1型糖尿病中的胰岛素抵抗及其治疗策略
Insulin Resistance in Type 1 Diabetes and Its Treatment Strategies
DOI: 10.12677/acm.2025.153617, PDF, HTML, XML,   
作者: 孙全昊:黑龙江中医药大学第一临床医学院,黑龙江 哈尔滨;杜丽坤*:黑龙江中医药大学附属第一医院内分泌二科,黑龙江 哈尔滨
关键词: 胰岛素抵抗1型糖尿病肥胖Insulin Resistance Type 1 Diabetes Obesity
摘要: 胰岛素抵抗(Insulin Resistance, IR)是2型糖尿病发病机制中最重要的因素,但也可能在1型糖尿病(Type 1 Diabetes, T1DM)中发生。在T1DM患者中发生IR可能对实现血糖目标产生负担,并可能恶化整体预后。1型糖尿病IR的发生是多因素的,它通常与超重或肥胖以及久坐的生活方式有关。除了血糖控制受损和胰岛素需求增加之外,IR的存在还会导致T1DM患者的心血管风险增加。有研究已经证明在改善T1DM患者胰岛素敏感性方面可行的最重要干预措施是生活方式优化,包括饮食控制、运动以及使用药物治疗,如二甲双胍、钠–葡萄糖共转运蛋白-2 (SGLT-2)抑制剂、胰高血糖素样肽-1受体激动剂(GLP1-Ras)和噻唑烷二酮。T1DM和IR共存的病理生理学是多因素的,文章旨在描述T1DM中IR可能的发病机制,并介绍针对T1DM患者IR所采取的干预措施,以期为T1DM中血糖控制及提高胰岛素敏感性提供新思路。
Abstract: Insulin resistance (IR) is the most important factor in the pathogenesis of type 2 diabetes mellitus, but may also occur in type 1 diabetes (T1DM). The occurrence of IR in patients with T1DM may be burdensome for achieving glycemic goals and may worsen the overall prognosis. The occurrence of IR in type 1 diabetes is multifactorial, and it is often associated with overweight or obesity and a sedentary lifestyle. In addition to impaired glycemic control and increased insulin requirements, the presence of IR increases increased cardiovascular risk in patients with T1DM. The most important interventions that have been shown to be feasible in improving insulin sensitivity in patients with T1DM are lifestyle optimization, including dietary control, exercise, and the use of pharmacological therapies such as metformin, sodium-glucose cotransporter protein-2 (SGLT2) inhibitors, glucagon-like peptide-1 receptor agonists (GLP1-RAs), and thiazolidinediones. The pathology of the coexistence of T1DM and IR is multifactorial. Physiology is multifactorial, and the aim of this paper is to describe the possible pathogenesis of IR in T1DM and to present interventions for IR in patients with T1DM, with the aim of providing new ideas for glycemic control and improving insulin sensitivity in T1DM.
文章引用:孙全昊, 杜丽坤. 1型糖尿病中的胰岛素抵抗及其治疗策略[J]. 临床医学进展, 2025, 15(3): 311-317. https://doi.org/10.12677/acm.2025.153617

1. 引言

目前,糖尿病是主要的全球公共卫生问题之一。根据IDF在2021年发布的报告,全球估计有5.37亿人患糖尿病[1]。预计到2045年,糖尿病患病人数将增加至约7.83亿,并为世界卫生保健系统造成约9660亿美元的全球经济负担[2]。糖尿病有两种主要类型,占总病例的95%以上:T1DM,以绝对胰岛素缺乏为特征;2型糖尿病(T2DM),以IR为特征,与胰岛素分泌或功能紊乱有关[3]。T1DM是一种自身免疫性疾病,由T淋巴细胞介导,使具有胰岛素分泌功能的胰腺β细胞被破坏。T1DM的发生是由个体遗传和环境之间的相互作用促进的。遗传因素(HLA类分子,如DR4、DQ8和DQ2,存在于90%的T1DM中)和环境因素之间的相互作用促进了β细胞作为自身抗原的识别,被免疫系统错误地靶向,引发自身免疫反应[4]。IR是T2DM的主要致病因素,其特征是胰岛素靶向组织对正常胰岛素水平的低反应。虽然T2DM通常被认为是IR型糖尿病,但IR也可能存在于T1DM中。研究显示,肥胖和久坐的生活方式是导致IR的危险因素,T1DM患者也不能幸免于这些因素。因此,IR被认为可能是导致T1DM患者血糖控制不良的原因之一[5] [6]

2. 1型糖尿病与胰岛素抵抗

2.1. 易感因素

由于IR与内源性胰岛素合成功能丧失同时存在,T1DM中的IR通常被称为“双重糖尿病”[7]。经研究,T1DM中IR的发展与其他代谢疾病状态中所见的不同,出现IR的T1DM、T2DM和代谢综合征患者表型通常也不同[8]。与健康对照组相比,T1DM的瘦型、正常体重指数(BMI)个体中也存在IR [9]。并且,IR也出现在健康且体重正常的T1DM青少年和年轻成人中,它与心肺耐力差相关,包括最大摄氧量和氧气消耗量的降低,以及心血管功能的减退,如左心室肥厚和舒张功能障碍[8]。IR的发生不能完全通过高血糖来解释,因为许多T1DM患者即使在积极胰岛素治疗下,血糖得到管理,仍然存在IR,并且典型的预后标志物,如BMI、内脏脂肪、血浆脂质、血糖管理和急性糖毒性,并不能解释T1DM中IR的发生[9]。T1DM患者IR的独特发展表明,在该人群中控制葡萄糖不耐受的机制不同。此外,研究还表明,T1DM中的IR具有组织特异性,主要出现在患者的骨骼肌和肝脏中[10]

目前认为,T1DM患者出现IR可能与遗传倾向、超重和肥胖、T1DM病程、氧化应激、糖毒性和脂毒性、激素变化、年龄、性别和种族等因素有关。机体遗传和生活方式之间错综复杂的关系在T1DM的IR发生中发挥着重要作用。IR常常与超重或肥胖有关,这通常与不良的血糖控制、胰岛素需求增加和胰岛素敏感性下降相关。因此,预防T1DM患者肥胖发展的非药物策略已成为优先考虑的方向[11] [12]

2.2. 加速器假说与过载假说

加速器假说认为肥胖和IR在遗传易感的高风险个体中起到“加速器”的作用,增加胰腺β细胞的负担从而加速T1DM的发生。IR使得体内糖代谢失调,糖毒性将进一步加速β细胞的衰竭和死亡[13] [14]。众所周知,肥胖是IR的相关因素,可导致慢性炎症。肥胖相关的慢性低度炎症与免疫系统的激活可能加剧T1DM的自身免疫反应,促进对β细胞的破坏,从而引发T1DM的发生[13] [14]。某种程度上,加速器假说与过载假说是相似的。在触发自身免疫过程的个体中,超重会导致IR,从而导致β细胞过载并加速这些细胞的凋亡[14]。这两种假设都得到了研究的支持,其中IR和超重被证明可加速T1DM的发病并增加其风险,从而对T1DM的发展产生影响[15] [16]。总之,过载假说强调胰腺β细胞负担过重导致功能衰竭,而加速器假说则主要认为肥胖通过免疫机制加速T1DM的发生。两者都承认肥胖和IR在T1DM发病中的重要作用。

2.3. 外源胰岛素

T1DM中的IR可能与治疗性外源胰岛素的给药方式有关。正常情况下,胰岛素从胰腺分泌到门静脉,随后到达肝脏,并在肝脏中大部分代谢。相反,在T1DM治疗期间,胰岛素从皮下组织吸收到外周循环,从而导致外周高胰岛素血症和肝脏低胰岛素血症。长期适应这种胰岛素分布方式可能促使肝脏增加葡萄糖合成,同时减少外周组织对胰岛素介导的葡萄糖摄取[7]。研究表明,肝脏胰岛素暴露减少可能会降低血液中IGF-1的水平,并且伴随生长激素和IGF结合蛋白的增加,这也可能导致外周IR的加剧[17] [18]。外周组织中胰岛素水平长期升高可能会改变胰岛素受体的表达和活性,从而影响胰岛素信号通路并恶化外周组织的胰岛素敏感性程度[19]。高胰岛素血症会干扰T1DM小鼠的线粒体功能并增强氧化应激,从而增加全身和肝脏的IR [20]。此外,外源性注射胰岛素也与体重增加有关[21],如前所述,肥胖增加IR风险。然而,肥胖本身似乎并不是导致IR的唯一因素。研究表明,患有T1DM的瘦人也存在IR [9]。这些发现表明,T1DM患者IR的发病机制不能仅仅用体重过重来解释。

2.4. 饱腹感

IR可能会影响与饱腹感相关的神经内分泌系统。在一项双盲、安慰剂对照研究中,Arafat等人通过向瘦型、肥胖型非糖尿病患者和正常体重的T1DM患者肌肉注射胰高血糖素,研究食欲的神经内分泌刺激作用,研究者在240分钟内反复测量了生长素释放肽和饱腹感的变化[22]。胃饥饿素作为一种促食欲肽,影响多种系统,包括中枢神经系统,通过增加弓状核中刺鼠相关肽和神经肽Y的表达来促进饥饿感[23]。有研究认为,酰基生长素释放肽是引发饱腹感的活性形式。在该实验的所有参与者中,给予胰高血糖素后,胃饥饿素水平下降,但饱腹感的作用在瘦型非糖尿病人群和T1DM患者中持续存在,而在肥胖非糖尿病人群中则没有[22]。酰基生长素释放肽的作用范围表现为:瘦型个体中有显著下降,T1DM患者有所下降,而肥胖者则无明显变化。胰高血糖素对饱腹感的调控似乎与胰岛素的分泌无关。肥胖的T1DM患者可能因生长素释放肽失调和饱腹感增加而导致体重增加[23]

3. 针对1型糖尿病中胰岛素抵抗的干预措施

3.1. 饮食干预

T1DM患者摄入的饱和脂肪量高于健康人群,而高脂肪饮食则会导致IR、冠心病和血脂异常。一项针对T1DM青少年的研究发现,那些高密度脂蛋白胆固醇较低或甘油三酯较高的患者而言,其饮食中饱和脂肪、低单不饱和脂肪酸、二十二碳六烯酸、亚油酸和二十碳五烯酸的摄入量较大[24]。国际儿童和青少年糖尿病协会(ISPAD)建议增加蔬菜、全谷物、水果的摄入,选择低脂饮食[25]。研究表明,即使血糖控制和体重未发生显著变化,饮食调整仍可提高胰岛素敏感性[26]。最佳效果通常来自低反式脂肪和低碳水化合物、高不饱和脂肪酸的饮食。同时,减重、减少简单碳水化合物的摄入、避免胰岛素剂量不足、用多不饱和脂肪酸替代饱和脂肪酸,并进行定期运动,都是降低甘油三酯水平的重要措施[27]。饮食干预是增加T1DM胰岛素敏感性的重要可调节因素,如富含蛋白质、低脂肪、低碳水化合物的饮食均有助于改善IR。此外,高膳食纤维的摄入能有效预防T1DM患者的IR,从而减轻双重糖尿病的负担,低脂饮食也被证明能够提高T1DM患者的外周胰岛素敏感性[28] [29]

3.2. 运动

对于所有年龄段的T1DM患者来说,运动与增强心理健康、改善心血管健康和改善骨骼健康相关[30]。大多数T1DM患者运动的频率低于非糖尿病患者[31]。与日常活动相比,举重和有氧运动可以减少每日胰岛素需求[32]。长期运动疗法可显著改善全身胰岛素敏感性,但对肝脏胰岛素敏感性的影响很小或中等[33] [34]

3.3. 药物治疗

目前尚无任何获批的药物用于降低TIDM患者的IR。所有关于T1DM药物干预的数据均来源于探索性研究,或基于改善IR相关机制的假设。

3.3.1. 二甲双胍

二甲双胍通过激活肝脏和骨骼肌中的AMP活化蛋白激酶(AMPK),从而抑制线粒体呼吸链复合物I并改变细胞的能量状态[5]。其主要作用是减少肝脏的糖异生和葡萄糖生成,同时还能促进胰岛素刺激下外周,尤其是骨骼肌的葡萄糖摄取。此外,二甲双胍还通过增加肠道GLP-1的分泌并减少肠道葡萄糖的吸收来进一步增强降糖作用[35]。此外,二甲双胍还可能通过改变肠道微生物群的组成来发挥作用。除了对血糖的影响,二甲双胍还可以改善血管内皮功能,抑制血管周围脂肪组织中的促炎途径,减少血管组织中STAT3的激活,抑制单核细胞向巨噬细胞的分化。同时,二甲双胍通过AMPK介导的多重效应作用,减少脂肪酸的氧化并降脂[36]。二甲双胍能够显著降低最大颈动脉内膜中层厚度(cIMT)和低密度脂蛋白(LDL)胆固醇水平,可能延长TIDM患者的心脏保护优势。因此,使用二甲双胍来降低胰岛素剂量需求并改善心血管风险管理,对于TIDM患者来说是有潜力的。为了确认其是否能够有效降低心血管事件,还需要进行更多的临床研究[5]

3.3.2. 钠–葡萄糖协同转运蛋白2抑制剂

SGLT2抑制剂似乎是治疗双重糖尿病的潜在方法之一,特别是对于超重和/或有心血管风险的患者群体。这些药物通过阻断SGLT2起作用,SGLT2会降低肾血浆葡萄糖阈值并导致糖尿,从而持续降低血糖。在一些年轻的TIDM患者中评估了SGLT2抑制剂——达格列净——作为胰岛素治疗辅助药物的效果,所有受试者在15岁之前就已确诊为TIDM。这些患者体重超标,尽管接受了强化胰岛素治疗,但血糖控制依然不理想。研究结果表明,达格列净作为辅助药物对这些年轻T1DM患者具有积极影响,在整个试验过程中,血糖控制显著改善,体重和BMI显著下降,胰岛素剂量也大幅减少[37] [38]

3.3.3. 胰高血糖素样肽-1受体激动剂

GLP1-RA是一类肠促胰岛素药物,可增加葡萄糖依赖性胰岛素的产生,抑制高血糖状态下胰腺α细胞释放胰高血糖素,减少胃排空,影响食欲,导致食物摄入量减少[39]。研究发现,利拉鲁肽干预可降低TIDM患者的糖化血红蛋白(HbA1c)、每日胰岛素用量和体重。然而,同时增加了低血糖和酮症的风险[40] [41]。当患者体重过重时,仍应考虑使用GLP1-RA。

3.3.4. 噻唑烷二酮类

由于此类治疗药物可增加骨骼肌和脂肪组织中胰岛素依赖性葡萄糖的利用,并减少肝脏葡萄糖的生成,因此噻唑烷二酮可改善胰岛素敏感性和血糖控制。尽管噻唑烷二酮有效,但由于其会导致体重增加和体液潴留,从而增加心血管风险,因此噻唑烷二酮的使用受到限制[42] [43]

4. 结论

IR是T2DM的关键病理机制,但在T1DM中同样可能发生,且与血糖控制困难、胰岛素需求增加及心血管风险增高相关。T1DM中IR的发生机制复杂,涉及遗传因素、超重、糖毒性、氧化应激及外源性胰岛素治疗方式等。目前,唯一经过验证的能降低T1DM患者IR的方法是非药物干预,如优化饮食、增加运动、改善生活方式被证明有效。大多数与T2DM中IR发生有关的机制也与T1DM中IR的发展有关。因此,二甲双胍、SGLT2抑制剂、GLP1-RA等药物也有增加TIDM中胰岛素敏感性的潜力。但至今尚无专门针对T1DM中IR的批准药物,更多临床研究仍需验证这些干预措施的长效性和安全性。

NOTES

*通讯作者。

参考文献

[1] Chou, C., Hsu, D. and Chou, C. (2023) Predicting the Onset of Diabetes with Machine Learning Methods. Journal of Personalized Medicine, 13, Article 406.
https://doi.org/10.3390/jpm13030406
[2] Hossain, M.J., Al‐Mamun, M. and Islam, M.R. (2024) Diabetes Mellitus, the Fastest Growing Global Public Health Concern: Early Detection Should Be Focused. Health Science Reports, 7, e2004.
https://doi.org/10.1002/hsr2.2004
[3] Petersmann, A., Müller-Wieland, D., Müller, U.A., Landgraf, R., Nauck, M., Freckmann, G., et al. (2019) Definition, Classification and Diagnosis of Diabetes Mellitus. Experimental and Clinical Endocrinology & Diabetes, 127, S1-S7.
https://doi.org/10.1055/a-1018-9078
[4] Giwa, A.M., Ahmed, R., Omidian, Z., Majety, N., Karakus, K.E., Omer, S.M., et al. (2020) Current Understandings of the Pathogenesis of Type 1 Diabetes: Genetics to Environment. World Journal of Diabetes, 11, 13-25.
https://doi.org/10.4239/wjd.v11.i1.13
[5] Priya, G. and Kalra, S. (2017) A Review of Insulin Resistance in Type 1 Diabetes: Is There a Place for Adjunctive Metformin? Diabetes Therapy, 9, 349-361.
https://doi.org/10.1007/s13300-017-0333-9
[6] Vilarrasa, N., San Jose, P., Rubio, M.Á. and Lecube, A. (2021) Obesity in Patients with Type 1 Diabetes: Links, Risks and Management Challenges. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 14, 2807-2827.
https://doi.org/10.2147/dmso.s223618
[7] Bielka, W., Przezak, A., Molęda, P., Pius-Sadowska, E. and Machaliński, B. (2024) Double Diabetes—When Type 1 Diabetes Meets Type 2 Diabetes: Definition, Pathogenesis and Recognition. Cardiovascular Diabetology, 23, Article No. 62.
https://doi.org/10.1186/s12933-024-02145-x
[8] Sammut, M.J., Dotzert, M.S. and Melling, C.W.J. (2024) Mechanisms of Insulin Resistance in Type 1 Diabetes Mellitus: A Case of Glucolipotoxicity in Skeletal Muscle. Journal of Cellular Physiology, 239, e31419.
https://doi.org/10.1002/jcp.31419
[9] Donga, E., van Dijk, M., Hoogma, R.P.L.M., Corssmit, E.P.M. and Romijn, J.A. (2013) Insulin Resistance in Multiple Tissues in Patients with Type 1 Diabetes Mellitus on Long‐Term Continuous Subcutaneous Insulin Infusion Therapy. Diabetes/Metabolism Research and Reviews, 29, 33-38.
https://doi.org/10.1002/dmrr.2343
[10] Bergman, B.C., Howard, D., Schauer, I.E., Maahs, D.M., Snell-Bergeon, J.K., Eckel, R.H., et al. (2012) Features of Hepatic and Skeletal Muscle Insulin Resistance Unique to Type 1 Diabetes. The Journal of Clinical Endocrinology & Metabolism, 97, 1663-1672.
https://doi.org/10.1210/jc.2011-3172
[11] Wolosowicz, M., Lukaszuk, B. and Chabowski, A. (2020) The Causes of Insulin Resistance in Type 1 Diabetes Mellitus: Is There a Place for Quaternary Prevention? International Journal of Environmental Research and Public Health, 17, Article 8651.
https://doi.org/10.3390/ijerph17228651
[12] Todd, J.A., Bell, J.I. and McDevitt, H.O. (1987) HLA-DQβ Gene Contributes to Susceptibility and Resistance to Insulin-Dependent Diabetes Mellitus. Nature, 329, 599-604.
https://doi.org/10.1038/329599a0
[13] Wilkin, T.J. (2009) The Accelerator Hypothesis: A Review of the Evidence for Insulin Resistance as the Basis for Type I as Well as Type II Diabetes. International Journal of Obesity, 33, 716-726.
https://doi.org/10.1038/ijo.2009.97
[14] Petrelli, A., Giovenzana, A., Insalaco, V., Phillips, B.E., Pietropaolo, M. and Giannoukakis, N. (2021) Autoimmune Inflammation and Insulin Resistance: Hallmarks So Far and Yet So Close to Explain Diabetes Endotypes. Current Diabetes Reports, 21, Article No. 54.
https://doi.org/10.1007/s11892-021-01430-3
[15] Islam, S.T., Srinivasan, S. and Craig, M.E. (2014) Environmental Determinants of Type 1 Diabetes: A Role for Overweight and Insulin Resistance. Journal of Paediatrics and Child Health, 50, 874-879.
https://doi.org/10.1111/jpc.12616
[16] Xia, Y., Xie, Z., Huang, G. and Zhou, Z. (2018) Incidence and Trend of Type 1 Diabetes and the Underlying Environmental Determinants. Diabetes/Metabolism Research and Reviews, 35, e3075.
https://doi.org/10.1002/dmrr.3075
[17] Edge, J.A., Dunger, D.B., Matthews, D.R., Gilbert, J.P. and Smith, C.P. (1990) Increased Overnight Growth Hormone Concentrations in Diabetic Compared with Normal Adolescents. The Journal of Clinical Endocrinology & Metabolism, 71, 1356-1362.
https://doi.org/10.1210/jcem-71-5-1356
[18] Taylor, A.M., Dunger, D.B., Grant, D.B., et al. (1988) Somatomedin-C/IGF-I Measured by Radioimmunoassay and Somatomedin Bioactivity in Adolescents with Insulin Dependent Diabetes Compared with Puberty Matched Controls. Diabetes Research, 9, 177-181.
[19] Catalano, K.J., Maddux, B.A., Szary, J., Youngren, J.F., Goldfine, I.D. and Schaufele, F. (2014) Insulin Resistance Induced by Hyperinsulinemia Coincides with a Persistent Alteration at the Insulin Receptor Tyrosine Kinase Domain. PLOS ONE, 9, e108693.
https://doi.org/10.1371/journal.pone.0108693
[20] Liu, H., Cao, S.Y., Hong, T., Han, J., Liu, Z. and Cao, W. (2009) Insulin Is a Stronger Inducer of Insulin Resistance than Hyperglycemia in Mice with Type 1 Diabetes Mellitus (T1DM). Journal of Biological Chemistry, 284, 27090-27100.
https://doi.org/10.1074/jbc.m109.016675
[21] Kolb, H., Kempf, K., Röhling, M. and Martin, S. (2020) Insulin: Too Much of a Good Thing Is Bad. BMC Medicine, 18, Article No. 224.
https://doi.org/10.1186/s12916-020-01688-6
[22] Arafat, A.M., Weickert, M.O., Adamidou, A., Otto, B., Perschel, F.H., Spranger, J., et al. (2013) The Impact of Insulin-Independent, Glucagon-Induced Suppression of Total Ghrelin on Satiety in Obesity and Type 1 Diabetes Mellitus. The Journal of Clinical Endocrinology & Metabolism, 98, 4133-4142.
https://doi.org/10.1210/jc.2013-1635
[23] Depoortere, I. (2009) Targeting the Ghrelin Receptor to Regulate Food Intake. Regulatory Peptides, 156, 13-23.
https://doi.org/10.1016/j.regpep.2009.04.002
[24] Grabia, M., Markiewicz-Żukowska, R., Socha, K., Polkowska, A., Zasim, A., Boruch, K., et al. (2022) Prevalence of Metabolic Syndrome in Relation to Cardiovascular Biomarkers and Dietary Factors among Adolescents with Type 1 Diabetes Mellitus. Nutrients, 14, Article 2435.
https://doi.org/10.3390/nu14122435
[25] Smart, C.E., Annan, F., Higgins, L.A., Jelleryd, E., Lopez, M. and Acerini, C.L. (2018) ISPAD Clinical Practice Consensus Guidelines 2018: Nutritional Management in Children and Adolescents with Diabetes. Pediatric Diabetes, 19, 136-154.
https://doi.org/10.1111/pedi.12738
[26] Khadilkar, A., Oza, C. and Mondkar, S.A. (2023) Insulin Resistance in Adolescents and Youth with Type 1 Diabetes: A Review of Problems and Solutions. Clinical Medicine Insights: Endocrinology and Diabetes, 16.
https://doi.org/10.1177/11795514231206730
[27] Nordmann, A.J., Nordmann, A., Briel, M., Keller, U., Yancy, W.S., Brehm, B.J., et al. (2006) Effects of Low-Carbohydrate vs Low-Fat Diets on Weight Loss and Cardiovascular Risk Factors: A Meta-Analysis of Randomized Controlled Trials. Archives of Internal Medicine, 166, 285-293.
https://doi.org/10.1001/archinte.166.3.285
[28] Rosenfalck, A.M., Almdal, T., Viggers, L., Madsbad, S. and Hilsted, J. (2006) A Low‐Fat Diet Improves Peripheral Insulin Sensitivity in Patients with Type 1 Diabetes. Diabetic Medicine, 23, 384-392.
https://doi.org/10.1111/j.1464-5491.2005.01810.x
[29] Annan, S.F., Higgins, L.A., Jelleryd, E., Hannon, T., Rose, S., Salis, S., et al. (2022) ISPAD Clinical Practice Consensus Guidelines 2022: Nutritional Management in Children and Adolescents with Diabetes. Pediatric Diabetes, 23, 1297-1321.
https://doi.org/10.1111/pedi.13429
[30] Brazeau, A.S., Leroux, C., Mircescu, H. and Rabasa‐Lhoret, R. (2012) Physical Activity Level and Body Composition among Adults with Type 1 Diabetes. Diabetic Medicine, 29, e402-e408.
https://doi.org/10.1111/j.1464-5491.2012.03757.x
[31] Colberg, S.R., Laan, R., Dassau, E. and Kerr, D. (2015) Physical Activity and Type 1 Diabetes: Time for a Rewire? Journal of Diabetes Science and Technology, 9, 609-618.
https://doi.org/10.1177/1932296814566231
[32] D’hooge, R., Hellinckx, T., Van Laethem, C., Stegen, S., De Schepper, J., Van Aken, S., et al. (2010) Influence of Combined Aerobic and Resistance Training on Metabolic Control, Cardiovascular Fitness and Quality of Life in Adolescents with Type 1 Diabetes: A Randomized Controlled Trial. Clinical Rehabilitation, 25, 349-359.
https://doi.org/10.1177/0269215510386254
[33] Yki-Järvinen, H., DeFronzo, R.A. and Koivisto, V.A. (1984) Normalization of Insulin Sensitivity in Type I Diabetic Subjects by Physical Training during Insulin Pump Therapy. Diabetes Care, 7, 520-527.
https://doi.org/10.2337/diacare.7.6.520
[34] Sampath Kumar, A., Maiya, A.G., Shastry, B.A., Vaishali, K., Ravishankar, N., Hazari, A., et al. (2019) Exercise and Insulin Resistance in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Annals of Physical and Rehabilitation Medicine, 62, 98-103.
https://doi.org/10.1016/j.rehab.2018.11.001
[35] Thomas, I. and Gregg, B. (2017) Metformin; a Review of Its History and Future: From Lilac to Longevity. Pediatric Diabetes, 18, 10-16.
https://doi.org/10.1111/pedi.12473
[36] Livingstone, S.J., Levin, D., Looker, H.C., Lindsay, R.S., Wild, S.H., Joss, N., et al. (2015) Estimated Life Expectancy in a Scottish Cohort with Type 1 Diabetes, 2008-2010. JAMA, 313, 37-44.
https://doi.org/10.1001/jama.2014.16425
[37] Maffei, P., Bettini, S., Busetto, L. and Dassie, F. (2023) SGLT2 Inhibitors in the Management of Type 1 Diabetes (T1D): An Update on Current Evidence and Recommendations. Diabetes, Metabolic Syndrome and Obesity, 16, 3579-3598.
https://doi.org/10.2147/dmso.s240903
[38] Urakami, T., Yoshida, K. and Suzuki, J. (2023) Efficacy of Low-Dose Dapagliflozin in Young People with Type 1 Diabetes. Internal Medicine, 62, 177-186.
https://doi.org/10.2169/internalmedicine.9632-22
[39] Drucker, D.J. (2018) Mechanisms of Action and Therapeutic Application of Glucagon-Like Peptide-1. Cell Metabolism, 27, 740-756.
https://doi.org/10.1016/j.cmet.2018.03.001
[40] Mathieu, C., Zinman, B., Hemmingsson, J.U., Woo, V., Colman, P., Christiansen, E., et al. (2016) Efficacy and Safety of Liraglutide Added to Insulin Treatment in Type 1 Diabetes: The ADJUNCT ONE Treat-to-Target Randomized Trial. Diabetes Care, 39, 1702-1710.
https://doi.org/10.2337/dc16-0691
[41] Ahrén, B., Hirsch, I.B., Pieber, T.R., Mathieu, C., Gómez-Peralta, F., Hansen, T.K., et al. (2016) Efficacy and Safety of Liraglutide Added to Capped Insulin Treatment in Subjects with Type 1 Diabetes: The ADJUNCT TWO Randomized Trial. Diabetes Care, 39, 1693-1701.
https://doi.org/10.2337/dc16-0690
[42] Nesto, R.W., Bell, D., Bonow, R.O., Fonseca, V., Grundy, S.M., Horton, E.S., et al. (2004) Thiazolidinedione Use, Fluid Retention, and Congestive Heart Failure: A Consensus Statement from the American Heart Association and American Diabetes Association. Diabetes Care, 27, 256-263.
https://doi.org/10.2337/diacare.27.1.256
[43] Lebovitz, H.E. (2019) Thiazolidinediones: The Forgotten Diabetes Medications. Current Diabetes Reports, 19, Article No. 151.
https://pubmed.ncbi.nlm.nih.gov/31776781/
https://doi.org/10.1007/s11892-019-1270-y