[1]
|
Gao, J., Pan, D., Chen, K., Liu, Y., Chen, J. and Wen, Z. (2024) High‐Power‐Density Hybrid Acid/Alkali Zinc-Air Battery for High‐Efficiency Desalination. Advanced Energy Materials, 14, Article ID: 2400368. https://doi.org/10.1002/aenm.202400368
|
[2]
|
Timoshenko, J., Rettenmaier, C., Hursán, D., Rüscher, M., Ortega, E., Herzog, A., et al. (2024) Reversible Metal Cluster Formation on Nitrogen-Doped Carbon Controlling Electrocatalyst Particle Size with Subnanometer Accuracy. Nature Communications, 15, Article No. 6111. https://doi.org/10.1038/s41467-024-50379-w
|
[3]
|
Zou, X., Lu, Q., Wu, J., Zhang, K., Tang, M., Wu, B., et al. (2024) Screening Spinel Oxide Supports for RuO2 to Boost Bifunctional Electrocatalysts for Advanced Zn-Air Batteries. Advanced Functional Materials, 34, Article ID: 2401134. https://doi.org/10.1002/adfm.202401134
|
[4]
|
Li, L., Fu, L., Wang, R., Sun, J., Li, X., Fu, C., et al. (2020) Cobalt, Manganese Zeolitic-Imidazolate-Framework-Derived Co3O4/Mn3O4/CNx Embedded in Carbon Nanofibers as an Efficient Bifunctional Electrocatalyst for Flexible Zn-Air Batteries. Electrochimica Acta, 344, Article ID: 136145. https://doi.org/10.1016/j.electacta.2020.136145
|
[5]
|
Liu, B., Yuan, B., Wang, C., You, S., Liu, J., Meng, X., et al. (2023) Highly-Dispersed NiFe Alloys In-Situ Anchored on Outer Surface of Co, N Co-Doped Carbon Nanotubes with Enhanced Stability for Oxygen Electrocatalysis. Journal of Colloid and Interface Science, 635, 208-220. https://doi.org/10.1016/j.jcis.2022.12.152
|
[6]
|
Zhong, X., Xiao, X., Li, Q., Zhang, M., Li, Z., Gao, L., et al. (2024) Understanding the Active Site in Chameleon-Like Bifunctional Catalyst for Practical Rechargeable Zinc-Air Batteries. Nature Communications, 15, Article No. 9616. https://doi.org/10.1038/s41467-024-54019-1
|
[7]
|
Chen, Z., Zou, Y., Chen, H., Zhang, K. and Hui, B. (2023) Bamboo‐Modulated Helical Carbon Nanotubes for Rechargeable Zn‐Air Battery. Small, 20, Article ID: 2307776. https://doi.org/10.1002/smll.202307776
|
[8]
|
Li, Z., Ji, S., Xu, C., Leng, L., Liu, H., Horton, J.H., et al. (2022) Engineering the Electronic Structure of Single‐Atom Iron Sites with Boosted Oxygen Bifunctional Activity for Zinc-Air Batteries. Advanced Materials, 35, Article ID: 2209644. https://doi.org/10.1002/adma.202209644
|
[9]
|
Yu, P., Wang, L., Sun, F., Xie, Y., Liu, X., Ma, J., et al. (2019) Co Nanoislands Rooted on Co-N-C Nanosheets as Efficient Oxygen Electrocatalyst for Zn-Air Batteries. Advanced Materials, 31, Article ID: 1901666. https://doi.org/10.1002/adma.201901666
|
[10]
|
Dai, J., Zhang, J., Karthick, R., Liang, M., Wei, Q., Chen, X., et al. (2022) Co/fe3o4 Nanoparticles Embedded in N-Doped Hierarchical Porous Carbon Derived from Zeolitic Imidazolate Frameworks as Efficient Oxygen Reduction Electrocatalysts for Zinc-Air Battery-Based Desalination. Journal of Materials Chemistry A, 10, 12213-12224. https://doi.org/10.1039/d2ta00736c
|
[11]
|
Wang, X., Zhou, X., Li, C., Yao, H., Zhang, C., Zhou, J., et al. (2022) Asymmetric Co-N3P1 Trifunctional Catalyst with Tailored Electronic Structures Enabling Boosted Activities and Corrosion Resistance in an Uninterrupted Seawater Splitting System. Advanced Materials, 34, Article ID: 2204021. https://doi.org/10.1002/adma.202204021
|
[12]
|
Wang, A., Gao, S., Yan, J., Zhao, C., Yu, M. and Wang, W. (2023) Vacancy-Modified Bimetallic FeMoSx/CoNiPx Heterostructure Array for Efficient Seawater Splitting and Zn-Air Battery. Journal of Energy Chemistry, 81, 533-542. https://doi.org/10.1016/j.jechem.2023.02.029
|
[13]
|
Chang, J., Wang, G., Yang, Z., Li, B., Wang, Q., Kuliiev, R., et al. (2021) Dual‐Doping and Synergism toward High‐performance Seawater Electrolysis. Advanced Materials, 33, Article ID: 2101425. https://doi.org/10.1002/adma.202101425
|
[14]
|
Fan, Y., Wang, W., Chen, Y., Xu, Z., Cai, D., Xu, M., et al. (2024) Cobalt-Containing Zif-Derived Catalysts for Zn-Air Batteries. Materials Chemistry Frontiers, 8, 2394-2419. https://doi.org/10.1039/d4qm00169a
|
[15]
|
Yang, M., Shu, X., Pan, W. and Zhang, J. (2021) Toward Flexible Zinc-Air Batteries with Self‐Supported Air Electrodes. Small, 17, Article ID: 2006773. https://doi.org/10.1002/smll.202006773
|
[16]
|
Kuang, J., Shen, Y., Zhang, Y., Yao, J., Du, J., Yang, S., et al. (2023) Synergistic Bimetallic Cocu‐Codecorated Carbon Nanosheet Arrays as Integrated Bifunctional Cathodes for High‐Performance Rechargeable/Flexible Zinc‐Air Batteries. Small, 19, Article ID: 2207413. https://doi.org/10.1002/smll.202207413
|
[17]
|
Wang, Z., Jian, J., Wang, X., Qiao, Y., Wang, M., Gao, S., et al. (2023) CoNi2S4@CoNi-LDH Heterojunction Grown on SSM as a Highly Efficient Trifunctional Catalyst for Water-Splitting and Zn-Air Batteries. Journal of Materials Chemistry C, 11, 16384-16389. https://doi.org/10.1039/d3tc03336h
|