[1]
|
Seidah, N.G. and Prat, A. (2021) The Multifaceted Biology of PCSK9. Endocrine Reviews, 43, 558-582. https://doi.org/10.1210/endrev/bnab035
|
[2]
|
Yurtseven, E., Ural, D., Baysal, K. and Tokgözoğlu, L. (2020) An Update on the Role of PCSK9 in Atherosclerosis. Journal of Atherosclerosis and Thrombosis, 27, 909-918. https://doi.org/10.5551/jat.55400
|
[3]
|
Seidah, N.G., Benjannet, S., Wickham, L., Marcinkiewicz, J., Jasmin, S.B., Stifani, S., et al. (2003) The Secretory Proprotein Convertase Neural Apoptosis-Regulated Convertase 1 (NARC-1): Liver Regeneration and Neuronal Differentiation. Proceedings of the National Academy of Sciences, 100, 928-933. https://doi.org/10.1073/pnas.0335507100
|
[4]
|
Xu, Q., Zhao, Y., He, N., Gao, R., Xu, W., Zhuo, X., et al. (2023) PCSK9: A Emerging Participant in Heart Failure. Biomedicine & Pharmacotherapy, 158, Article ID: 114106. https://doi.org/10.1016/j.biopha.2022.114106
|
[5]
|
Palee, S., McSweeney, C.M., Maneechote, C., Moisescu, D.M., Jaiwongkam, T., Kerdphoo, S., et al. (2019) PCSK9 Inhibitor Improves Cardiac Function and Reduces Infarct Size in Rats with Ischaemia/Reperfusion Injury: Benefits beyond Lipid‐Lowering Effects. Journal of Cellular and Molecular Medicine, 23, 7310-7319. https://doi.org/10.1111/jcmm.14586
|
[6]
|
Yang, C., Zeng, Y., Hu, Z. and Liang, H. (2020) PCSK9 Promotes the Secretion of Pro-Inflammatory Cytokines by Macrophages to Aggravate H/R-Induced Cardiomyocyte Injury via Activating NF-κB Signalling. General Physiology and Biophysics, 39, 123-134. https://doi.org/10.4149/gpb_2019057
|
[7]
|
Xiao, J., Bai, X., Liao, L., Zhou, M., Peng, J., Xiang, Q., et al. (2019) Hydrogen Sulfide Inhibits PCSK9 Expression through the PI3K/Akt-Srebp-2 Signaling Pathway to Influence Lipid Metabolism in Hepg2 Cells. International Journal of Molecular Medicine, 43, 2055-2063. https://doi.org/10.3892/ijmm.2019.4118
|
[8]
|
Wu, C., Tang, Z., Jiang, L., Li, X., Jiang, Z. and Liu, L. (2011) PCSK9 siRNA Inhibits HUVEC Apoptosis Induced by Ox-LDL via Bcl/Bax-Caspase9-Caspase3 Pathway. Molecular and Cellular Biochemistry, 359, 347-358. https://doi.org/10.1007/s11010-011-1028-6
|
[9]
|
Wang, X., Li, X., Liu, S., Brickell, A.N., Zhang, J., Wu, Z., et al. (2020) PCSK9 Regulates Pyroptosis via MtDNA Damage in Chronic Myocardial Ischemia. Basic Research in Cardiology, 115, Article No. 66. https://doi.org/10.1007/s00395-020-00832-w
|
[10]
|
Kong, N., Xu, Q., Cui, W., Feng, X. and Gao, H. (2022) PCSK9 Inhibitor Inclisiran for Treating Atherosclerosis via Regulation of Endothelial Cell Pyroptosis. Annals of Translational Medicine, 10, Article No. 1205. https://doi.org/10.21037/atm-22-4652
|
[11]
|
Bobiński, R., Dutka, M., Pizon, M., Waksmańska, W. and Pielesz, A. (2023) Ferroptosis, Acyl Starvation, and Breast Cancer. Molecular Pharmacology, 103, 132-144. https://doi.org/10.1124/molpharm.122.000607
|
[12]
|
Fang, X., Wang, H., Han, D., Xie, E., Yang, X., Wei, J., et al. (2019) Ferroptosis as a Target for Protection against Cardiomyopathy. Proceedings of the National Academy of Sciences, 116, 2672-2680. https://doi.org/10.1073/pnas.1821022116
|
[13]
|
Tang, Z., Peng, J., Ren, Z., Yang, J., Li, T., Li, T., et al. (2017) New Role of PCSK9 in Atherosclerotic Inflammation Promotion Involving the Tlr4/NF-κB Pathway. Atherosclerosis, 262, 113-122. https://doi.org/10.1016/j.atherosclerosis.2017.04.023
|
[14]
|
Matsui, Y., Takagi, H., Qu, X., Abdellatif, M., Sakoda, H., Asano, T., et al. (2007) Distinct Roles of Autophagy in the Heart during Ischemia and Reperfusion: Roles of AMP-Activated Protein Kinase and Beclin 1 in Mediating Autophagy. Circulation Research, 100, 914-922. https://doi.org/10.1161/01.res.0000261924.76669.36
|
[15]
|
Ding, Z., Wang, X., Liu, S., Shahanawaz, J., Theus, S., Fan, Y., et al. (2018) PCSK9 Expression in the Ischaemic Heart and Its Relationship to Infarct Size, Cardiac Function, and Development of Autophagy. Cardiovascular Research, 114, 1738-1751. https://doi.org/10.1093/cvr/cvy128
|
[16]
|
Catanzaro, M.P., Weiner, A., Kaminaris, A., Li, C., Cai, F., Zhao, F., et al. (2019) Doxorubicin‐Induced Cardiomyocyte Death Is Mediated by Unchecked Mitochondrial Fission and Mitophagy. The FASEB Journal, 33, 11096-11108. https://doi.org/10.1096/fj.201802663r
|
[17]
|
Li, X., Dai, F., Wang, H., Wei, G., Jiang, Q., Yin, P., et al. (2022) PCSK9 Participates in Oxidized‐Low Density Lipoprotein‐Induced Myocardial Injury through Mitochondrial Oxidative Stress and Drp1‐Mediated Mitochondrial Fission. Clinical and Translational Medicine, 12, e729. https://doi.org/10.1002/ctm2.729
|
[18]
|
Ding, Z., Liu, S., Wang, X., Deng, X., Fan, Y., Shahanawaz, J., et al. (2015) Cross-Talk between LOX-1 and PCSK9 in Vascular Tissues. Cardiovascular Research, 107, 556-567. https://doi.org/10.1093/cvr/cvv178
|
[19]
|
Lagace, T.A., Curtis, D.E., Garuti, R., McNutt, M.C., Park, S.W., Prather, H.B., et al. (2006) Secreted PCSK9 Decreases the Number of LDL Receptors in Hepatocytes and Inlivers of Parabiotic Mice. Journal of Clinical Investigation, 116, 2995-3005. https://doi.org/10.1172/jci29383
|
[20]
|
Adorni, M.P., Cipollari, E., Favari, E., Zanotti, I., Zimetti, F., Corsini, A., et al. (2017) Inhibitory Effect of PCSK9 on Abca1 Protein Expression and Cholesterol Efflux in Macrophages. Atherosclerosis, 256, 1-6. https://doi.org/10.1016/j.atherosclerosis.2016.11.019
|
[21]
|
Bai, X., Peng, J., Wang, M., Xiao, J., Xiang, Q., Ren, Z., et al. (2018) PCSK9: A Potential Regulator of Apoe/Apoer2 against Inflammation in Atherosclerosis? Clinica Chimica Acta, 483, 192-196. https://doi.org/10.1016/j.cca.2018.04.040
|
[22]
|
Cheng, J.M., Oemrawsingh, R.M., Garcia-Garcia, H.M., Boersma, E., van Geuns, R., Serruys, P.W., et al. (2016) PCSK9 in Relation to Coronary Plaque Inflammation: Results of the ATHEROREMO-IVUS Study. Atherosclerosis, 248, 117-122. https://doi.org/10.1016/j.atherosclerosis.2016.03.010
|
[23]
|
Navarese, E.P., Kolodziejczak, M., Winter, M., Alimohammadi, A., Lang, I.M., Buffon, A., et al. (2017) Association of PCSK9 with Platelet Reactivity in Patients with Acute Coronary Syndrome Treated with Prasugrel or Ticagrelor: The PCSK9-REACT Study. International Journal of Cardiology, 227, 644-649. https://doi.org/10.1016/j.ijcard.2016.10.084
|
[24]
|
Zhang, Y., Liu, J., Li, S., Xu, R., Sun, J., Tang, Y., et al. (2014) Proprotein Convertase Subtilisin/Kexin Type 9 Expression Is Transiently Up-Regulated in the Acute Period of Myocardial Infarction in Rat. BMC Cardiovascular Disorders, 14, Article No. 192. https://doi.org/10.1186/1471-2261-14-192
|
[25]
|
Abboud, S., Karhunen, P.J., Lütjohann, D., Goebeler, S., Luoto, T., Friedrichs, S., et al. (2007) Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Gene Is a Risk Factor of Large-Vessel Atherosclerosis Stroke. PLOS ONE, 2, e1043. https://doi.org/10.1371/journal.pone.0001043
|
[26]
|
Lei, J. (2014) Correlation of PCSK9 Gene Polymorphism with Cerebral Ischemic Stroke in Xinjiang Han and Uygur Populations. Medical Science Monitor, 20, 1758-1767. https://doi.org/10.12659/msm.892091
|
[27]
|
Slimani, A., Harira, Y., Trabelsi, I., Jomaa, W., Maatouk, F., Hamda, K.B., et al. (2014) Effect of E670G Polymorphism in PCSK9 Gene on the Risk and Severity of Coronary Heart Disease and Ischemic Stroke in a Tunisian Cohort. Journal of Molecular Neuroscience, 53, 150-157. https://doi.org/10.1007/s12031-014-0238-2
|
[28]
|
Pinard, A., Jones, G.T. and Milewicz, D.M. (2019) Genetics of Thoracic and Abdominal Aortic Diseases. Circulation Research, 124, 588-606. https://doi.org/10.1161/circresaha.118.312436
|
[29]
|
Tang, Z., Li, T., Peng, J., Zheng, J., Li, T., Liu, L., et al. (2018) PCSK9: A Novel Inflammation Modulator in Atherosclerosis? Journal of Cellular Physiology, 234, 2345-2355. https://doi.org/10.1002/jcp.27254
|
[30]
|
Singh, P. and Zheng, X. (2014) Dual Regulation of Myocardin Expression by Tumor Necrosis Factor-Α in Vascular Smooth Muscle Cells. PLOS ONE, 9, e112120. https://doi.org/10.1371/journal.pone.0112120
|
[31]
|
Gencer, B., Montecucco, F., Nanchen, D., Carbone, F., Klingenberg, R., Vuilleumier, N., et al. (2015) Prognostic Value of PCSK9 Levels in Patients with Acute Coronary Syndromes. European Heart Journal, 37, 546-553. https://doi.org/10.1093/eurheartj/ehv637
|
[32]
|
Walley, K.R., Thain, K.R., Russell, J.A., Reilly, M.P., Meyer, N.J., Ferguson, J.F., et al. (2014) PCSK9 Is a Critical Regulator of the Innate Immune Response and Septic Shock Outcome. Science Translational Medicine, 6, 258ra143. https://doi.org/10.1126/scitranslmed.3008782
|
[33]
|
Walley, K.R. (2016) Role of Lipoproteins and Proprotein Convertase Subtilisin/Kexin Type 9 in Endotoxin Clearance in Sepsis. Current Opinion in Critical Care, 22, 464-469. https://doi.org/10.1097/mcc.0000000000000351
|
[34]
|
Leung, A.K.K., Genga, K.R., Topchiy, E., Cirstea, M., Shimada, T., Fjell, C., et al. (2019) Reduced Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) Function Increases Lipoteichoic Acid Clearance and Improves Outcomes in Gram Positive Septic Shock Patients. Scientific Reports, 9, Article No. 10588. https://doi.org/10.1038/s41598-019-46745-0
|
[35]
|
Robinson, J.G., Farnier, M., Krempf, M., Bergeron, J., Luc, G., Averna, M., et al. (2015) Efficacy and Safety of Alirocumab in Reducing Lipids and Cardiovascular Events. New England Journal of Medicine, 372, 1489-1499. https://doi.org/10.1056/nejmoa1501031
|
[36]
|
Sabatine, M.S., Giugliano, R.P., Keech, A.C., Honarpour, N., Wiviott, S.D., Murphy, S.A., et al. (2017) Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. New England Journal of Medicine, 376, 1713-1722. https://doi.org/10.1056/nejmoa1615664
|