[1]
|
Harbeck, N. and Gnant, M. (2017) Breast Cancer. The Lancet, 389, 1134-1150. https://doi.org/10.1016/S0140-6736(16)31891-8
|
[2]
|
Giaquinto, A.N., et al. (2022) Breast Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 524-541. https://doi.org/10.3322/caac.21754
|
[3]
|
Rea, D., Coppola, G., Palma, G., Barbieri, A., Luciano, A., Del Prete, P., Rossetti, S., Berretta, M., Facchini, G., Perdona, S., et al. (2018) Microbiota Effects on Cancer: From Risks to Therapies. Oncotarget, 9, 17915-17927. https://doi.org/10.18632/oncotarget.24681
|
[4]
|
Fernández, M.F., Reina-Pérez, I., Astorga, J.M., Rodríguez-Carrillo, A., Plaza-Díaz, J. and Fontana, L. (2018) Breast Cancer and Its Relationship with the Microbiota. International Journal of Environmental Research and Public Health, 15, Article 1747. https://doi.org/10.3390/ijerph15081747
|
[5]
|
Chan, A.A., Bashir, M., Rivas, M.N., Duvall, K., Sieling, P.A., Pieber, T.R., et al. (2016) Characterization of the Microbiome of Nipple Aspirate Fluid of Breast Cancer Survivors. Scientific Reports, 6, Article No. 28061. https://doi.org/10.1038/srep28061
|
[6]
|
Nejman, D., et al. (2020) The Human Tumor Microbiome Is Composed of Tumor Type—Specific in Tracellular Bacteria. Science, 368, 973-980. https://doi.org/10.1126/science.aay9189
|
[7]
|
Argolo, D.F., Hudis, C.A. and Iyengar, N.M. (2016) Obesity and Cancer—Opportunities Tobreak the Link. Current Breast Cancer Reports, 8, 22-31. https://doi.org/10.1007/s12609-016-0200-0
|
[8]
|
Laborda-Illanes, A., Sanchez-Alcoholado, L., Dominguez-Recio, M.E., Jimenez-Rodriguez, B., Lavado, R., Comino-Méndez, I., Alba, E. and Queipo-Ortuño, M.I. (2020) Breast and Gut Microbiota Action Mechanisms in Breast Cancer Pathogenesis and Treatment. Cancers (Basel), 12, Article 2465. https://doi.org/10.3390/cancers12092465
|
[9]
|
Xue, M., Ji, X., Liang, H., Liu, Y., Wang, B., Sun, L. and Li, W. (2018) The Effect of Fucoidan on Intestinal Flora and Intestinal Barrier Function in Rats with Breast Cancer. Food & Function, 9, 1214-1223. https://doi.org/10.1039/C7FO01677H
|
[10]
|
Urbaniak, C., Cummins, J., Brackstone, M., Macklaim, J.M., Gloor, G.B., Baban, C.K., et al. (2014) Microbiota of Human Breast Tissue. Applied and Environmental Microbiology, 80, 3007-3014. https://doi.org/10.1128/AEM.00242-14
|
[11]
|
Hieken, T.J., Chen, J., Hoskin, T.L., Walther-Antonio, M., Johnson, S., Ramaker, S., Xiao, J., Radisky, D.C., Knutson, K.L., Kalari, K.R, Yao, J.Z., Baddour, L.M., Chia, N. and Degnim, A.C. (2016) The Microbiome of Aseptically Collected Human Breast Tissue in Benign and Malignant Disease. Scientific Reports, 6, Article No. 30751. https://doi.org/10.1038/srep30751
|
[12]
|
Luan, B., Ge, F., Lu, X., Li, Z., Zhang, H., Wu, J., Yang, Q., Chen, L., Zhang, W. and Chen, W. (2024) Changes in the Fecal Microbiota of Breast Cancer Patients Based on 16S rRNA Gene Sequencing: A Systematic Review and Meta-Analysis. Clinical and Translational Oncology, 26, 1480-1496. https://doi.org/10.1007/s12094-023-03373-5
|
[13]
|
He, C., Liu, Y., Ye, S., Yin, S. and Gu, J. (2021) Changes of Intestinal Microflora of Breast Cancer in Premenopausal Women. European Journal of Clinical Microbiology & Infectious Diseases, 40, 503-513. https://doi.org/10.1007/s10096-020-04036-x
|
[14]
|
Zhu, J., Liao, M., Yao, Z., Liang, W., Li, Q., Liu, J., Yang, H., Ji, Y., Wei, W., Tan, A., Liang, S., Chen, Y., Lin, H., Zhu, X., Huang, S., Tian, J., Tang, R., Wang, Q. and Mo, Z. (2018) Breast Cancer in Postmenopausal Women Is Associated with an Altered Gut Metagenome. Microbiome, 6, Article No. 136. https://doi.org/10.1186/s40168-018-0515-3
|
[15]
|
Urbaniak, C., Gloor, G.B., Brackstone, M., Scott, L., Tangney, M. and Reida, G. (2016) The Microbiota of Breast Tissue and Its Association with Breast Cancer. Applied and Environmental Microbiology, 82, 5039-5048. https://doi.org/10.1128/AEM.01235-16
|
[16]
|
Gori, S., Inno, A., Belluomini, L., Bocus, P., Bisoffi, Z., Russo, A. and Arcaro, G. (2019) Gut Microbiota and Cancer: How Gut Microbiota Modulates activity, Efficacy and Toxicity of Antitumoral Therapy. Critical Reviews in Oncology/Hematology, 143, 139-147. https://doi.org/10.1016/j.critrevonc.2019.09.003
|
[17]
|
Vivarelli, S., Salemi, R., Candido, S., Falzone, L., Santagati, M., Stefani, S., Torino, F., Banna, G.L., Tonini, G. and Libra, M. (2019) Gut Microbiota and Cancer: From Pathogenesis to Therapy. Cancers, 11, Article 38. https://doi.org/10.3390/cancers11010038
|
[18]
|
DeSantis, C.E., Ma, J., Gaudet, M.M., Newman, L.A., Miller, K.D., Goding Sauer, A., Jemal, A. and Siegel, R.L. (2019) Breast Cancer Statistics, 2019. CA: A Cancer Journal for Clinicians, 69, 438-451. https://doi.org/10.3322/caac.21583
|
[19]
|
Poutahidis, T., Varian, B.J., Levkovich, T., Lakritz, J.R., Mirabal, S., Kwok, C., Ibrahim, Y.M., Kearney, S.M., Chatzigiagkos, A., Alm, E.J. and Erdman, S.E. (2015) Dietary Microbes Modulate Transgenerational Cancer Risk. Cancer Research, 75, 1197-1204. https://doi.org/10.1158/0008-5472.CAN-14-2732
|
[20]
|
Dabek, M, McCrae, S.I., Stevens, V.J., Duncan, S.H. and Louis, P. (2008) Distribution of Beta-Glucosidase and Beta-Glucuronidase Activity and of Beta-Glucuronidase Gene Gus in Human Colonic Bacteria. FEMS Microbiology Ecology, 66, 487-495. https://doi.org/10.1111/j.1574-6941.2008.00520.x
|
[21]
|
Ransjo, U.O.A.A., Gylbert, L. and Jurelll, G. (2009) Bacteria in the Female Breast. Scandinavian Journal of Plastic and Reconstructive Surgery, 19, 87-89. https://doi.org/10.3109/02844318509052869
|
[22]
|
Key, T., Appleby, P., Barnes, I. and Reeves, G. (2002) Endogenous Hormones and Breast Cancer Collaborative Group. Endogenous Sex Hormones and Breast Cancer in Postmenopausal Women: Reanalysis of Nine Prospective Studies. Journal of the National Cancer Institute, 94, 606-616. https://doi.org/10.1093/jnci/94.8.606
|
[23]
|
Gu, H.-F., Mao, X.-Y. and Du, M. (2019) Prevention of Breast Cancer by Dietary Polyphenols-Role of Cancer Stem Cells. Critical Reviews in Food Science and Nutrition, 60, 810-825. https://doi.org/10.1080/10408398.2018.1551778
|
[24]
|
Parida, S. and Sharma, D. (2020) Microbial Alterations and Risk Factors of Breast Cancer: Connections and Mechanistic Insights. Cells, 9, Article 1091. https://doi.org/10.3390/cells9051091
|
[25]
|
Mikó, E., Vida, A., Kovács, T., Ujlaki, G., Trencsényi, G., Márton, J., Sári, Z., Kovács, P., Boratkó, A., Hujber, Z., et al. (2018) Lithocholic Acid, a Bacterial Metabolite Reduces Breast Cancer Cell Proliferation and Aggressiveness. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1859, 958-974. https://doi.org/10.1016/j.bbabio.2018.04.002
|
[26]
|
Akrida, I., Mulita, F., Plachouri, K.M., Benetatos, N., Maroulis, I. and Papadaki, H. (2023) Epithelial to Mesenchymal Transition (EMT) in Metaplastic Breast Cancer and Phyllodes Breast Tumors. Medical Oncology, 41, Article No. 20. https://doi.org/10.1007/s12032-023-02259-4
|
[27]
|
Sohn, E.J., Jung, D.B., Lee, H., Han, I., Lee, J., Lee, H. and Kim, S.H. (2018) CNOT2 Promotes Proliferation and Angiogenesis via VEGF Signaling in MDA-MB-231 Breast Cancer Cells. Cancer Letters, 412, 88-98. https://doi.org/10.1016/j.canlet.2017.09.052
|
[28]
|
Krishnamurthy, K., Wang, G., Rokhfeld, D. and Bieberich, E. (2008) Deoxycholate Promotes Survival of Breast Cancer Cells by Reducing the Level of Pro-Apoptotic Ceramide. Breast Cancer Research, 10, Article No. R106. https://doi.org/10.1186/bcr2211
|
[29]
|
Costarelli, V. and Sanders, T.A. (2002) Plasma Deoxycholic Acid Concentration Is Elevated in Postmenopausal Women with Newly Diagnosed Breast Cancer. European Journal of Clinical Nutrition, 56, 925-927. https://doi.org/10.1038/sj.ejcn.1601396
|
[30]
|
Cao, Z.-G., Qin, X.-B., Liu, F.-F. and Zhou, L.-L. (2015) Tryptophan-Induced Pathogenesis of Breast Cancer. African Health Sciences, 15, 982-985. https://doi.org/10.4314/ahs.v15i3.36
|
[31]
|
Bekki, K., Vogel, H., Li, W., Ito, T., Sweeney, C., Haarmann-Stemmann, T., Matsumura, F. and Vogel, C.F.A. (2015) The Aryl Hydrocarbon Receptor (AhR) Mediates Resistance to Apoptosis Induced in Breast Cancer Cells. Pesticide Biochemistry and Physiology, 120, 5-13. https://doi.org/10.1016/j.pestbp.2014.12.021
|
[32]
|
Mikó, E., Kovács, T., Sebő, É., Tóth, J., Csonka, T., Ujlaki, G., Sipos, A., Szabó, J., Méhes, G. and Bai, P. (2019) Microbiome—Microbial Metabolome—Cancer Cell Interactions in Breast Cancer—Familiar, but Unexplored. Cells, 8, Article 293. https://doi.org/10.3390/cells8040293
|
[33]
|
Parada Venegas, D., De la Fuente, M.K., Landskron, G., González, M.J., Quera, R., Dijkstra, G., Harmsen, H.J.M., Faber, K.N. and Hermoso, M.A. (2019) Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Frontiers in Immunology, 10, Article 277. https://doi.org/10.3389/fimmu.2019.00277
|
[34]
|
Mirzaei, R., Afaghi, A., Babakhani, S., Sohrabi, M.R., Hosseini-Fard, S.R., Babolhavaeji, K., Khani Ali Akbari, S., Yousefimashouf, R. and Karampoor, S. (2021) Role of Microbiota-Derived Short-Chain Fatty Acids in Cancer Development and Prevention. Biomedicine & Pharmacotherapy, 139, Article 111619. https://doi.org/10.1016/j.biopha.2021.111619
|
[35]
|
Matthews, G.M., Howarth, G.S. and Butler, R.N. (2012) Short-Chain Fatty Acids Induce Apoptosis in Colon Cancer Cells Associated with Changes to Intracellular Redox State and Glucose Metabolism. Chemotherapy, 58, 102-109. https://doi.org/10.1159/000335672
|
[36]
|
Muradás, T.C., Freitas, R.D., Gonçalves, J.I., Xavier, F.A. and Marinowic, D.R. (2024) Potential Antitumor Effects of Short-Chain Fatty Acids in Breast Cancer Models. American Journal of Cancer Research, 14, 1999-2019. https://doi.org/10.62347/ETUQ6763
|
[37]
|
Elangovan, S., Pathania, R., Ramachandran, S., Ananth, S., Padia, R.N., Lan, L., Singh, N, Martin, P.M., Hawthorn, L., Prasad, P.D., Ganapathy, V. and Thangaraju, M. (2014) The Niacin/Butyrate Receptor GPR109A Suppresses Mammary Tumorigenesis by Inhibiting Cell Survival. Cancer Research, 74, 1166-1178. https://doi.org/10.1158/0008-5472.CAN-13-1451
|
[38]
|
Smith, P.M., Howitt, M.R., Panikov, N., Michaud, M., Gallini, C.A., Bohlooly-Y, M., Glickman, J.N. and Garrett, W.S. (2013) The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis. Science, 341, 569-573. https://doi.org/10.1126/science.1241165
|
[39]
|
Thirunavukkarasan, M., Wang, C., Rao, A., Hind, T., Teo, Y.R., Siddiquee, A.A., Goghari, M.A.I., Kumar, A.P. and Herr, D.R. (2017) Short-Chain Fatty Acid Receptors Inhibit Invasive Phenotypes in Breast Cancer Cells. PLOS ONE, 12, e0186334. https://doi.org/10.1371/journal.pone.0186334
|
[40]
|
Scott, A.J., Alexander, J.L., Merrifield, C.A., Cunningham, D., Jobin, C., Brown, R., et al. (2019) International Cancer Microbiome Consortium Consensus Statement on the Role of the Human Microbiome in Carcinogenesis. Gut, 68, 1624-1632. https://doi.org/10.1136/gutjnl-2019-318556
|
[41]
|
Rao, V.P., Poutahidis, T., Fox, J.G. and Erdman, S.E. (2007) Breast Cancer: Should Gastrointestinal Bacteria Be on Our Radar Screen? Cancer Research, 67, 847-850. https://doi.org/10.1158/0008-5472.CAN-06-3468
|
[42]
|
Poutahidis, T., Kearney, S.M., Levkovich, T., et al. (2013) Microbial Symbionts Accelerate Wound Healing via the Neuropeptide Hormone Oxytocin. PLOS ONE, 8, e78898. https://doi.org/10.1371/journal.pone.0078898
|
[43]
|
Poutahidis, T., Kleinewietfeld, M., Smillie, C., et al. (2013) Microbial Reprogramming Inhibits Western Diet-Associated Obesity. PLOS ONE, 8, e68596. https://doi.org/10.1371/journal.pone.0068596
|
[44]
|
Lakritz, J.R., Poutahidis, T., Levkovich, T., et al. (2014) Beneficial Bacteria Stimulate Host Immune Cells to Counteract Dietary and Genetic Predisposition to Mammary Cancer in Mice. International Journal of Cancer, 135, 529-540. https://doi.org/10.1002/ijc.28702
|
[45]
|
Al-Hatamleh, M.A.I., Ahmad, S., Boer, J.C., Lim, J.K., Chen, X., Plebanski, M. and Mohamud, R. (2019) A Perspective Review on the Role of Nanomedicine in the Modulation of TNF-TNFR2 Axis in Breast Cancer Immunotherapy. Journal of Oncology, 2019, Article ID: 6313242. https://doi.org/10.1155/2019/6313242
|
[46]
|
Weitzenfeld, P., Meron, N., Leibovich-Rivkin, T., Meshel, T. and Ben-Baruch, A. (2013) Progression of Luminal Breast Tumors Is Promoted by a ménage à trois between the Inflammatory Cytokine TNFα and the Hormonal and Growth-Supporting Arms of the Tumor Microenvironment. Mediators of Inflammation, 2013, Article ID: 720536. https://doi.org/10.1155/2013/720536
|
[47]
|
Rao, V.P., Poutahidis, T., Ge, Z., Nambiar, P.R., Boussahmain, C., Wang, Y.Y., Horwitz, B.H., Fox, J.G. and Erdman, S.E. (2006) Innate Immune Inflammatory Response against Enteric Bacteria Helicobacter Hepaticus Induces Mammary Adenocarcinoma in Mice. Cancer Research, 66, 7395-7400. https://doi.org/10.1158/0008-5472.CAN-06-0558
|
[48]
|
Rutkowski, M.R., Stephen, T.L., Svoronos, N., et al. (2015) Microbially Driven TLR5-Dependent Signaling Governs Distal Malignant Progression through Tumor-Promoting Inflammation. Cancer Cell, 27, 27-40. https://doi.org/10.1016/j.ccell.2014.11.009
|
[49]
|
Azab, B., Bhatt, V.R., Phookan, J., Murukutla, S., Kohn, N., Terjanian, T. and Widmann, W.D. (2012) Usefulness of the Neutrophil-to-Lymphocyte Ratio in Predicting Short-and Long-Term Mortality in Breast Cancer Patients. Annals of Surgical Oncology, 19, 217-224. https://doi.org/10.1245/s10434-011-1814-0
|
[50]
|
Rao, V.P., Poutahidis, T., Ge, Z.M., Nambiar, P.R., Boussahmain, C., Wang, Y.Y., et al. (2006) Innate Immune Inflammatory Response against Enteric Bacteria Helicobacter Hepaticus Induces Mammary Adenocarcinoma in Mice. Cancer Research, 66, 7395-7400. https://doi.org/10.1158/0008-5472.CAN-06-0558
|
[51]
|
Álvarez-Mercado, A.I., Del Valle Cano, A., Fernández, M.F. and Fontana, L. (2023) Gut Microbiota and Breast Cancer: The Dual Role of Microbes. Cancers (Basel), 15, Article 443. https://doi.org/10.3390/cancers15020443
|
[52]
|
Koppel, N., Maini Rekdal, V. and Balskus, E.P. (2017) Chemical Transformation of Xenobiotics by the Human Gut Microbiota. Science, 356, eaag2770. https://doi.org/10.1126/science.aag2770
|
[53]
|
Terrisse, S., Derosa, L., Iebba, V., Ghiringhelli, F., Vaz-Luis, I., Kroemer, G., et al. (2021) Intestinal Microbiota Influences Clinical Outcome and Side Effects of Early Breast Cancer Treatment. Cell Death & Differentiation, 28, 2778-2796. https://doi.org/10.1038/s41418-021-00784-1
|
[54]
|
Viaud, S., Saccheri, F., Mignot, G., Yamazaki, T., Daillère, R., Hannani, D., et al. (2013) The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science, 342, 971-976. https://doi.org/10.1126/science.1240537
|
[55]
|
Daillère, R., Vétizou, M., Waldschmitt, N., Yamazaki, T., Isnard, C., Poirier-Colame, V., et al. (2016) Enterococcus Hirae and Barnesiella Intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. Immunity, 45, 931-943. https://doi.org/10.1016/j.immuni.2016.09.009
|
[56]
|
Joyce, K., Saxena, S., Williams, A., Damurjian, C., Auricchio, N., Aluotto, S., et al. (2010) Antimicrobial Spectrum of the Antitumor Agent, Cisplatin. The Journal of Antibiotics, 63, 530-532. https://doi.org/10.1038/ja.2010.64
|
[57]
|
Zhao, L., Xing, C., Sun, W., Hou, G., Yang, G. and Yuan, L. (2018) Lactobacillus Supplementation Prevents Cisplatin-Induced Cardiotoxicity Possibly by Inflammation Inhibition. Cancer Chemotherapy and Pharmacology, 82, 999-1008. https://doi.org/10.1007/s00280-018-3691-8
|
[58]
|
Pflug, N., Kluth, S., Vehreschild, J.J., Bahlo, J., Tacke, D., Biehl, L., Eichhorst, B., Fischer, K., Cramer, P., Fink, A.M., von Bergwelt-Baildon, M., Stilgenbauer, S., Hallek, M., Cornely, O.A. and Vehreschild, M.J. (2016) Efficacy of Antineoplastic Treatment Is Associated with the Use of Antibiotics that Modulate Intestinal Microbiota. Oncoimmunology, 5, e1150399. https://doi.org/10.1080/2162402X.2016.1150399
|
[59]
|
Di Modica, M., Gargari, G., Regondi, V., Bonizzi, A., Arioli, S., Belmonte, B., De Cecco, L., Fasano, E., Bianchi, F., Bertolotti, A., Tripodo, C., Villani, L., Corsi, F., Guglielmetti, S., Balsari, A., Triulzi, T. and Tagliabue, E. (2021) Gut Microbiota Condition the Therapeutic Efficacy of Trastuzumab in HER2-Positive Breast Cancer. Cancer Research, 81, 2195-2206. https://doi.org/10.1158/0008-5472.CAN-20-1659
|
[60]
|
Li, Y., Dong, B., Wu, W., Wang, J., Jin, H., Chen, K., Huang, K., Huang, S. and Yao, Y. (2022) Metagenomic Analyses Reveal Distinct Gut Microbiota Signature for Predicting the Neoadjuvant Chemotherapy Responsiveness in Breast Cancer Patients. Frontiers in Oncology, 12, Article 865121. https://doi.org/10.3389/fonc.2022.865121
|
[61]
|
Rossi, T., Vergara, D., Fanini, F., Maffia, M., Bravaccini, S. and Pirini, F. (2020) Microbiota-Derived Metabolites in Tumor Progression and Metastasis. International Journal of Molecular Sciences, 21, Article 5786. https://doi.org/10.3390/ijms21165786
|
[62]
|
Wang, H. and Mao, X. (2020) Evaluation of the Efficacy of Neoadjuvant Chemotherapy for Breast Cancer. Drug Design, Development and Therapy, 14, 2423-2433. https://doi.org/10.2147/DDDT.S253961
|
[63]
|
Soltan Dallal, M.M., Yazdi, M.H., Holakuyee, M., Hassan, Z.M., Abolhassani, M. and Mahdavi, M. (2012) Lactobacillus casei ssp.casei Induced Th1 Cytokine Profile and Natural Killer Cells Activity in Invasive Ductal Carcinoma Bearing Mice. Iranian Journal of Allergy, Asthma and Immunology, 11, 183-189.
|
[64]
|
de Moreno de LeBlanc, A., Matar, C., LeBlanc, N. and Perdigón, G. (2005) Effects of Milk Fermented by Lactobacillus helveticusR389 on a Murine Breast Cancer Model. Breast Cancer Research, 7, Article No. R477. https://doi.org/10.1186/bcr1032
|
[65]
|
Vincenzi, A., Goettert, M.I. and Volken de Souza, C.F. (2021) An Evaluation of the Effects of Probiotics on Tumoral Necrosis Factor (TNF-α) Signaling and Gene Expression. Cytokine & Growth Factor Reviews, 57, 27-38. https://doi.org/10.1016/j.cytogfr.2020.10.004
|
[66]
|
Thu, M.S., Ondee, T., Nopsopon, T., Farzana, I.A.K., Fothergill, J.L., Hirankarn, N., Campbell, B.J. and Pongpirul, K. (2023) Effect of Probiotics in Breast Cancer: A Systematic Review and Meta-Analysis. Biology (Basel), 12, Article 280. https://doi.org/10.3390/biology12020280
|
[67]
|
Juan, Z., Chen, J., Ding, B., Liang, Y.P., Liu, K., Wang, L., Le, Y., Liao, Q., Shi, J., Huang, J., Wu, Y., Ma, D., Ouyang, W. and Tong, J. (2022) Probiotic Supplement Attenuates Chemotherapy-Related Cognitive Impairment in Patients with Breast Cancer: A Randomised, Double-Blind, and Placebo-Controlled Trial. European Journal of Cancer, 161, 10-22. https://doi.org/10.1016/j.ejca.2021.11.006
|
[68]
|
Zeng, T., Deng, Y.H., Lin, C.H., Chen, X.X., Jia, H.X., Hu, X.W., Xia, T., Ling, Y., Zhang, L.H. and Cao, T.F. (2024) A Randomized Trial of Bacteroides Fragilis 839 on Preventing Chemotherapy-Induced Myelosuppression and Gastrointestinal Adverse Effects in Breast Cancer Patients. Asia Pacific Journal of Clinical Nutrition, 33, 23-32.
|