[1]
|
李虎良, 张蕾. 抗生素耐药性的分子机制及抑菌策略[J]. 中国生物化学与分子生物学报, 2024, 40(6): 759-769.
|
[2]
|
薛正洁, 刘身秦, 沈豪杰, 等. tolC基因对大肠埃希菌膜完整性及中药单体抗菌活性的影响[J]. 中国抗生素杂志, 2024, 49(12): 1338-1348.
|
[3]
|
钟艾玲, 田敏, 刘艳全, 等. 氨基糖苷类抗生素的耐药机制研究进展[J]. 中国抗生素杂志, 2019, 44(4): 401-405.
|
[4]
|
Correia, S., Poeta, P., Hébraud, M., Capelo, J.L. and Igrejas, G. (2017) Mechanisms of Quinolone Action and Resistance: Where Do We Stand? Journal of Medical Microbiology, 66, 551-559. https://doi.org/10.1099/jmm.0.000475
|
[5]
|
Hooper, D.C. and Jacoby, G.A. (2016) Topoisomerase Inhibitors: Fluoroquinolone Mechanisms of Action and Resistance. Cold Spring Harbor Perspectives in Medicine, 6, a025320. https://doi.org/10.1101/cshperspect.a025320
|
[6]
|
焦显芹, 肖方, 刘河冰, 等. 氨基糖苷类药物高水平耐药16S rRNA甲基化酶的研究进展[J]. 中国畜牧兽医, 2009, 36(6): 128-130.
|
[7]
|
Ito, A., Sato, T., Ota, M., Takemura, M., Nishikawa, T., Toba, S., et al. (2018) In Vitro Antibacterial Properties of Cefiderocol, a Novel Siderophore Cephalosporin, against Gram-Negative Bacteria. Antimicrobial Agents and Chemotherapy, 62. https://doi.org/10.1128/aac.01454-17
|
[8]
|
McCreary, E.K., Heil, E.L. and Tamma, P.D. (2021) New Perspectives on Antimicrobial Agents: Cefiderocol. Antimicrobial Agents and Chemotherapy, 65. https://doi.org/10.1128/aac.02171-20
|
[9]
|
钟子锐, 周凯楠, 王瑞琦, 等. 新型铁载体抗菌药物头孢地尔耐药研究进展[J]. 中国感染与化疗杂志, 2024, 24(6): 731-735.
|
[10]
|
孙敬都, 贾程皓, 唐标, 等. 新型可移动RND家族外排泵TMexCD-TOprJ的研究进展[J]. 微生物学报, 2023, 63(11): 4101-4117.
|
[11]
|
王帅杨, 李崇, 张建武, 等. 大肠埃希菌耐药机制研究进展[J]. 动物医学进展, 2019, 40(8): 92-97.
|
[12]
|
易灵娴, 刘艺云, 吴仁杰, 等. 质粒介导的黏菌素耐药基因mcr-1研究进展[J]. 遗传, 2017, 39(2): 110-126.
|
[13]
|
Shen, Y., Zhou, H., Xu, J., Wang, Y., Zhang, Q., Walsh, T.R., et al. (2018) Anthropogenic and Environmental Factors Associated with High Incidence of mcr-1 Carriage in Humans across China. Nature Microbiology, 3, 1054-1062. https://doi.org/10.1038/s41564-018-0205-8
|
[14]
|
叶卓幸, 汤燕君, 何璐茜, 等. 四环素类抗生素耐药研究进展: 质粒介导的替加环素耐药机制[J]. 生态毒理学报, 2022, 17(4): 122-140.
|
[15]
|
Ma, L., Xie, M., Yang, Y., Ding, X., Li, Y., Yan, Z., et al. (2024) Prevalence and Genomic Characterization of Clinical Escherichia coli Strains That Harbor the Plasmid-Borne tet(X4) Gene in China. Microbiological Research, 285, Article 127730. https://doi.org/10.1016/j.micres.2024.127730
|
[16]
|
王珊, 吕媛, 李耘, 等. 我国阿米卡星耐药大肠埃希菌16S rRNA甲基化酶基因及其水平转移研究[J]. 中国临床药理学杂志, 2015, 31(4): 283-285.
|
[17]
|
Wang, Y., Li, X., Chen, C., Zhang, J. and Wang, G. (2018) Detection of Flor Gene and Active Efflux Mechanism of Escherichia coli in Ningxia, China. Microbial Pathogenesis, 117, 310-314. https://doi.org/10.1016/j.micpath.2018.02.042
|
[18]
|
Lim, D. and Strynadka, N.C.J. (2002) Structural Basis for the β Lactam Resistance of PBP2a from Methicillin-Resistant Staphylococcus aureus. Nature Structural Biology, 9, 870-876. https://doi.org/10.1038/nsb858
|
[19]
|
Bonomo, R.A. (2016) β-Lactamases: A Focus on Current Challenges. Cold Spring Harbor Perspectives in Medicine, 7, a025239. https://doi.org/10.1101/cshperspect.a025239
|
[20]
|
艾涛, 陈莉娜, 陈强, 等. β内酰胺类-β内酰胺酶抑制剂复方制剂儿科临床应用专家共识[J]. 中国实用儿科杂志, 2023, 38(9): 641-653.
|
[21]
|
虞春华, 丁岚, 柯慧, 等. 大肠埃希菌耐药机制的研究进展[J]. 实验与检验医学, 2017, 35(2): 215-218.
|
[22]
|
Sharkey, L.K.R., Edwards, T.A. and O’Neill, A.J. (2016) ABC-F Proteins Mediate Antibiotic Resistance through Ribosomal Protection. mBio, 7. https://doi.org/10.1128/mbio.01975-15
|
[23]
|
陈杨, 刘理慧, 吴翠蓉, 等. 喹诺酮类耐药基因qnr的研究进展[J]. 国外医药(抗生素分册), 2021, 42(4): 193-203.
|
[24]
|
Zhou, G., Wang, Q., Wang, Y., Wen, X., Peng, H., Peng, R., et al. (2023) Outer Membrane Porins Contribute to Antimicrobial Resistance in Gram-Negative Bacteria. Microorganisms, 11, Article 1690. https://doi.org/10.3390/microorganisms11071690
|
[25]
|
Liu, Y.-F., Yan, J.-J., Ko, W.-C., Tsai, S.-H. and Wu, J.-J. (2008) Journal of Antimicrobial Chemotherapy, 61, 1020-1023. https://doi.org/10.1093/jac/dkn049
|
[26]
|
Necula, G., Bacalum, M. and Radu, M. (2023) Interaction of Tryptophan-and Arginine-Rich Antimicrobial Peptide with E. coli Outer Membrane—A Molecular Simulation Approach. International Journal of Molecular Sciences, 24, Article 2005. https://doi.org/10.3390/ijms24032005
|
[27]
|
Cruz, L.F., Cobine, P.A. and De La Fuente, L. (2012) Calcium Increases Xylella Fastidiosa Surface Attachment, Biofilm Formation, and Twitching Motility. Applied and Environmental Microbiology, 78, 1321-1331. https://doi.org/10.1128/aem.06501-11
|
[28]
|
Fernández, L. and Hancock, R.E.W. (2012) Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance. Clinical Microbiology Reviews, 25, 661-681. https://doi.org/10.1128/cmr.00043-12
|
[29]
|
Hassan, K.A., Jackson, S.M., Penesyan, A., Patching, S.G., Tetu, S.G., Eijkelkamp, B.A., et al. (2013) Transcriptomic and Biochemical Analyses Identify a Family of Chlorhexidine Efflux Proteins. Proceedings of the National Academy of Sciences, 110, 20254-20259. https://doi.org/10.1073/pnas.1317052110
|
[30]
|
Hassan, K.A., Liu, Q., Henderson, P.J.F. and Paulsen, I.T. (2015) Homologs of the Acinetobacter baumannii AceI Transporter Represent a New Family of Bacterial Multidrug Efflux Systems. mBio, 6. https://doi.org/10.1128/mbio.01982-14
|
[31]
|
Haeili, M., Shoghi, Y., Moghimi, M., Ghodousi, A., Omrani, M. and Cirillo, D.M. (2022) Genomic Features of in vitro Selected Mutants of Escherichia coli with Decreased Susceptibility to Tigecycline. Journal of Global Antimicrobial Resistance, 31, 32-37. https://doi.org/10.1016/j.jgar.2022.07.023
|
[32]
|
Alenazy, R. (2022) Drug Efflux Pump Inhibitors: A Promising Approach to Counter Multidrug Resistance in Gram-Negative Pathogens by Targeting AcrB Protein from AcrAB-TolC Multidrug Efflux Pump from Escherichia coli. Biology, 11, Article 1328. https://doi.org/10.3390/biology11091328
|
[33]
|
Ciusa, M.L., Marshall, R.L., Ricci, V., Stone, J.W. and Piddock, L.J.V. (2021) Absence, Loss-of-Function, or Inhibition of Escherichia coli AcrB Does Not Increase Expression of Other Efflux Pump Genes Supporting the Discovery of AcrB Inhibitors as Antibiotic Adjuvants. Journal of Antimicrobial Chemotherapy, 77, 633-640. https://doi.org/10.1093/jac/dkab452
|
[34]
|
Lee, J. (2019) Perspectives Towards Antibiotic Resistance: From Molecules to Population. Journal of Microbiology, 57, 181-184. https://doi.org/10.1007/s12275-019-0718-8
|
[35]
|
Lopatkin, A.J., Bening, S.C., Manson, A.L., Stokes, J.M., Kohanski, M.A., Badran, A.H., et al. (2021) Clinically Relevant Mutations in Core Metabolic Genes Confer Antibiotic Resistance. Science, 371, eaba0862. https://doi.org/10.1126/science.aba0862
|
[36]
|
Yu, J.S.L., Correia-Melo, C., Zorrilla, F., Herrera-Dominguez, L., Wu, M.Y., Hartl, J., et al. (2022) Microbial Communities Form Rich Extracellular Metabolomes That Foster Metabolic Interactions and Promote Drug Tolerance. Nature Microbiology, 7, 542-555. https://doi.org/10.1038/s41564-022-01072-5
|
[37]
|
Wilson, D.N., Hauryliuk, V., Atkinson, G.C. and O’Neill, A.J. (2020) Target Protection as a Key Antibiotic Resistance Mechanism. Nature Reviews Microbiology, 18, 637-648. https://doi.org/10.1038/s41579-020-0386-z
|
[38]
|
Mickiewicz, K.M., Kawai, Y., Drage, L., Gomes, M.C., Davison, F., Pickard, R., et al. (2019) Possible Role of L-Form Switching in Recurrent Urinary Tract Infection. Nature Communications, 10, Article No. 4379. https://doi.org/10.1038/s41467-019-12359-3
|
[39]
|
Rather, M.A., Gupta, K. and Mandal, M. (2021) Microbial Biofilm: Formation, Architecture, Antibiotic Resistance, and Control Strategies. Brazilian Journal of Microbiology, 52, 1701-1718. https://doi.org/10.1007/s42770-021-00624-x
|
[40]
|
马成军, 刘静静, 焦敏, 等. 大肠埃希菌生物被膜基因调控研究进展[J]. 微生物学报, 2024, 64(8): 2623-2647.
|
[41]
|
石岩, 杨伟峰, 齐文升. 新加达原散联合亚胺培南西司他丁对临床分离多重耐药大肠埃希菌生物膜的影响[J]. 中国实验方剂学杂志, 2022, 28(19): 73-80.
|
[42]
|
张青, 马慧娜. 大肠埃希菌生物膜形成与耐药机制的研究进展[J]. 中国抗生素杂志, 2018, 43(5): 497-501.
|
[43]
|
Tarín-Pelló, A., Suay-García, B. and Pérez-Gracia, M. (2022) Antibiotic Resistant Bacteria: Current Situation and Treatment Options to Accelerate the Development of a New Antimicrobial Arsenal. Expert Review of Anti-Infective Therapy, 20, 1095-1108. https://doi.org/10.1080/14787210.2022.2078308
|
[44]
|
Narendrakumar, L., Chakraborty, M., Kumari, S., Paul, D. and Das, B. (2023) β-Lactam Potentiators to Re-Sensitize Resistant Pathogens: Discovery, Development, Clinical Use and the Way Forward. Frontiers in Microbiology, 13, Article 1092556. https://doi.org/10.3389/fmicb.2022.1092556
|
[45]
|
叶静, 肖婷婷, 王雪婷, 等. 新型抗菌药物研究进展与临床应用[J]. 药学进展, 2021, 45(6): 403-412.
|
[46]
|
Karvouniaris, M., Almyroudi, M.P., Abdul-Aziz, M.H., Blot, S., Paramythiotou, E., Tsigou, E., et al. (2023) Novel Antimicrobial Agents for Gram-Negative Pathogens. Antibiotics, 12, Article 761. https://doi.org/10.3390/antibiotics12040761
|
[47]
|
黄晓岚, 卞星晨, 黄志伟, 等. 新型β内酰胺类-β内酰胺酶抑制剂复方制剂研究进展[J]. 中国感染与化疗杂志, 2021, 21(2): 241-248.
|
[48]
|
严茹钰, 沈瀚, 曹小利. 新型β-内酰胺酶抑制剂药物研究进展[J]. 中国抗生素杂志, 2024, 49(12): 1360-1367.
|
[49]
|
王昊, 刘聪, 薛云新, 等. β-内酰胺药物及β-内酰胺酶相关的研究进展[J]. 中国抗生素杂志, 2021, 46(4): 297-304.
|
[50]
|
贾丽阳, 邓冬, 孙丽华, 等. 中药治疗耐药菌感染作用机制研究进展[J]. 中国实验方剂学杂志, 2020, 26(16): 228-234.
|
[51]
|
杭永付, 薛晓燕, 方芸, 等. 中药抗菌和逆转耐药作用机制研究进展[J]. 中国药房, 2011, 22(47): 4504-4507.
|
[52]
|
马聪, 余志晴, 田佩灵, 等. 黄连标准汤剂、配方颗粒与盐酸小檗碱对大肠埃希菌的抑菌作用机制研究[J]. 中国抗生素杂志, 2023, 48(8): 930-936.
|
[53]
|
张文平, 曹镐禄, 张文书, 等. 千里光对大肠埃希菌R质粒消除作用的血清药理学研究[J]. 广东医学, 2007, 28(8): 1238-1239.
|
[54]
|
刘平, 叶惠芬, 陈惠玲, 等. 5种中药对产酶菌的抑菌作用[J]. 中国微生态学杂志, 2006, 18(1): 39-40.
|
[55]
|
吕世明, 谭艾娟, 曹敏, 等. 7种天然化合物对产ESBLs大肠杆菌的增敏机制研究[J]. 畜牧与兽医, 2016, 48(4): 35-38.
|
[56]
|
李海华, 郭蔚冰, 陈志强, 等. 45味中药对多重耐药大肠杆菌的抑菌效果[J]. 中国现代中药, 2019, 21(6): 791-796.
|
[57]
|
帅丽华, 姜登钊, 刘怀, 等. 黄连-左氧氟沙星联合用药对多重耐药大肠埃希菌的体外抗菌活性研究[J]. 中国医院药学杂志, 2017, 37(5): 418-420, 434.
|
[58]
|
冯洁, 谢俊艳, 时友忠, 等. 新型抗菌药物依拉环素的研究进展[J]. 中国新药与临床杂志, 2024, 43(9): 641-646.
|
[59]
|
潘智宇, 印尤强, 苏玉斌. 常见抗生素与新型抗菌药物在临床上的研究应用进展[J]. 中国抗生素杂志, 2022, 47(9): 865-871.
|
[60]
|
宗辉, 孙钰芳, 陈思敏, 等. β-内酰胺酶抑制剂复方制剂研究进展[J]. 中国新药杂志, 2022, 31(4): 343-351.
|
[61]
|
Doi, Y. (2019) Treatment Options for Carbapenem-Resistant Gram-Negative Bacterial Infections. Clinical Infectious Diseases, 69, S565-S575. https://doi.org/10.1093/cid/ciz830
|
[62]
|
李慧, 刘莉群, 秦丹, 等. 头孢他啶/阿维巴坦治疗碳青霉烯耐药革兰阴性菌的临床应用及研究进展[J]. 国外医药(抗生素分册), 2023, 44(1): 1-6.
|
[63]
|
史玉敏, 严恒, 王俊, 等. 氟喹诺酮类杂合体的抗耐药菌活性[J]. 中国抗生素杂志, 2023, 48(11): 1273-1280.
|
[64]
|
Venuti, F., Trunfio, M., Martson, A., Lipani, F., Audagnotto, S., Di Perri, G., et al. (2023) Extended and Continuous Infusion of Novel Protected β-Lactam Antibiotics: A Narrative Review. Drugs, 83, 967-983. https://doi.org/10.1007/s40265-023-01893-6
|
[65]
|
Łobocka, M., Dąbrowska, K. and Górski, A. (2021) Engineered Bacteriophage Therapeutics: Rationale, Challenges and Future. BioDrugs, 35, 255-280. https://doi.org/10.1007/s40259-021-00480-z
|
[66]
|
Kim, B., Kim, E.S., Yoo, Y., Bae, H., Chung, I. and Cho, Y. (2019) Phage-Derived Antibacterials: Harnessing the Simplicity, Plasticity, and Diversity of Phages. Viruses, 11, Article 268. https://doi.org/10.3390/v11030268
|
[67]
|
Chatterjee, A., Johnson, C.N., Luong, P., Hullahalli, K., McBride, S.W., Schubert, A.M., et al. (2019) Bacteriophage Resistance Alters Antibiotic-Mediated Intestinal Expansion of Enterococci. Infection and Immunity, 87. https://doi.org/10.1128/iai.00085-19
|
[68]
|
Gordillo Altamirano, F., Forsyth, J.H., Patwa, R., Kostoulias, X., Trim, M., Subedi, D., et al. (2021) Bacteriophage-Resistant Acinetobacter baumannii Are Resensitized to Antimicrobials. Nature Microbiology, 6, 157-161. https://doi.org/10.1038/s41564-020-00830-7
|
[69]
|
Moravej, H., Moravej, Z., Yazdanparast, M., Heiat, M., Mirhosseini, A., Moosazadeh Moghaddam, M., et al. (2018) Antimicrobial Peptides: Features, Action, and Their Resistance Mechanisms in Bacteria. Microbial Drug Resistance, 24, 747-767. https://doi.org/10.1089/mdr.2017.0392
|
[70]
|
Lei, J., Sun, L., Huang, S., et al. (2019) The Antimicrobial Peptides and Their Potential Clinical Applications. American Journal of Translational Research, 11, 3919-3931.
|
[71]
|
温国琴. 抗生素耐药性现状及研究进展[J]. 中国处方药, 2022, 20(8): 186-190.
|
[72]
|
Imai, Y., Meyer, K.J., Iinishi, A., Favre-Godal, Q., Green, R., Manuse, S., et al. (2019) A New Antibiotic Selectively Kills Gram-Negative Pathogens. Nature, 576, 459-464. https://doi.org/10.1038/s41586-019-1791-1
|
[73]
|
Medhi, B., Sarma, P., Mahendiratta, S. and Prakash, A. (2018) Specifically Targeted Antimicrobial Peptides: A New and Promising Avenue in Selective Antimicrobial Therapy. Indian Journal of Pharmacology, 50, 1-3. https://doi.org/10.4103/ijp.ijp_218_18
|
[74]
|
Rizvi, S.M.D., Lila, A.S.A., Moin, A., Hussain, T., Kamal, M.A., Sonbol, H., et al. (2023) Antibiotic-Loaded Gold Nanoparticles: A Nano-Arsenal against ESBL Producer-Resistant Pathogens. Pharmaceutics, 15, Article 430. https://doi.org/10.3390/pharmaceutics15020430
|
[75]
|
Khorsandi, K., Hosseinzadeh, R., Sadat Esfahani, H., Keyvani-Ghamsari, S. and Ur Rahman, S. (2021) Nanomaterials as Drug Delivery Systems with Antibacterial Properties: Current Trends and Future Priorities. Expert Review of Anti-infective Therapy, 19, 1299-1323. https://doi.org/10.1080/14787210.2021.1908125
|
[76]
|
Günday Türeli, N., Torge, A., Juntke, J., Schwarz, B.C., Schneider-Daum, N., Türeli, A.E., et al. (2017) Ciprofloxacin-loaded PLGA Nanoparticles against Cystic Fibrosis P. aeruginosa Lung Infections. European Journal of Pharmaceutics and Biopharmaceutics, 117, 363-371. https://doi.org/10.1016/j.ejpb.2017.04.032
|
[77]
|
袁露平, 洪阁, 刘天军. 光敏抗菌药物及光敏抗菌材料研究进展[J]. 中国抗生素杂志, 2023, 48(12): 1334-1344.
|
[78]
|
Khan, S., P, M.R., Rizvi, A., Alam, M.M., Rizvi, M. and Naseem, I. (2019) ROS Mediated Antibacterial Activity of Photoilluminated Riboflavin: A Photodynamic Mechanism against Nosocomial Infections. Toxicology Reports, 6, 136-142. https://doi.org/10.1016/j.toxrep.2019.01.003
|
[79]
|
Ronqui, M.R., de Aguiar Coletti, T.M.S.F., de Freitas, L.M., Miranda, E.T. and Fontana, C.R. (2016) Synergistic Antimicrobial Effect of Photodynamic Therapy and Ciprofloxacin. Journal of Photochemistry and Photobiology B: Biology, 158, 122-129. https://doi.org/10.1016/j.jphotobiol.2016.02.036
|
[80]
|
Kundar, R. and Gokarn, K. (2022) CRISPR-Cas System: A Tool to Eliminate Drug-Resistant Gram-Negative Bacteria. Pharmaceuticals, 15, Article 1498. https://doi.org/10.3390/ph15121498
|
[81]
|
Liu, G., Lin, Q., Jin, S. and Gao, C. (2022) The CRISPR-Cas Toolbox and Gene Editing Technologies. Molecular Cell, 82, 333-347. https://doi.org/10.1016/j.molcel.2021.12.002
|
[82]
|
Mayorga-Ramos, A., Zúñiga-Miranda, J., Carrera-Pacheco, S.E., Barba-Ostria, C. and Guamán, L.P. (2023) CRISPR-Cas-Based Antimicrobials: Design, Challenges, and Bacterial Mechanisms of Resistance. ACS Infectious Diseases, 9, 1283-1302. https://doi.org/10.1021/acsinfecdis.2c00649
|
[83]
|
Kim, J., Cho, D., Park, M., Chung, W., Shin, D., Ko, K.S., et al. (2016) CRISPR/Cas9-Mediated Re-Sensitization of Antibiotic-Resistant Escherichia coli Harboring Extended-Spectrum β-Lactamases. Journal of Microbiology and Biotechnology, 26, 394-401. https://doi.org/10.4014/jmb.1508.08080
|
[84]
|
Vila, J., Moreno-Morales, J. and Ballesté-Delpierre, C. (2020) Current Landscape in the Discovery of Novel Antibacterial Agents. Clinical Microbiology and Infection, 26, 596-603. https://doi.org/10.1016/j.cmi.2019.09.015
|
[85]
|
Suzuki, Y., Ishimoto, T., Fujita, S., Kiryu, S., Wada, M., Akatsuka, T., et al. (2020) Antimicrobial Antisense RNA Delivery to F-Pili Producing Multidrug-Resistant Bacteria via a Genetically Engineered Bacteriophage. Biochemical and Biophysical Research Communications, 530, 533-540. https://doi.org/10.1016/j.bbrc.2020.06.088
|
[86]
|
王慧. 反义策略阻断外排泵出系统逆转多重耐药铜绿假单胞菌及耐氟喹诺酮类大肠埃希杆菌耐药性的研究[D]: [硕士学位论文]. 西安: 第四军医大学, 2008.
|
[87]
|
张劲丰, 吴英, 苏荣, 等. 反义寡核苷酸抑制产ESBLs大肠埃希菌耐药基因表达的研究[J]. 中国病原生物学杂志, 2013, 8(6): 510-513.
|
[88]
|
Macareño-Castro, J., Solano-Salazar, A., Dong, L.T., Mohiuddin, M. and Espinoza, J.L. (2022) Fecal Microbiota Transplantation for Carbapenem-Resistant Enterobacteriaceae: A Systematic Review. Journal of Infection, 84, 749-759. https://doi.org/10.1016/j.jinf.2022.04.028
|
[89]
|
Ghani, R., Mullish, B.H., McDonald, J.A.K., Ghazy, A., Williams, H.R.T., Brannigan, E.T., et al. (2020) Disease Prevention Not Decolonization: A Model for Fecal Microbiota Transplantation in Patients Colonized with Multidrug-Resistant Organisms. Clinical Infectious Diseases, 72, 1444-1447. https://doi.org/10.1093/cid/ciaa948
|
[90]
|
李晶莹, 陆高辰, 张发明. 粪菌移植在感染性疾病中的应用研究进展[J]. 中国感染控制杂志, 2024, 23(3): 377-384.
|