[1]
|
Nakama, S., Nitanai, K., Oohashi, Y., Endo, T. and Hoshino, Y. (2003) Cervical Muscle Strength after Laminoplasty. Journal of Orthopaedic Science, 8, 36-40. https://doi.org/10.1007/s007760300006
|
[2]
|
叶添文, 贾连顺. 颈椎周围肌肉系统病变与颈椎病的关系[J]. 中国骨与关节损伤杂志, 2005(2): 140-142.
|
[3]
|
Karlsson, A., Leinhard, O.D., Åslund, U., West, J., Romu, T., Smedby, Ö., et al. (2016) An Investigation of Fat Infiltration of the Multifidus Muscle in Patients with Severe Neck Symptoms Associated with Chronic Whiplash-Associated Disorder. Journal of Orthopaedic & Sports Physical Therapy, 46, 886-893. https://doi.org/10.2519/jospt.2016.6553
|
[4]
|
房敏, 严隽陶. 颈部软组织病变在颈椎发病中的作用[J]. 中国骨伤, 2001(2): 30-31.
|
[5]
|
Taljanovic, M.S., Gimber, L.H., Becker, G.W., Latt, L.D., Klauser, A.S., Melville, D.M., et al. (2017) Shear-Wave Elastography: Basic Physics and Musculoskeletal Applications. RadioGraphics, 37, 855-870. https://doi.org/10.1148/rg.2017160116
|
[6]
|
Bercoff, J., Tanter, M. and Fink, M. (2004) Supersonic Shear Imaging: A New Technique for Soft Tissue Elasticity Mapping. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 51, 396-409. https://doi.org/10.1109/tuffc.2004.1295425
|
[7]
|
Kuo, W., Jian, D., Wang, T. and Wang, Y. (2013) Neck Muscle Stiffness Quantified by Sonoelastography Is Correlated with Body Mass Index and Chronic Neck Pain Symptoms. Ultrasound in Medicine & Biology, 39, 1356-1361. https://doi.org/10.1016/j.ultrasmedbio.2012.11.015
|
[8]
|
Hug, F., Tucker, K., Gennisson, J., Tanter, M. and Nordez, A. (2015) Elastography for Muscle Biomechanics: Toward the Estimation of Individual Muscle Force. Exercise and Sport Sciences Reviews, 43, 125-133. https://doi.org/10.1249/jes.0000000000000049
|
[9]
|
Lin, L., Yu, Y., Fan, J., Guo, P., Xia, C., Geng, X., et al. (2022) Increased Stiffness of the Superficial Cervical Extensor Muscles in Patients with Cervicogenic Headache: A Study Using Shear Wave Elastography. Frontiers in Neurology, 13, Article ID: 874643. https://doi.org/10.3389/fneur.2022.874643
|
[10]
|
Ozturk, A., Grajo, J.R., Dhyani, M., Anthony, B.W. and Samir, A.E. (2018) Principles of Ultrasound Elastography. Abdominal Radiology, 43, 773-785. https://doi.org/10.1007/s00261-018-1475-6
|
[11]
|
Ferraioli, G., Barr, R.G., Farrokh, A., Radzina, M., Cui, X.W., Dong, Y., et al. (2022) How to Perform Shear Wave Elastography. Part I. Medical Ultrasonography, 24, 95-106. https://doi.org/10.11152/mu-3217
|
[12]
|
Cui, X., Li, K., Yi, A., Wang, B., Wei, Q., Wu, G., et al. (2022) Ultrasound Elastography. Endoscopic Ultrasound, 11, 252-274. https://doi.org/10.4103/eus-d-21-00151
|
[13]
|
牛旺, 史铁梅, 张原溪. 实时剪切波弹性成像技术在骨骼肌中的应用进展[J]. 中国医学影像技术, 2017, 33(10): 1583-1586.
|
[14]
|
Vergari, C., Rouch, P., Dubois, G., Bonneau, D., Dubousset, J., Tanter, M., et al. (2014) Intervertebral Disc Characterization by Shear Wave Elastography: An in Vitro Preliminary Study. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 228, 607-615. https://doi.org/10.1177/0954411914540279
|
[15]
|
Sinelnikov, A., Qu, C., Fetzer, D.T., Pelletier, J., Dunn, M.A., Tsung, A., et al. (2016) Measurement of Skeletal Muscle Area: Comparison of CT and MR Imaging. European Journal of Radiology, 85, 1716-1721. https://doi.org/10.1016/j.ejrad.2016.07.006
|
[16]
|
Hu, Z., He, J., Zhao, F., Fang, X., Zhou, L. and Fan, S. (2011) An Assessment of the Intra-and Inter-Reliability of the Lumbar Paraspinal Muscle Parameters Using CT Scan and Magnetic Resonance Imaging. Spine, 36, E868-E874. https://doi.org/10.1097/brs.0b013e3181ef6b51
|
[17]
|
Berry, D.B., Padwal, J., Johnson, S., Parra, C.L., Ward, S.R. and Shahidi, B. (2018) Methodological Considerations in Region of Interest Definitions for Paraspinal Muscles in Axial MRIs of the Lumbar Spine. BMC Musculoskeletal Disorders, 19, Article No. 135. https://doi.org/10.1186/s12891-018-2059-x
|
[18]
|
Bok, D.H., Kim, J. and Kim, T. (2016) Comparison of MRI-Defined Back Muscles Volume between Patients with Ankylosing Spondylitis and Control Patients with Chronic Back Pain: Age and Spinopelvic Alignment Matched Study. European Spine Journal, 26, 528-537. https://doi.org/10.1007/s00586-016-4889-2
|
[19]
|
Lacourpaille, L., Hug, F., Guével, A., Péréon, Y., Magot, A., Hogrel, J., et al. (2014) Non‐Invasive Assessment of Muscle Stiffness in Patients with Duchenne Muscular Dystrophy. Muscle & Nerve, 51, 284-286. https://doi.org/10.1002/mus.24445
|
[20]
|
Galinié, P., Eyssartier, C., Sauret, C., Tordjman, M., Pissonier, M., Carlier, R., et al. (2023) In-Vivo Characterization of the Lumbar Annulus Fibrosus in Adults with Ultrasonography and Shear Wave Elastography. Medical Engineering & Physics, 120, Article ID: 104044. https://doi.org/10.1016/j.medengphy.2023.104044
|
[21]
|
Vergari, C., Dubois, G., Vialle, R., Gennisson, J., Tanter, M., Dubousset, J., et al. (2015) Lumbar Annulus Fibrosus Biomechanical Characterization in Healthy Children by Ultrasound Shear Wave Elastography. European Radiology, 26, 1213-1217. https://doi.org/10.1007/s00330-015-3911-0
|
[22]
|
Langlais, T., Vergari, C., Pietton, R., Dubousset, J., Skalli, W. and Vialle, R. (2018) Shear-Wave Elastography Can Evaluate Annulus Fibrosus Alteration in Adolescent Scoliosis. European Radiology, 28, 2830-2837. https://doi.org/10.1007/s00330-018-5309-2
|
[23]
|
Dreimann, M., Hoffmann, M., Kossow, K., Hitzl, W., Meier, O. and Koller, H. (2014) Scoliosis and Chest Cage Deformity Measures Predicting Impairments in Pulmonary Function: A Cross-Sectional Study of 492 Patients with Scoliosis to Improve the Early Identification of Patients at Risk. Spine, 39, 2024-2033. https://doi.org/10.1097/brs.0000000000000601
|
[24]
|
Pietton, R., David, M., Hisaund, A., Langlais, T., Skalli, W., Vialle, R., et al. (2021) Biomechanical Evaluation of Intercostal Muscles in Healthy Children and Adolescent Idiopathic Scoliosis: A Preliminary Study. Ultrasound in Medicine & Biology, 47, 51-57. https://doi.org/10.1016/j.ultrasmedbio.2020.09.011
|
[25]
|
Gaume, M., Loiselet, K., Chekir, H., Langlais, T., Boddaert, N., Stricker, S., et al. (2023) Evidence of Spinal Stiffening Following Fusionless Bipolar Fixation for Neuromuscular Scoliosis: A Shear Wave Elastography Assessment of Lumbar Annulus Fibrosus. European Spine Journal, 33, 1617-1623. https://doi.org/10.1007/s00586-023-08013-8
|
[26]
|
Moreau, B., Vergari, C., Gad, H., Sandoz, B., Skalli, W. and Laporte, S. (2016) Non-Invasive Assessment of Human Multifidus Muscle Stiffness Using Ultrasound Shear Wave Elastography: A Feasibility Study. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 230, 809-814. https://doi.org/10.1177/0954411916656022
|
[27]
|
Sadeghi, S., Quinlan, K., Eilertson, K.E., Billy, G.G., Bible, J., Sions, J.M., et al. (2019) Changes in Shear Modulus of the Lumbar Multifidus Muscle during Different Body Positions. Journal of Biomechanical Engineering, 141, Article ID: 081003. https://doi.org/10.1115/1.4043443
|
[28]
|
Masaki, M., Ji, X., Yamauchi, T., Tateuchi, H. and Ichihashi, N. (2019) Effects of the Trunk Position on Muscle Stiffness That Reflects Elongation of the Lumbar Erector Spinae and Multifidus Muscles: An Ultrasonic Shear Wave Elastography Study. European Journal of Applied Physiology, 119, 1085-1091. https://doi.org/10.1007/s00421-019-04098-6
|
[29]
|
Ma, C.Z., Ren, L., Cheng, C.L. and Zheng, Y. (2020) Mapping of Back Muscle Stiffness along Spine during Standing and Lying in Young Adults: A Pilot Study on Spinal Stiffness Quantification with Ultrasound Imaging. Sensors, 20, Article No. 7317. https://doi.org/10.3390/s20247317
|
[30]
|
Koppenhaver, S.L., Scutella, D., Sorrell, B.A., Yahalom, J., Fernández-de-las-Peñas, C., Childs, J.D., et al. (2019) Normative Parameters and Anthropometric Variability of Lumbar Muscle Stiffness Using Ultrasound Shear-Wave Elastography. Clinical Biomechanics, 62, 113-120. https://doi.org/10.1016/j.clinbiomech.2019.01.010
|
[31]
|
Karacabey, B.N., Bayramoğlu, Z., Coşkun, O., Sarı, Z.N.A., Özkan, M.U., Yıldız, E.P., et al. (2023) Shear Wave Elastography in Patients with Spinal Muscular Atrophy Types 2 and 3. Neuropediatrics, 54, 273-278. https://doi.org/10.1055/a-2021-0403
|
[32]
|
Creze, M., Soubeyrand, M., Nyangoh Timoh, K. and Gagey, O. (2018) Organization of the Fascia and Aponeurosis in the Lumbar Paraspinal Compartment. Surgical and Radiologic Anatomy, 40, 1231-1242. https://doi.org/10.1007/s00276-018-2087-0
|
[33]
|
Blain, M., Bedretdinova, D., Bellin, M., Rocher, L., Gagey, O., Soubeyrand, M., et al. (2018) Influence of Thoracolumbar Fascia Stretching on Lumbar Back Muscle Stiffness: A Supersonic Shear Wave Elastography Approach. Clinical Anatomy, 32, 73-80. https://doi.org/10.1002/ca.23266
|
[34]
|
Yancey, M., Rbil, N., Chatterjee, A., Lin, H., Wyles, H.L., Ko, L.M., et al. (2023) Ultrasound Shear Wave Elastography Quantitatively Assesses Tension Changes of Supraspinous/Interspinous Ligament Complex under Varied Loads. International Journal of Spine Surgery, 17, 502-510. https://doi.org/10.14444/8479
|
[35]
|
Burulday, V., Çelebi, U.O., Öğden, M., et al. (2022) Preoperative and Postoperative Ultrasound Elastography Findings of the Sciatic Nerve in Patients with Unilateral Lumbar Foraminal Disc Herniation: A Pre-Test and Post-Test Design. European Review for Medical and Pharmacological Sciences, 26, 1923-1929.
|
[36]
|
Suo, M., Zhang, J., Sun, T., Wang, J., Liu, X., Huang, H., et al. (2023) The Association between Morphological Characteristics of Paraspinal Muscle and Spinal Disorders. Annals of Medicine, 55, Article ID: 2258922. https://doi.org/10.1080/07853890.2023.2258922
|
[37]
|
Zemzemi, C., Catheline, S. and Turquier, F. (2021) Shear Wave Elastography Biases in Abdominal Wall Layers Characterization. Physics in Medicine & Biology, 66, Article ID: 205006. https://doi.org/10.1088/1361-6560/ac29cd
|
[38]
|
Bouchet, P., Gennisson, J., Podda, A., Alilet, M., Carrié, M. and Aubry, S. (2018) Artifacts and Technical Restrictions in 2D Shear Wave Elastography. Ultraschall in der Medizin-European Journal of Ultrasound, 41, 267-277. https://doi.org/10.1055/a-0805-1099
|
[39]
|
Althoff, A.D., Vance, K., Plain, M., Reeves, R.A., Pierce, J., Gwathmey, F.W., et al. (2023) Evaluation of Achilles Tendon Stiffness as Measured by Shear Wave Elastography in Female College Athletes Compared with Nonathletes. Sports Health: A Multidisciplinary Approach, 16, 12-18. https://doi.org/10.1177/19417381231153657
|
[40]
|
He, H., Wu, X., Jiang, M., Xu, Z., Zhang, X., Pan, J., et al. (2023) Diagnostic Accuracy of Contrast-Enhanced Ultrasound Synchronized with Shear Wave Elastography in the Differential Diagnosis of Benign and Malignant Breast Lesions: A Diagnostic Test. Gland Surgery, 12, 54-66. https://doi.org/10.21037/gs-22-684
|
[41]
|
Bian, J., Li, J. and Liu, Y. (2023) Diagnostic Accuracy of Shear Wave Elastography for Endometrial Cancer: A Meta-analysis. Medicine, 102, e32700. https://doi.org/10.1097/md.0000000000032700
|
[42]
|
Soundararajan, R., Dutta, U., Bhatia, A., Gupta, P., Nahar, U., Kaman, L., et al. (2023) Two-Dimensional Shear Wave Elastography: Utility in Differentiating Gallbladder Cancer from Chronic Cholecystitis. Journal of Ultrasound in Medicine, 42, 1577-1585. https://doi.org/10.1002/jum.16178
|
[43]
|
Caenen, A., Bézy, S., Pernot, M., Nightingale, K.R., Vos, H.J., Voigt, J., et al. (2024) Ultrasound Shear Wave Elastography in Cardiology. JACC: Cardiovascular Imaging, 17, 314-329. https://doi.org/10.1016/j.jcmg.2023.12.007
|
[44]
|
Ličen, U. and Kozinc, Ž. (2022) Using Shear-Wave Elastography to Assess Exercise-Induced Muscle Damage: A Review. Sensors, 22, Article No. 7574. https://doi.org/10.3390/s22197574
|
[45]
|
Nakamura, M. and Akagi, R. (2022) Ultrasonic Shear-Wave Elastography: A Novel Method for Assessing Musculoskeletal Soft Tissue and Nerves. Clinical Neurophysiology, 140, 163-164. https://doi.org/10.1016/j.clinph.2022.05.006
|
[46]
|
Horvat, U. and Kozinc, Ž. (2024) The Use of Shear-Wave Ultrasound Elastography in the Diagnosis and Monitoring of Musculoskeletal Injuries. Critical Reviews in Biomedical Engineering, 52, 15-26. https://doi.org/10.1615/critrevbiomedeng.2023049807
|
[47]
|
Zimmer, M., Kleiser, B., Marquetand, J. and Ateş, F. (2023) Shear Wave Elastography Characterizes Passive and Active Mechanical Properties of Biceps Brachii Muscle in Vivo. Journal of the Mechanical Behavior of Biomedical Materials, 137, Article ID: 105543. https://doi.org/10.1016/j.jmbbm.2022.105543
|
[48]
|
Plut, D. (2022) Editorial Comment: Expanding the Clinical Applications of 2D Shear-Wave Elastography. American Journal of Roentgenology, 218, 543. https://doi.org/10.2214/ajr.21.26932
|