二甲双胍乳腺癌治疗的研究进展
Research Progress of Metformin in the Treatment of Breast Cancer
DOI: 10.12677/acm.2025.153608, PDF, HTML, XML,    科研立项经费支持
作者: 李雪灵*, 古唐欣雨, 邓安妮, 赵 慧:西南医科大学儿科学系,四川 泸州;甘 淋#:西南医科大学基础医学院,四川 泸州
关键词: 二甲双胍乳腺癌抗肿瘤Metformin Breast Cancer Anti-Tumor
摘要: 二甲双胍(Metformin, Met)是治疗2型糖尿病的一线药物,同时具有抗肿瘤特性。体内外实验证实了二甲双胍对各亚型乳腺癌均有抑制作用,并且二甲双胍还能与其他化疗药物协同治疗乳腺癌。文章论述了Met抑制不同亚型乳腺癌的作用机制,并简要讨论将二甲双胍纳入临床治疗乳腺癌的未来前景。
Abstract: Metformin is a first-line drug for the treatment of type 2 diabetes and has anti-tumor properties. In vitro and in vivo experiments have confirmed that metformin has an inhibitory effect on all subtypes of breast cancer, and metformin can also cooperate with other chemotherapy drugs to treat breast cancer. This article discusses the mechanism of Met inhibiting different subtypes of breast cancer and briefly discusses the future prospect of incorporating metformin into the clinical treatment of breast cancer.
文章引用:李雪灵, 古唐欣雨, 邓安妮, 赵慧, 甘淋. 二甲双胍乳腺癌治疗的研究进展[J]. 临床医学进展, 2025, 15(3): 227-233. https://doi.org/10.12677/acm.2025.153608

1. 引言

乳腺癌(Breast Cancer, BC)是世界上最常见的癌症之一,也是女性癌症相关死亡的主要原因[1]。乳腺癌分为多种亚型[2],按是否有雌激素受体(ER)/孕激素受体(PR)和人表皮生长因子2 (HER2)分子标记的存在,被分为ER阳性(ER+)、HER2阳性(HER2+)和三阴性乳腺癌(TNBC)三大亚型。尽管目前针对乳腺癌的治疗手段很多,但其生存率仍然很低[3],因此,寻找能提高乳腺癌患者生存率的有效治疗方法仍具有重要的临床意义。二甲双胍是一种安全、廉价、应用广泛的双胍类药物[4]。它具有显著降低血糖水平的能力,常被用于治疗2型糖尿病的早期阶段。随着时间的推移,我们发现已有研究证实了二甲双胍可以抑制乳腺癌细胞的增殖,导致细胞周期的阻滞和细胞凋亡[5]

2. 二甲双胍治疗乳腺癌的作用机制

一般来说,二甲双胍的抗癌特性依赖于它对细胞代谢的直接(胰岛素独立)和间接(胰岛素依赖)作用[6]。二甲双胍的直接抗癌作用主要涉及活化AMPK (腺苷5'-单磷酸活化蛋白激酶)途径,而间接抗癌作用主要涉及抑制胰岛素抵抗和活化胰岛素及胰岛素样生长因子-1 (IGF-1)通路。

2.1. 二甲双胍的直接抗癌作用

二甲双胍通过减少DNA损伤抑制癌症发展。二甲双胍直接靶向抑制线粒体中电子传递链的呼吸复合体I,使ATP (三磷酸腺苷)的产生减少,细胞内ADP (二磷酸腺苷)的浓度增加,因此,AMP (单磷酸腺苷)的细胞水平升高,最终激活AMPK [7] (二甲双胍是最有效的AMPK激活剂)。线粒体复合体I对电子传递至关重要,二甲双胍抑制呼吸复合体I,从而阻止ROS (活性氧)的产生,进一步减少DNA损伤,抑制癌症发展。AMPK是许多代谢途径的关键调节因子,其水平的降低或活性的下调促进了乳腺癌的发生,因此AMPK的激活对治疗乳腺癌有积极作用[8]

同时,二甲双胍具有抗炎作用。二甲双胍激活AMPK后,首先会抑制雷帕霉素(Rapamycin, mTOR)的哺乳动物靶点(mTOR通路的过度激活是乳腺癌产生内分泌抵抗的关键因素),从而干扰蛋白质合成,抑制细胞生长和增殖;然后会诱导p53 (其被认为是人类癌症关键的肿瘤抑制基因之一)磷酸化,从而阻止细胞侵袭和转移,并通过抑制核因子κB (NF-κB)通路发挥抗炎作用[9]

2.2. 二甲双胍的间接抗癌作用

二甲双胍通过抑制胰岛素和胰岛素样生长因子(IGF)受体信号,导致代谢的改变,从而发挥重要抗癌作用。二甲双胍提高了胰岛素的敏感性,降低了其循环水平。高血浆胰岛素水平与乳腺癌的发病率有关[10],持续的高胰岛素血症会降低IGF结合蛋白1 (IGFBP-1)的水平,从而增加了胰岛素样生长因子1 (IGF1)的生物活性浓度,而较高的IGF1水平与肿瘤大小有关[11]。胰岛素通过结合和激活同源受体(IR)或胰岛素样生长因子1受体(IGF1R),调节与乳腺癌生长和转移相关的多种信号通路[12],它不仅使RAS/RAF/MAPK和PI3K/AKT/mTOR通路失活,而且还下调了其他肿瘤刺激分子,如生长因子、细胞因子等。抑制PI3K/AKT/mTOR通路的过度激活,会抑制内分泌抵抗乳腺癌细胞的增殖并诱导其凋亡,从而逆转其内分泌抵抗[13]

2.3. 二甲双胍的其他抗癌作用

二甲双胍可能通过诱导铁死亡发挥抗癌作用。Yang等[14]的研究表明二甲双胍可增加细胞内Fe2+ (铁是铁死亡的重要组成部分)和脂质ROS水平(在铁死亡的情况下,由于脂质过氧化的形成会破坏生物膜结构,导致膜中可能存在高浓度的不饱和脂肪酸),然而还有研究表明,线粒体的激活选择性地促进了半胱氨酸饥饿诱导的铁死亡,AMPK的激活抑制了线粒体呼吸复合体I,可能抑制铁死亡[15]。Lee的研究表明[15]铁死亡是由脂质过氧化(一种ROS介导的脂质损伤)诱导的AMPK介导的BECN1磷酸化,通过抑制SLC7A11介导的胱氨酸转运来促进铁死亡。

二甲双胍或有降低药物耐药性的作用。Mostafavi等[16]还发现二甲双胍可以抑制IL-6的分泌,进一步导致了正常成纤维细胞表型和分泌的显著改变。IL-6主要由成纤维细胞产生,其水平的升高是成纤维细胞活性变化的关键指标之一,对肿瘤生长和耐药性有重要影响。抑制IL-6的分泌可提高乳腺癌患者的治疗反应性[17]。肿瘤与基质细胞(尤其是成纤维细胞)的相互作用与耐药性有关,这提示着二甲双胍可能有降低药物耐药性的作用。

3. 二甲双胍对激素受体阳性乳腺癌的影响

二甲双胍诱导MCF-7细胞(ER + 乳腺癌细胞)的内源性和外源性凋亡,通过PRODH/POX依赖性ROS形成的上调、caspase-9和-8的激活、脯氨酸酶表达和活性的增加以及胶原分子合成的减少等方式。同时,肥胖增加被认为会通过增加产生雌激素、高胰岛素血症、胰岛素抵抗和磷脂酰肌醇-3-激酶/AKT/哺乳动物雷帕霉素靶点(mTOR)通路的激活导致乳腺癌患者的临床结果变差,因此二甲双胍还可以提高与致癌作用相关的代谢和胰岛素相关生物标志物的水平[18]。较高的二甲双胍暴露量与患ER + 乳腺癌风险的降低相关[19],脂肪因子平衡改变、脂肪组织功能障碍、胰岛素信号传导失调等多种因素都会导致ER + 乳腺癌的发生。此外,与依维莫司(一种芳香化酶抑制剂)联合用药对超重和肥胖的转移性ER + 乳腺癌患者具有一定的临床效果[20]

4. 二甲双胍对人表皮生长因子2阳性乳腺癌的影响

二甲双胍可以通过抑制IGF-1R信号通路来抑制HER2阳性乳腺癌发展。IGF-1R信号通路参与乳腺癌的发展,其与生长因子家族成员的其他受体酪氨酸激酶相互作用,即IGF-1R与HER2涉及相似的通路。此外,IGF-1R信号转导还可以通过激活黏着斑激酶(FAK)来增加HER2过表达乳腺癌细胞的侵袭潜力。

二甲双胍单药治疗可抑制HER2阳性乳腺癌发展,并下调HER2表达和磷酸化[21]。二甲双胍还导致部分细胞周期G1停滞,并通过抑制HSP90诱导细胞凋亡。二甲双胍已被证明对HER2阳性乳腺癌具有保护性和降低风险的作用,因为它通过阻断HER2阳性中的mTOR效应子p70S6K1来抑制HER2过表达[22]。除了HER2癌基因过表达外,HER2阳性乳腺癌细胞系中的mTOR/p70S6K1检测状态是预测二甲双胍抗癌作用的重要生物标志物和靶标。在较低浓度下,二甲双胍可使耐药细胞对抗HER2治疗(如拉帕替尼)重新敏感,并增强其疗效。

此外,二甲双胍与其他药物联用可以改善HER2型乳腺癌预后[23],例如与曲妥珠单抗(HER2阳性乳腺癌的一线治疗药物)联合使用可抑制HER2阳性乳腺癌细胞系中癌症干细胞和祖细胞的增殖和自我更新;与拉帕替尼联合治疗可以同时抑制HER2信号通路并激活AMPK,并且可以防止与抗HER2药物相关的心脏不良反应。

5. 二甲双胍对三阴性乳腺癌的影响

在三阴性乳腺癌(TNBC)中,癌细胞没有雌激素受体(ER)、孕激素受体(PR)和人表皮生长因子2 (HER2),导致生存结果较差[24]。二甲双胍可以直接通过靶向抑制TNBC干细胞来治疗TNBC,同时,二甲双胍会选择性地针对乳腺癌干细胞,显著地抑制乳腺癌细胞的生长,并能在联合化疗时使病情得到缓解。使用载体材料可提高二甲双胍对TNBC的疗效。由于直接靶向治疗效果不太理想,近年来,Arijita Basu等[25]发现可以通过添加载体,将透明质酸植入二甲双胍负载氧化石墨烯纳米颗粒(HA-GO-Met纳米颗粒)作为靶向药物用于治疗三阴性乳腺癌,其诱导了TNBC细胞凋亡,并减弱了细胞迁移。它不仅抵消了肿瘤负荷所赋予的整体毒性,还解决了癌症复发的问题。同时,Repas等[26]的研究发现二甲双胍可以增加TNBC细胞的线粒体质量,这提示其有可能用作辅助治疗,以提高TNBC的抗肿瘤免疫。

6. 二甲双胍在乳腺癌中的临床应用

6.1. 二甲双胍联合放疗的作用

二甲双胍在体外可抑制细胞增殖,诱导细胞凋亡,使细胞周期停止,在体内也可降低肿瘤的发生和生长。与化疗联合使用时[27],其可增强药物治疗的抗癌作用,延缓甚至逆转乳腺癌耐药现象的发生。Lee等[28]的研究表明,二甲双胍联合顺铂不仅可以增强顺铂介导的抗癌作用,还能减轻顺铂导致的副作用。二甲双胍通过下调RAD51表达来增强顺铂的抗癌作用,RAD51是一种链转移酶,可聚合成单链DNA上的核蛋白丝,并促进与未受损的同源染色单体的DNA链交换。RAD51是细胞损伤反应组成的一部分,其抑制使癌细胞对DNA损伤药物敏感,可以使得顺铂对TNBC抗肿瘤作用和耐药性增加,RAD51过表达阻断了二甲双胍介导的迁移和侵袭抑制,而其下调增强了二甲双胍的作用。在单独接受顺铂治疗的患者中,食物摄入减少和体重减轻是严重的不良反应,而二甲双胍可以减少此类影响。

Basheer等[29]的研究发现二甲双胍与塞来昔布联合使用在2D和3D模型中可导致乳腺癌细胞活力大幅度下降,有效地阻止了细胞迁移。小鼠模型研究表明,二甲双胍与紫杉醇、卡铂或阿霉素联用时具有协同作用。同时,二甲双胍已被发现可增强紫杉醇对AMPK信号传导的作用,导致mTOR通路的更大下调,同时还能显著降低紫杉醇诱导的周围神经病变(PIPN) [30];其对阿霉素心脏毒性也具有心脏保护作用[31]。此外,最近的一项荟萃分析显示,二甲双胍治疗不能手术的乳腺癌患者的客观缓解率(ORR)增加[32],其为控制非糖尿病乳腺癌患者新辅助化疗引起的毒副反应提供了治疗机会[33],可定期使用二甲双胍或与标准化疗联合使用,以减少副作用,提高治疗效果。

但二甲双胍尚不能投入临床使用,还有研究发现二甲双胍不影响新发对侧乳腺癌、任何侵袭性癌症、乳腺癌外癌症等相关癌症的风险,也并没有降低这些非糖尿病乳腺癌患者发生新癌症的风险[34]。Barakat等[31]发现二甲双胍联合新辅助化疗(NACT,使用蒽环类/紫杉烷类药物)对乳腺癌患者的生活质量无影响,并不能明显改善乳腺癌患者的临床和病理肿瘤反应。从缓解率(RR)和无进展生存期(80)来看[35],使用二甲双胍的乳腺癌患者也没有明显的生存获益。

综上所述,将二甲双胍真正用于临床治疗乳腺癌,尚还需进行大量临床试验进行验证。

6.2. 二甲双胍在新疗法方面的作用

由于二甲双胍直接靶向治疗效果较差,近年来多尝试和新疗法联用,例如与氧光动力疗法(OPDT)联用或者与电脉冲的方法联用。OPDT是一种通过增加局部氧气浓度来提高治疗效果的新方法[36],能产生ROS,特别是单线态氧,可直接杀死肿瘤细胞(诱导细胞凋亡或坏死);而且能直接激活机体抗肿瘤免疫应答;还能破坏肿瘤周围的血管系统,导致缺血性肿瘤缩小。研究表明,5-氨基乙酰丙酸(ALA)和二甲双胍与OPDT联合使用时,对TNBC细胞具有协同抗肿瘤作用;与电脉冲联用时,其可增强TNBC细胞对二甲双胍的药物摄取[37]

由此来看,二甲双胍与近年来的新疗法联用也可以为未来研究提供方向。

7. 结语

乳腺癌在全球范围内发病率高,临床治疗手段多种多样,但其生存率仍然很低。其可分为多种亚型,每种亚型具有不同的遗传、分子和临床差异,导致了不同的增殖和转移潜力,临床治疗方案和治疗效果往往也取决于其亚型。二甲双胍是一种显著降糖药,但在近年的研究中发现它可以阻止乳腺癌细胞的增殖,对各种亚型乳腺癌细胞均有抑制作用,且可以延缓甚至逆转乳腺癌耐药、改善乳腺癌患者预后,同时安全、有效、经济,有望成为临床治疗乳腺癌的新药。然而,多项研究均是在体外细胞水平上进行的,并不能反映整个生物体的过程,临床相关数据尚不完全,还需要更多的动物和临床试验进行进一步的探究。另一方面,针对二甲双胍的基础研究,可以进一步探索二甲双胍抗肿瘤的作用机制,从中得到启示;此外,还可积极探寻二甲双胍与其他药物或新疗法治疗乳腺癌的协同作用。随着二甲双胍抗癌的深入研究,它将会成为临床治疗乳腺癌的新选择,有望为广大患者带来福音。

基金项目

大学生创新创业项目(No. S202310632313);西南医科大学校级课题(No. JG2023yb180)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Katsura, C., Ogunmwonyi, I., Kankam, H.K. and Saha, S. (2022) Breast Cancer: Presentation, Investigation and Management. British Journal of Hospital Medicine, 83, 1-7.
https://doi.org/10.12968/hmed.2021.0459
[2] Barzaman, K., Karami, J., Zarei, Z., Hosseinzadeh, A., Kazemi, M.H., Moradi-Kalbolandi, S., et al. (2020) Breast Cancer: Biology, Biomarkers, and Treatments. International Immunopharmacology, 84, Article ID: 106535.
https://doi.org/10.1016/j.intimp.2020.106535
[3] Hendrick, R.E., Helvie, M.A. and Monticciolo, D.L. (2021) Breast Cancer Mortality Rates Have Stopped Declining in U.S. Women Younger than 40 Years. Radiology, 299, 143-149.
https://doi.org/10.1148/radiol.2021203476
[4] Cejuela, M., Martin-Castillo, B., Menendez, J.A. and Pernas, S. (2022) Metformin and Breast Cancer: Where Are We Now? International Journal of Molecular Sciences, 23, Article No. 2705.
https://doi.org/10.3390/ijms23052705
[5] Mostafavi, S., Zalpoor, H. and Hassan, Z.M. (2022) The Promising Therapeutic Effects of Metformin on Metabolic Reprogramming of Cancer-Associated Fibroblasts in Solid Tumors. Cellular & Molecular Biology Letters, 27, Article No. 58.
https://doi.org/10.1186/s11658-022-00356-2
[6] Chen, Y.C., Li, H. and Wang, J. (2020) Mechanisms of Metformin Inhibiting Cancer Invasion and Migration. American Journal of Translational Research, 12, 4885-4901.
[7] Agius, L., Ford, B.E. and Chachra, S.S. (2020) The Metformin Mechanism on Gluconeogenesis and AMPK Activation: The Metabolite Perspective. International Journal of Molecular Sciences, 21, Article No. 3240.
https://doi.org/10.3390/ijms21093240
[8] Uprety, B. and Abrahamse, H. (2022) Targeting Breast Cancer and Their Stem Cell Population through AMPK Activation: Novel Insights. Cells, 11, Article No. 576.
https://doi.org/10.3390/cells11030576
[9] Roshan, M.H., Shing, Y.K. and Pace, N.P. (2019) Metformin as an Adjuvant in Breast Cancer Treatment. SAGE Open Medicine, 7, 1-16.
https://doi.org/10.1177/2050312119865114
[10] Lohmann, A.E. and Goodwin, P.J. (2021) Diabetes, Metformin and Breast Cancer: A Tangled Web. Annals of Oncology, 32, 285-286.
https://doi.org/10.1016/j.annonc.2020.12.014
[11] Chan, Y., Lin, R., Wang, Y., Hung, T., Huang, Y., Yu, J., et al. (2023) The Interplay between IGF-1R Signaling and Hippo-Yap in Breast Cancer Stem Cells. Cell Communication and Signaling, 21, Article No. 81.
https://doi.org/10.1186/s12964-023-01088-2
[12] Biello, F., Platini, F., D’Avanzo, F., Cattrini, C., Mennitto, A., Genestroni, S., et al. (2021) Insulin/Igf Axis in Breast Cancer: Clinical Evidence and Translational Insights. Biomolecules, 11, Article No. 125.
https://doi.org/10.3390/biom11010125
[13] Gholami, M., Klashami, Z.N., Ebrahimi, P., Mahboobipour, A.A., Farid, A.S., Vahidi, A., et al. (2023) Metformin and Long Non-Coding RNAs in Breast Cancer. Journal of Translational Medicine, 21, Article No. 155.
https://doi.org/10.1186/s12967-023-03909-x
[14] Yang, J., Zhou, Y., Xie, S., Wang, J., Li, Z., Chen, L., et al. (2021) Metformin Induces Ferroptosis by Inhibiting Ufmylation of SLC7A11 in Breast Cancer. Journal of Experimental & Clinical Cancer Research, 40, Article No. 206.
https://doi.org/10.1186/s13046-021-02012-7
[15] Lee, H., Zandkarimi, F., Zhang, Y., Meena, J.K., Kim, J., Zhuang, L., et al. (2020) Energy-Stress-Mediated AMPK Activation Inhibits Ferroptosis. Nature Cell Biology, 22, 225-234.
https://doi.org/10.1038/s41556-020-0461-8
[16] Mostafavi, S. and Hassan, Z.M. (2024) The Anti-Neoplastic Effects of Metformin Modulate the Acquired Phenotype of Fibroblast Cells in the Breast Cancer-Normal Fibroblast Co-Culture System. Oncology Research, 32, 477-487.
https://doi.org/10.32604/or.2023.043926
[17] Guo, Z., Zhang, H., Fu, Y., Kuang, J., Zhao, B., Zhang, L., et al. (2023) Cancer-Associated Fibroblasts Induce Growth and Radioresistance of Breast Cancer Cells through Paracrine IL-6. Cell Death Discovery, 9, Article No. 6.
https://doi.org/10.1038/s41420-023-01306-3
[18] Barakat, H.E., Hussein, R.R.S., Elberry, A.A., Zaki, M.A. and Elsherbiny Ramadan, M. (2022) Factors Influencing the Anticancer Effects of Metformin on Breast Cancer Outcomes: A Systematic Review and Meta-Analysis. Expert Review of Anticancer Therapy, 22, 415-436.
https://doi.org/10.1080/14737140.2022.2051482
[19] Chikermane, S.G., Sharma, M., Abughosh, S.M., Aparasu, R.R., Trivedi, M.V. and Johnson, M.L. (2022) Dose-Dependent Relation between Metformin and the Risk of Hormone Receptor-Positive, Her2-Negative Breast Cancer among Postmenopausal Women with Type-2 Diabetes. Breast Cancer Research and Treatment, 195, 421-430.
https://doi.org/10.1007/s10549-022-06706-0
[20] Yam, C., Esteva, F.J., Patel, M.M., Raghavendra, A.S., Ueno, N.T., Moulder, S.L., et al. (2019) Efficacy and Safety of the Combination of Metformin, Everolimus and Exemestane in Overweight and Obese Postmenopausal Patients with Metastatic, Hormone Receptor-Positive, Her2-Negative Breast Cancer: A Phase II Study. Investigational New Drugs, 37, 345-351.
https://doi.org/10.1007/s10637-018-0700-z
[21] Bashraheel, S.S., Kheraldine, H., Khalaf, S. and Moustafa, A.A. (2023) Metformin and Her2-Positive Breast Cancer: Mechanisms and Therapeutic Implications. Biomedicine & Pharmacotherapy, 162, Article ID: 114676.
https://doi.org/10.1016/j.biopha.2023.114676
[22] Corleto, K.A., Strandmo, J.L. and Giles, E.D. (2024) Metformin and Breast Cancer: Current Findings and Future Perspectives from Preclinical and Clinical Studies. Pharmaceuticals, 17, Article No. 396.
https://doi.org/10.3390/ph17030396
[23] Jafari, L. and Akhter, N. (2021) Heart Failure Prevention and Monitoring Strategies in Her2-Positive Breast Cancer: A Narrative Review. Breast Cancer Research and Treatment, 186, 295-303.
https://doi.org/10.1007/s10549-021-06096-9
[24] De Francesco, E.M., Cirillo, F., Vella, V., Belfiore, A., Maggiolini, M. and Lappano, R. (2022) Triple-Negative Breast Cancer Drug Resistance, Durable Efficacy, and Cure: How Advanced Biological Insights and Emerging Drug Modalities Could Transform Progress. Expert Opinion on Therapeutic Targets, 26, 513-535.
https://doi.org/10.1080/14728222.2022.2094762
[25] Basu, A., Upadhyay, P., Ghosh, A., Bose, A., Gupta, P., Chattopadhyay, S., et al. (2021) Hyaluronic Acid Engrafted Metformin Loaded Graphene Oxide Nanoparticle as CD44 Targeted Anti-Cancer Therapy for Triple Negative Breast Cancer. Biochimica et Biophysica Acta (BBA)—General Subjects, 1865, Article ID: 129841.
https://doi.org/10.1016/j.bbagen.2020.129841
[26] Repas, J., Zupin, M., Vodlan, M., Veranič, P., Gole, B., Potočnik, U., et al. (2022) Dual Effect of Combined Metformin and 2-Deoxy-D-Glucose Treatment on Mitochondrial Biogenesis and PD-L1 Expression in Triple-Negative Breast Cancer Cells. Cancers, 14, Article No. 1343.
https://doi.org/10.3390/cancers14051343
[27] Shi, B., Hu, X., He, H. and Fang, W. (2021) Metformin Suppresses Breast Cancer Growth via Inhibition of Cyclooxygenase-2. Oncology Letters, 22, Article No. 615.
https://doi.org/10.3892/ol.2021.12876
[28] Lee, J.O., Kang, M.J., Byun, W.S., Kim, S.A., Seo, I.H., Han, J.A., et al. (2019) Metformin Overcomes Resistance to Cisplatin in Triple-Negative Breast Cancer (TNBC) Cells by Targeting RAD51. Breast Cancer Research, 21, Article No. 115.
https://doi.org/10.1186/s13058-019-1204-2
[29] Basheer, H.A., Alhusban, M.A., Zaid Alkilani, A., Alshishani, A., Elsalem, L. and Afarinkia, K. (2023) Niosomal Delivery of Celecoxib and Metformin for Targeted Breast Cancer Treatment. Cancers, 15, Article No. 5004.
https://doi.org/10.3390/cancers15205004
[30] Barakat, H.E., Hussein, R.R.S., Elberry, A.A., Zaki, M.A. and Ramadan, M.E. (2022) The Impact of Metformin Use on the Outcomes of Locally Advanced Breast Cancer Patients Receiving Neoadjuvant Chemotherapy: An Open-Labelled Randomized Controlled Trial. Scientific Reports, 12, Article No. 7656.
https://doi.org/10.1038/s41598-022-11138-3
[31] Yu, J.M., Hsieh, M.C., Qin, L., et al. (2019) Metformin Reduces Radiation-Induced Cardiac Toxicity Risk in Patients Having Breast Cancer. American Journal of Cancer Research, 9, 1017-1026.
[32] Serageldin, M.A., Kassem, A.B., El-Kerm, Y., Helmy, M.W., El-Mas, M.M. and El-Bassiouny, N.A. (2023) The Effect of Metformin on Chemotherapy-Induced Toxicities in Non-Diabetic Breast Cancer Patients: A Randomised Controlled Study. Drug Safety, 46, 587-599.
https://doi.org/10.1007/s40264-023-01305-4
[33] Goodwin, P.J., Chen, B.E., Gelmon, K.A., Whelan, T.J., Ennis, M., Lemieux, J., et al. (2023) Effect of Metformin versus Placebo on New Primary Cancers in Canadian Cancer Trials Group MA.32: A Secondary Analysis of a Phase III Randomized Double-Blind Trial in Early Breast Cancer. Journal of Clinical Oncology, 41, 5356-5362.
https://doi.org/10.1200/jco.23.00296
[34] Essa, N.M., Salem, H.F., Elgendy, M.O., Gabr, A., Omran, M.M., Hassan, N.A., et al. (2022) Efficacy of Metformin as Adjuvant Therapy in Metastatic Breast Cancer Treatment. Journal of Clinical Medicine, 11, Article No. 5505.
https://doi.org/10.3390/jcm11195505
[35] Wu, Z., Qu, B., Huang, X., Song, Y., Gao, P., Shi, J., et al. (2020) The Potential Adjunctive Benefit of Adding Metformin to Standard Treatment in Inoperable Cancer Patients: A Meta-Analysis of Randomized Controlled Trials. Annals of Translational Medicine, 8, 1404-1404.
https://doi.org/10.21037/atm-20-4441
[36] Pei, X., Wang, X., Xian, J., Mi, J., Gao, J., Li, X., et al. (2020) Metformin and Oxyphotodynamic Therapy as a Novel Treatment Approach for Triple-Negative Breast Cancer. Annals of Translational Medicine, 8, Article No. 1138.
https://doi.org/10.21037/atm-20-5704
[37] Sahu, P., Camarillo, I.G. and Sundararajan, R. (2024) Efficacy of Metformin and Electrical Pulses in Breast Cancer MDA-MB-231 Cells. Exploration of Targeted Anti-tumor Therapy, 5, 54-73.
https://doi.org/10.37349/etat.2024.00204