|
[1]
|
Harbeck, N. and Gnant, M. (2017) Breast Cancer. The Lancet, 389, 1134-1150. [Google Scholar] [CrossRef]
|
|
[2]
|
Giaquinto, A.N., et al. (2022) Breast Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 524-541. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Rea, D., Coppola, G., Palma, G., Barbieri, A., Luciano, A., Del Prete, P., Rossetti, S., Berretta, M., Facchini, G., Perdona, S., et al. (2018) Microbiota Effects on Cancer: From Risks to Therapies. Oncotarget, 9, 17915-17927. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Fernández, M.F., Reina-Pérez, I., Astorga, J.M., Rodríguez-Carrillo, A., Plaza-Díaz, J. and Fontana, L. (2018) Breast Cancer and Its Relationship with the Microbiota. International Journal of Environmental Research and Public Health, 15, Article 1747. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Chan, A.A., Bashir, M., Rivas, M.N., Duvall, K., Sieling, P.A., Pieber, T.R., et al. (2016) Characterization of the Microbiome of Nipple Aspirate Fluid of Breast Cancer Survivors. Scientific Reports, 6, Article No. 28061. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Nejman, D., et al. (2020) The Human Tumor Microbiome Is Composed of Tumor Type—Specific in Tracellular Bacteria. Science, 368, 973-980. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Argolo, D.F., Hudis, C.A. and Iyengar, N.M. (2016) Obesity and Cancer—Opportunities Tobreak the Link. Current Breast Cancer Reports, 8, 22-31. [Google Scholar] [CrossRef]
|
|
[8]
|
Laborda-Illanes, A., Sanchez-Alcoholado, L., Dominguez-Recio, M.E., Jimenez-Rodriguez, B., Lavado, R., Comino-Méndez, I., Alba, E. and Queipo-Ortuño, M.I. (2020) Breast and Gut Microbiota Action Mechanisms in Breast Cancer Pathogenesis and Treatment. Cancers (Basel), 12, Article 2465. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Xue, M., Ji, X., Liang, H., Liu, Y., Wang, B., Sun, L. and Li, W. (2018) The Effect of Fucoidan on Intestinal Flora and Intestinal Barrier Function in Rats with Breast Cancer. Food & Function, 9, 1214-1223. [Google Scholar] [CrossRef]
|
|
[10]
|
Urbaniak, C., Cummins, J., Brackstone, M., Macklaim, J.M., Gloor, G.B., Baban, C.K., et al. (2014) Microbiota of Human Breast Tissue. Applied and Environmental Microbiology, 80, 3007-3014. [Google Scholar] [CrossRef]
|
|
[11]
|
Hieken, T.J., Chen, J., Hoskin, T.L., Walther-Antonio, M., Johnson, S., Ramaker, S., Xiao, J., Radisky, D.C., Knutson, K.L., Kalari, K.R, Yao, J.Z., Baddour, L.M., Chia, N. and Degnim, A.C. (2016) The Microbiome of Aseptically Collected Human Breast Tissue in Benign and Malignant Disease. Scientific Reports, 6, Article No. 30751. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Luan, B., Ge, F., Lu, X., Li, Z., Zhang, H., Wu, J., Yang, Q., Chen, L., Zhang, W. and Chen, W. (2024) Changes in the Fecal Microbiota of Breast Cancer Patients Based on 16S rRNA Gene Sequencing: A Systematic Review and Meta-Analysis. Clinical and Translational Oncology, 26, 1480-1496. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
He, C., Liu, Y., Ye, S., Yin, S. and Gu, J. (2021) Changes of Intestinal Microflora of Breast Cancer in Premenopausal Women. European Journal of Clinical Microbiology & Infectious Diseases, 40, 503-513. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Zhu, J., Liao, M., Yao, Z., Liang, W., Li, Q., Liu, J., Yang, H., Ji, Y., Wei, W., Tan, A., Liang, S., Chen, Y., Lin, H., Zhu, X., Huang, S., Tian, J., Tang, R., Wang, Q. and Mo, Z. (2018) Breast Cancer in Postmenopausal Women Is Associated with an Altered Gut Metagenome. Microbiome, 6, Article No. 136. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Urbaniak, C., Gloor, G.B., Brackstone, M., Scott, L., Tangney, M. and Reida, G. (2016) The Microbiota of Breast Tissue and Its Association with Breast Cancer. Applied and Environmental Microbiology, 82, 5039-5048. [Google Scholar] [CrossRef]
|
|
[16]
|
Gori, S., Inno, A., Belluomini, L., Bocus, P., Bisoffi, Z., Russo, A. and Arcaro, G. (2019) Gut Microbiota and Cancer: How Gut Microbiota Modulates activity, Efficacy and Toxicity of Antitumoral Therapy. Critical Reviews in Oncology/Hematology, 143, 139-147. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Vivarelli, S., Salemi, R., Candido, S., Falzone, L., Santagati, M., Stefani, S., Torino, F., Banna, G.L., Tonini, G. and Libra, M. (2019) Gut Microbiota and Cancer: From Pathogenesis to Therapy. Cancers, 11, Article 38. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
DeSantis, C.E., Ma, J., Gaudet, M.M., Newman, L.A., Miller, K.D., Goding Sauer, A., Jemal, A. and Siegel, R.L. (2019) Breast Cancer Statistics, 2019. CA: A Cancer Journal for Clinicians, 69, 438-451. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Poutahidis, T., Varian, B.J., Levkovich, T., Lakritz, J.R., Mirabal, S., Kwok, C., Ibrahim, Y.M., Kearney, S.M., Chatzigiagkos, A., Alm, E.J. and Erdman, S.E. (2015) Dietary Microbes Modulate Transgenerational Cancer Risk. Cancer Research, 75, 1197-1204. [Google Scholar] [CrossRef]
|
|
[20]
|
Dabek, M, McCrae, S.I., Stevens, V.J., Duncan, S.H. and Louis, P. (2008) Distribution of Beta-Glucosidase and Beta-Glucuronidase Activity and of Beta-Glucuronidase Gene Gus in Human Colonic Bacteria. FEMS Microbiology Ecology, 66, 487-495. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ransjo, U.O.A.A., Gylbert, L. and Jurelll, G. (2009) Bacteria in the Female Breast. Scandinavian Journal of Plastic and Reconstructive Surgery, 19, 87-89. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Key, T., Appleby, P., Barnes, I. and Reeves, G. (2002) Endogenous Hormones and Breast Cancer Collaborative Group. Endogenous Sex Hormones and Breast Cancer in Postmenopausal Women: Reanalysis of Nine Prospective Studies. Journal of the National Cancer Institute, 94, 606-616. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Gu, H.-F., Mao, X.-Y. and Du, M. (2019) Prevention of Breast Cancer by Dietary Polyphenols-Role of Cancer Stem Cells. Critical Reviews in Food Science and Nutrition, 60, 810-825. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Parida, S. and Sharma, D. (2020) Microbial Alterations and Risk Factors of Breast Cancer: Connections and Mechanistic Insights. Cells, 9, Article 1091. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Mikó, E., Vida, A., Kovács, T., Ujlaki, G., Trencsényi, G., Márton, J., Sári, Z., Kovács, P., Boratkó, A., Hujber, Z., et al. (2018) Lithocholic Acid, a Bacterial Metabolite Reduces Breast Cancer Cell Proliferation and Aggressiveness. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1859, 958-974. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Akrida, I., Mulita, F., Plachouri, K.M., Benetatos, N., Maroulis, I. and Papadaki, H. (2023) Epithelial to Mesenchymal Transition (EMT) in Metaplastic Breast Cancer and Phyllodes Breast Tumors. Medical Oncology, 41, Article No. 20. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Sohn, E.J., Jung, D.B., Lee, H., Han, I., Lee, J., Lee, H. and Kim, S.H. (2018) CNOT2 Promotes Proliferation and Angiogenesis via VEGF Signaling in MDA-MB-231 Breast Cancer Cells. Cancer Letters, 412, 88-98. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Krishnamurthy, K., Wang, G., Rokhfeld, D. and Bieberich, E. (2008) Deoxycholate Promotes Survival of Breast Cancer Cells by Reducing the Level of Pro-Apoptotic Ceramide. Breast Cancer Research, 10, Article No. R106. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Costarelli, V. and Sanders, T.A. (2002) Plasma Deoxycholic Acid Concentration Is Elevated in Postmenopausal Women with Newly Diagnosed Breast Cancer. European Journal of Clinical Nutrition, 56, 925-927. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Cao, Z.-G., Qin, X.-B., Liu, F.-F. and Zhou, L.-L. (2015) Tryptophan-Induced Pathogenesis of Breast Cancer. African Health Sciences, 15, 982-985. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Bekki, K., Vogel, H., Li, W., Ito, T., Sweeney, C., Haarmann-Stemmann, T., Matsumura, F. and Vogel, C.F.A. (2015) The Aryl Hydrocarbon Receptor (AhR) Mediates Resistance to Apoptosis Induced in Breast Cancer Cells. Pesticide Biochemistry and Physiology, 120, 5-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Mikó, E., Kovács, T., Sebő, É., Tóth, J., Csonka, T., Ujlaki, G., Sipos, A., Szabó, J., Méhes, G. and Bai, P. (2019) Microbiome—Microbial Metabolome—Cancer Cell Interactions in Breast Cancer—Familiar, but Unexplored. Cells, 8, Article 293. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Parada Venegas, D., De la Fuente, M.K., Landskron, G., González, M.J., Quera, R., Dijkstra, G., Harmsen, H.J.M., Faber, K.N. and Hermoso, M.A. (2019) Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases. Frontiers in Immunology, 10, Article 277. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Mirzaei, R., Afaghi, A., Babakhani, S., Sohrabi, M.R., Hosseini-Fard, S.R., Babolhavaeji, K., Khani Ali Akbari, S., Yousefimashouf, R. and Karampoor, S. (2021) Role of Microbiota-Derived Short-Chain Fatty Acids in Cancer Development and Prevention. Biomedicine & Pharmacotherapy, 139, Article 111619. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Matthews, G.M., Howarth, G.S. and Butler, R.N. (2012) Short-Chain Fatty Acids Induce Apoptosis in Colon Cancer Cells Associated with Changes to Intracellular Redox State and Glucose Metabolism. Chemotherapy, 58, 102-109. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Muradás, T.C., Freitas, R.D., Gonçalves, J.I., Xavier, F.A. and Marinowic, D.R. (2024) Potential Antitumor Effects of Short-Chain Fatty Acids in Breast Cancer Models. American Journal of Cancer Research, 14, 1999-2019. [Google Scholar] [CrossRef]
|
|
[37]
|
Elangovan, S., Pathania, R., Ramachandran, S., Ananth, S., Padia, R.N., Lan, L., Singh, N, Martin, P.M., Hawthorn, L., Prasad, P.D., Ganapathy, V. and Thangaraju, M. (2014) The Niacin/Butyrate Receptor GPR109A Suppresses Mammary Tumorigenesis by Inhibiting Cell Survival. Cancer Research, 74, 1166-1178. [Google Scholar] [CrossRef]
|
|
[38]
|
Smith, P.M., Howitt, M.R., Panikov, N., Michaud, M., Gallini, C.A., Bohlooly-Y, M., Glickman, J.N. and Garrett, W.S. (2013) The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis. Science, 341, 569-573. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Thirunavukkarasan, M., Wang, C., Rao, A., Hind, T., Teo, Y.R., Siddiquee, A.A., Goghari, M.A.I., Kumar, A.P. and Herr, D.R. (2017) Short-Chain Fatty Acid Receptors Inhibit Invasive Phenotypes in Breast Cancer Cells. PLOS ONE, 12, e0186334. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Scott, A.J., Alexander, J.L., Merrifield, C.A., Cunningham, D., Jobin, C., Brown, R., et al. (2019) International Cancer Microbiome Consortium Consensus Statement on the Role of the Human Microbiome in Carcinogenesis. Gut, 68, 1624-1632. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Rao, V.P., Poutahidis, T., Fox, J.G. and Erdman, S.E. (2007) Breast Cancer: Should Gastrointestinal Bacteria Be on Our Radar Screen? Cancer Research, 67, 847-850. [Google Scholar] [CrossRef]
|
|
[42]
|
Poutahidis, T., Kearney, S.M., Levkovich, T., et al. (2013) Microbial Symbionts Accelerate Wound Healing via the Neuropeptide Hormone Oxytocin. PLOS ONE, 8, e78898. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Poutahidis, T., Kleinewietfeld, M., Smillie, C., et al. (2013) Microbial Reprogramming Inhibits Western Diet-Associated Obesity. PLOS ONE, 8, e68596. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Lakritz, J.R., Poutahidis, T., Levkovich, T., et al. (2014) Beneficial Bacteria Stimulate Host Immune Cells to Counteract Dietary and Genetic Predisposition to Mammary Cancer in Mice. International Journal of Cancer, 135, 529-540. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Al-Hatamleh, M.A.I., Ahmad, S., Boer, J.C., Lim, J.K., Chen, X., Plebanski, M. and Mohamud, R. (2019) A Perspective Review on the Role of Nanomedicine in the Modulation of TNF-TNFR2 Axis in Breast Cancer Immunotherapy. Journal of Oncology, 2019, Article ID: 6313242. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Weitzenfeld, P., Meron, N., Leibovich-Rivkin, T., Meshel, T. and Ben-Baruch, A. (2013) Progression of Luminal Breast Tumors Is Promoted by a ménage à trois between the Inflammatory Cytokine TNFα and the Hormonal and Growth-Supporting Arms of the Tumor Microenvironment. Mediators of Inflammation, 2013, Article ID: 720536. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Rao, V.P., Poutahidis, T., Ge, Z., Nambiar, P.R., Boussahmain, C., Wang, Y.Y., Horwitz, B.H., Fox, J.G. and Erdman, S.E. (2006) Innate Immune Inflammatory Response against Enteric Bacteria Helicobacter Hepaticus Induces Mammary Adenocarcinoma in Mice. Cancer Research, 66, 7395-7400. [Google Scholar] [CrossRef]
|
|
[48]
|
Rutkowski, M.R., Stephen, T.L., Svoronos, N., et al. (2015) Microbially Driven TLR5-Dependent Signaling Governs Distal Malignant Progression through Tumor-Promoting Inflammation. Cancer Cell, 27, 27-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Azab, B., Bhatt, V.R., Phookan, J., Murukutla, S., Kohn, N., Terjanian, T. and Widmann, W.D. (2012) Usefulness of the Neutrophil-to-Lymphocyte Ratio in Predicting Short-and Long-Term Mortality in Breast Cancer Patients. Annals of Surgical Oncology, 19, 217-224. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Rao, V.P., Poutahidis, T., Ge, Z.M., Nambiar, P.R., Boussahmain, C., Wang, Y.Y., et al. (2006) Innate Immune Inflammatory Response against Enteric Bacteria Helicobacter Hepaticus Induces Mammary Adenocarcinoma in Mice. Cancer Research, 66, 7395-7400. [Google Scholar] [CrossRef]
|
|
[51]
|
Álvarez-Mercado, A.I., Del Valle Cano, A., Fernández, M.F. and Fontana, L. (2023) Gut Microbiota and Breast Cancer: The Dual Role of Microbes. Cancers (Basel), 15, Article 443. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Koppel, N., Maini Rekdal, V. and Balskus, E.P. (2017) Chemical Transformation of Xenobiotics by the Human Gut Microbiota. Science, 356, eaag2770. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Terrisse, S., Derosa, L., Iebba, V., Ghiringhelli, F., Vaz-Luis, I., Kroemer, G., et al. (2021) Intestinal Microbiota Influences Clinical Outcome and Side Effects of Early Breast Cancer Treatment. Cell Death & Differentiation, 28, 2778-2796. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Viaud, S., Saccheri, F., Mignot, G., Yamazaki, T., Daillère, R., Hannani, D., et al. (2013) The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science, 342, 971-976. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Daillère, R., Vétizou, M., Waldschmitt, N., Yamazaki, T., Isnard, C., Poirier-Colame, V., et al. (2016) Enterococcus Hirae and Barnesiella Intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. Immunity, 45, 931-943. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Joyce, K., Saxena, S., Williams, A., Damurjian, C., Auricchio, N., Aluotto, S., et al. (2010) Antimicrobial Spectrum of the Antitumor Agent, Cisplatin. The Journal of Antibiotics, 63, 530-532. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Zhao, L., Xing, C., Sun, W., Hou, G., Yang, G. and Yuan, L. (2018) Lactobacillus Supplementation Prevents Cisplatin-Induced Cardiotoxicity Possibly by Inflammation Inhibition. Cancer Chemotherapy and Pharmacology, 82, 999-1008. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Pflug, N., Kluth, S., Vehreschild, J.J., Bahlo, J., Tacke, D., Biehl, L., Eichhorst, B., Fischer, K., Cramer, P., Fink, A.M., von Bergwelt-Baildon, M., Stilgenbauer, S., Hallek, M., Cornely, O.A. and Vehreschild, M.J. (2016) Efficacy of Antineoplastic Treatment Is Associated with the Use of Antibiotics that Modulate Intestinal Microbiota. Oncoimmunology, 5, e1150399. [Google Scholar] [CrossRef]
|
|
[59]
|
Di Modica, M., Gargari, G., Regondi, V., Bonizzi, A., Arioli, S., Belmonte, B., De Cecco, L., Fasano, E., Bianchi, F., Bertolotti, A., Tripodo, C., Villani, L., Corsi, F., Guglielmetti, S., Balsari, A., Triulzi, T. and Tagliabue, E. (2021) Gut Microbiota Condition the Therapeutic Efficacy of Trastuzumab in HER2-Positive Breast Cancer. Cancer Research, 81, 2195-2206. [Google Scholar] [CrossRef]
|
|
[60]
|
Li, Y., Dong, B., Wu, W., Wang, J., Jin, H., Chen, K., Huang, K., Huang, S. and Yao, Y. (2022) Metagenomic Analyses Reveal Distinct Gut Microbiota Signature for Predicting the Neoadjuvant Chemotherapy Responsiveness in Breast Cancer Patients. Frontiers in Oncology, 12, Article 865121. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Rossi, T., Vergara, D., Fanini, F., Maffia, M., Bravaccini, S. and Pirini, F. (2020) Microbiota-Derived Metabolites in Tumor Progression and Metastasis. International Journal of Molecular Sciences, 21, Article 5786. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Wang, H. and Mao, X. (2020) Evaluation of the Efficacy of Neoadjuvant Chemotherapy for Breast Cancer. Drug Design, Development and Therapy, 14, 2423-2433. [Google Scholar] [CrossRef]
|
|
[63]
|
Soltan Dallal, M.M., Yazdi, M.H., Holakuyee, M., Hassan, Z.M., Abolhassani, M. and Mahdavi, M. (2012) Lactobacillus casei ssp.casei Induced Th1 Cytokine Profile and Natural Killer Cells Activity in Invasive Ductal Carcinoma Bearing Mice. Iranian Journal of Allergy, Asthma and Immunology, 11, 183-189.
|
|
[64]
|
de Moreno de LeBlanc, A., Matar, C., LeBlanc, N. and Perdigón, G. (2005) Effects of Milk Fermented by Lactobacillus helveticusR389 on a Murine Breast Cancer Model. Breast Cancer Research, 7, Article No. R477. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Vincenzi, A., Goettert, M.I. and Volken de Souza, C.F. (2021) An Evaluation of the Effects of Probiotics on Tumoral Necrosis Factor (TNF-α) Signaling and Gene Expression. Cytokine & Growth Factor Reviews, 57, 27-38. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Thu, M.S., Ondee, T., Nopsopon, T., Farzana, I.A.K., Fothergill, J.L., Hirankarn, N., Campbell, B.J. and Pongpirul, K. (2023) Effect of Probiotics in Breast Cancer: A Systematic Review and Meta-Analysis. Biology (Basel), 12, Article 280. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Juan, Z., Chen, J., Ding, B., Liang, Y.P., Liu, K., Wang, L., Le, Y., Liao, Q., Shi, J., Huang, J., Wu, Y., Ma, D., Ouyang, W. and Tong, J. (2022) Probiotic Supplement Attenuates Chemotherapy-Related Cognitive Impairment in Patients with Breast Cancer: A Randomised, Double-Blind, and Placebo-Controlled Trial. European Journal of Cancer, 161, 10-22. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Zeng, T., Deng, Y.H., Lin, C.H., Chen, X.X., Jia, H.X., Hu, X.W., Xia, T., Ling, Y., Zhang, L.H. and Cao, T.F. (2024) A Randomized Trial of Bacteroides Fragilis 839 on Preventing Chemotherapy-Induced Myelosuppression and Gastrointestinal Adverse Effects in Breast Cancer Patients. Asia Pacific Journal of Clinical Nutrition, 33, 23-32.
|