12101845
[40] Merra, G., Noce, A., Marrone, G., et al. (2021) Influence of Mediterranean Diet on Human Gut Microbiota. Nutrients, 13, Article 7.
https://doi.org/10.3390/nu13010007
[41] Schwingshackl, L., Morze, J. and Hoffmann, G. (2020) Mediterranean Diet and Health Status: Active Ingredients and Pharmacological Mechanisms. British Journal of Pharmacology, 177, 1241-1257.
https://doi.org/10.1111/bph.14778
[42] Martínez, N., Herrera, M., Frías, L., et al. (2019) A Combination of Hydroxytyrosol, Omega-3 Fatty Acids and Curcumin Improves Pain and Inflammation among Early Stage Breast Cancer Patients Receiving Adjuvant Hormonal Therapy: Results of a Pilot Study. Clinical and Translational Oncology, 21, 489-498.
https://doi.org/10.1007/s12094-018-1950-0
[43] Foroutan-Ghaznavi, M., Mazloomi, S.M., Montazeri, V., et al. (2022) Dietary Patterns in Association with the Expression of Pro-Metastatic Genes in Primary Breast Cancer. European Journal of Nutrition, 61, 3267-3284.
https://doi.org/10.1007/s00394-022-02884-1
[44] Spei, M.E., Bellos, I., Samoli, E., et al. (2023) Post-Diagnosis Dietary Patterns among Cancer Survivors in Relation to All-Cause Mortality and Cancer-Specific Mortality: A Systematic Review and Meta-Analysis of Cohort Studies. Nutrients, 15, Article 3860.
https://doi.org/10.3390/nu15173860
[45] Wang, F., Cai, H., Gu, K., et al. (2020) Adherence to Dietary Recommendations among Long-Term Breast Cancer Survivors and Cancer Outcome Associations. Cancer Epidemiology, Biomarkers & Prevention, 29, 386-395.
https://doi.org/10.1158/1055-9965.EPI-19-0872
[46] Vernieri, C., Ligorio, F., Zattarin, E., et al. (2020) Fasting-Mimicking Diet Plus Chemotherapy in Breast Cancer Treatment. Nature Communications, 11, Article No. 4274.
https://doi.org/10.1038/s41467-020-18194-1
[47] Jia, T., Liu, Y., Fan, Y., et al. (2022) Association of Healthy Diet and Physical Activity with Breast Cancer: Lifestyle Interventions and Oncology Education. Frontiers in Public Health, 10, Article 797794.
https://doi.org/10.3389/fpubh.2022.797794
[48] Rock, C.L., Thomson, C., Gansler, T., et al. (2020) American Cancer Society Guideline for Diet and Physical Activity for Cancer Prevention. A Cancer Journal for Clinicians, 70, 245-271.
https://doi.org/10.3322/caac.21591
[49] Morishita, S., Hamaue, Y., Fukushima, T., et al. (2020) Effect of Exercise on Mortality and Recurrence in Patients with Cancer: A Systematic Review and Meta-Analysis. Integrative Cancer Therapies, 19.
https://doi.org/10.1177/1534735420917462
[50] Lynch, B.M., Milne, R.L., English, D.R., et al. (2022) Linking Physical Activity to Breast Cancer: Text Mining Results and a Protocol for Systematically Reviewing Three Potential Mechanistic Pathways. Cancer Epidemiology, Biomarkers & Prevention, 31, 11-15.
https://doi.org/10.1158/1055-9965.EPI-21-0435
[51] Sheinboim, D., Parikh, S., Manich, P., et al. (2022) An Exercise-Induced Metabolic Shield in Distant Organs Blocks Cancer Progression and Metastatic Dissemination. Cancer Research, 82, 4164-4178.
https://doi.org/10.1158/0008-5472.CAN-22-0237
[52] Pistelli, M., Natalucci, V., Scortichini, L., et al. (2021) The Impact of Lifestyle Interventions in High-Risk Early Breast Cancer Patients: A Modeling Approach from a Single Institution Experience. Cancers, 13, Article 5539.
https://doi.org/10.3390/cancers13215539
[53] Wang, Y., Song, H., Yin, Y., et al. (2019) Cancer Survivors Could Get Survival Benefits from Postdiagnosis Physical Activity: A Meta-Analysis. Evidence-Based Complementary and Alternative Medicine, 2019, Article 1940903.
https://doi.org/10.1155/2019/1940903
[54] Lee, J. (2019) A Meta-Analysis of the Association between Physical Activity and Breast Cancer Mortality. Cancer Nursing, 42, 271-285.
https://doi.org/10.1097/NCC.0000000000000580
[55] Dethlefsen, C., Hansen, L.S., Lillelund, C., et al. (2017) Exercise-Induced Catecholamines Activate the Hippo Tumor Suppressor Pathway to Reduce Risks of Breast Cancer Development. Cancer Research, 77, 4894-4904.
https://doi.org/10.1158/0008-5472.CAN-16-3125
[56] Zheng, A., Zhang, L., Yang, J., et al. (2022) Physical Activity Prevents Tumor Metastasis through Modulation of Immune Function. Frontiers in Pharmacology, 13, Article 1034129.
https://doi.org/10.3389/fphar.2022.1034129
[57] Wang, X., Wang, N., Zhong, L., et al. (2020) Prognostic Value of Depression and Anxiety on Breast Cancer Recurrence and Mortality: A Systematic Review and Meta-Analysis of 282,203 Patients. Molecular Psychiatry, 25, 3186-3197.
https://doi.org/10.1038/s41380-020-00865-6
[58] Yang, Y., Sun, H., Luo, X., et al. (2022) Network Connectivity between Fear of Cancer Recurrence, Anxiety, and Depression in Breast Cancer Patients. Journal of Affective Disorders, 309, 358-367.
https://doi.org/10.1016/j.jad.2022.04.119
[59] Malgaroli, M., Szuhany, K.L., Riley, G., et al. (2023) Heterogeneity of Posttraumatic Stress, Depression, and Fear of Cancer Recurrence in Breast Cancer Survivors: A Latent Class Analysis. Journal of Cancer Survivorship, 17, 1510-1521.
https://doi.org/10.1007/s11764-022-01195-y
[60] Akechi, T., Yamaguchi, T., Uchida, M., et al. (2023) Smartphone Psychotherapy Reduces Fear of Cancer Recurrence among Breast Cancer Survivors: A Fully Decentralized Randomized Controlled Clinical Trial (J-SUPPORT 1703 Study). Journal of Clinical Oncology, 41, 1069-1078.
https://doi.org/10.1200/JCO.22.00699