磷酸吡哆醇(胺)氧化酶缺乏症罕见c.481C > T位点突变1例并文献复习
A Case of Rare Deficiency of Pyridox(am)ine-5’-Phosphate Oxidase c.481C > T Site Mutation with Literature Review
摘要: 目的:对磷酸吡哆醇(胺)氧化酶[pyridox(am)ine-5’-phosphate oxidase, PNPO]缺乏症1例患儿的临床资料进行分析并文献综述,总结PNPO缺乏症的临床特征及致病基因。方法:回顾性分析1例确诊PNPO缺乏的早产儿,并对患儿及父母进行全外显子组基因检测。检索PubMed、Web of Science、中国知网、维普及中华医学期刊全文数据库,总结PNPO缺乏症的临床特点及遗传学病因。结果:患儿为胎龄32周 + 1天早产儿,生后当天出现癫痫发作,脑电图(EEG)提示痫样放电,联合应用多种抗癫痫药物治疗无效。基因检测为c.481C > T PNPO基因纯合突变,该位点的纯合突变为国内首次报道。采用维生素B6单药控制良好,随访6个月体格发育、脑电图。结论:本例PNPO缺乏症为罕见c.481C > T位点PNPO基因突变,表现为生后早期出现难治性癫痫,抗癫痫治疗无效,可被磷酸吡哆醇单药控制,预后良好。
Abstract: Objective: To investigate the clinical data of a child with pyridox(am)ine-5’-phosphate oxidase (PNPO) deficiency with literature review, and summarize the clinical features and pathogenic genes of PNPO deficiency. Methods: A retrospective analysis was conducted on a case of premature infant diagnosed with PNPO deficiency, and whole exome sequencing was performed on the infant and his parents. PubMed, Web of Science, China National Knowledge Infrastructure, VIP, and the Chinese Medical Journal Full-Text Database were searched to summarize the clinical characteristics and genetic causes of PNPO deficiency. Results: The child is a premature infant with a gestational age of 32 weeks + 1 day. On the day of birth, the child experienced seizures, and the electroencephalogram (EEG) indicated epileptiform discharges. Combined treatment with various antiepileptic drugs was ineffective. Genetic monitoring of the child revealed a homozygous mutation in the c.481C > T PNPO gene, which is the first report of such a homozygous mutation in China. The child was well controlled with vitamin B6 monotherapy, and follow-up visits for 6 months were conducted to monitor growth and EEG. Conclusion: The PNPO deficiency in this case is a rare c.481C > T PNPO gene mutation. The child presents with refractory epilepsy in the early postnatal period, and antiepileptic treatment is ineffective. It can be controlled by pyridoxal phosphate monotherapy and has a good prognosis.
文章引用:王郁欣, 姜红. 磷酸吡哆醇(胺)氧化酶缺乏症罕见c.481C > T位点突变1例并文献复习[J]. 临床医学进展, 2025, 15(3): 377-383. https://doi.org/10.12677/acm.2025.153626

1. 引言

磷酸吡哆醇(胺)氧化酶(PNPO)缺乏症是常染色体隐性遗传,于生后短时间内出现的经抗癫痫治疗无效的难治性癫痫性脑病,可被磷酸吡哆醛(pyridoxal phosphate, PLP)单药控制,属于维生素B6相关性癫痫中的吡哆醇反应性癫痫。Mills等人于2005年提出该病的致病基因为PNPO [1],临床表现缺乏特异性,确诊依靠于基因检测。仅部分患儿吡哆醇治疗有效,使用PLP可控制癫痫发作,但需终生服用。本文报道1例本院收治的PNPO基因纯合突变患儿,经青岛大学附属医院伦理委员会批准(伦理审批件号:QYFYWZLL29651),结合其临床特点对该类疾病相关文献进行复习,以提高对本病的认识。

2. 病例资料

患儿,女,G4P3,胎龄32周 + 1天,因“胎儿宫内窘迫”剖宫产出生,出生时无窒息,体重2170 g。母亲第2胎人工流产,第3胎孕34周早产儿生后4天夭折(具体不详)。患儿生后入住当地医院新生儿科,生后烦躁易惊,于生后第2天出现四肢抽搐惊厥发作,予以苯巴比妥、水合氯醛治疗后稍好转。生后15天患儿出现肢体、头部抽搐、眨眼运动惊厥发作,反应差,吃奶差,予以苯巴比妥、水合氯醛镇静治疗未见好转,遂于2022-08-02转入青岛大学附属医院新生儿科。入院查体:早产儿貌,反应欠佳,呼吸节律欠规则,双下肢肌张力略低,原始反射部分引出,病理征(−)。入院后患儿频繁抽搐发作,表现为大声尖叫后摇头、四肢抖动,双眼凝视,四肢不规则划船样动作,后又表现为双眼凝视、咀嚼等微小动作发作或持续数秒的四肢抖动,每次持续10秒~2分钟,每日发作10余次,予以苯巴比妥、米达唑仑、左乙拉西坦等治疗,住院期间患儿仍有抽搐发作,完善视频脑电提示异常痫样放电。生后第54天(纠正胎龄39周 + 6天)时经验性加用维生素B6静脉泵入(25 mg/kg∙d),后患儿未再出现抽搐,同时逐渐减停苯巴比妥、米达唑仑、左乙拉西坦,减停期间及减停后使用维生素B6单药均未出现癫痫发作。

辅助检查:颅脑MR:双侧放射冠、双侧半卵圆中心及双侧脑室旁可见多发小片状信号异常灶;T1WI略低信号,T2WI略低信号,T2-FLAIR高信号。脑脊液生化:氯113.00 mmol/L,蛋白1642.00 mg/L。生后36天血常规:血红蛋白76 g/L。血甲功三项、遗传代谢筛查未见明显异常。

患儿住院期间出现频繁抽搐,联合应用多种抗癫痫药物仍不能完全控制癫痫发作,不能排除先天性基因异常导致神经系统发育异常,监护人知情同意后留取患儿及父母静脉血行家系全外显子组基因测序,结果显示患儿PNPO基因存在纯合突变:c.481C > T (图1),为PNPO基因编码区的错义突变,使该位点的精氨酸转变为半胱氨酸(p.Arg161Cys)。图2所示为该位点突变前后蛋白质模型预测。

Figure 1. PNPO gene testing results for the patient and parents

1. 患儿及父母PNPO基因检测结果

图2(a)所示为突变前PNPO基因转录蛋白质结构预测模型。图2(b)为PNPO基因c.481C > T位点纯合突变后转录蛋白质结构预测模型,突变后,第161位精氨酸Arg变成了半胱氨酸Cys,氢键增加,氨基酸由碱性氨基酸变为亲水氨基酸。

住院期间患儿维生素B6治疗有效,临床症状缓解,逐渐将维生素B6由静脉泵入改为口服(早–中–晚30 mg-30 mg-40 mg),出院后继续口服维生素B6片,本例患儿口服维生素B6片有效成分为吡哆醇盐酸盐。患儿8月龄时再次出现抽搐,评估生长发育正常,视频脑电示双侧中后颞区、枕区慢波、尖波发放,考虑是维生素B6未达治疗量所致,增加维生素B6剂量至200 mg/天(合22 mg/kg∙d)。

(a) (b)

Figure 2. Prediction diagram of three-dimensional structure of protein

2. 蛋白三维结构预测图

3. 讨论

3.1. 临床表现

生后短时间内出现癫痫发作,约有66%的患儿癫痫发作时间小于24小时,83%的患儿癫痫发作时间小于1周[2]。癫痫发作具有多种表现形式:典型表现为多灶或全面性肌阵挛发作[3],同时可伴有尖叫哭闹、眼球偏斜双眼凝视、嘴咀嚼样动作、易激惹等表现,且常规抗癫痫治疗无效。约有66%的患儿为早产儿,导致患儿宫内呼吸系统发育欠成熟,部分患儿生后需进行呼吸支持治疗,有58%的患儿母亲在分娩前诊断为胎儿宫内窘迫[4],部分患儿可出现可疑子宫内癫痫发作,表现为母亲孕晚期出现的重复节律性异常胎动[5]-[7]。约有32%的患儿母亲存在羊水污染,可能导致患儿同时合并宫内感染。其他非典型性表现:贫血、凝血障碍;代谢性酸中毒;低血糖;腹胀、便秘、喂养不耐受、甚至肝硬化[8]等。

辅助检查:脑电图常表现为暴发抑制图形,约有20%的患儿显示异常的不连续图形,部分患儿经PLP治疗后脑电图可表现为正常[5]。Hoffmann等人于2006年报道的1例存在c.98A > T和c.246delT的杂合突变患儿脑电图表现正常[5],在癫痫痉挛发作期间监测脑电图仍未见明显异常,仅观察到1次左颞部棘波。头颅MR:约39%患儿头颅MR表现异常,最常表现为弥漫性萎缩(14.3%),其次为缺血性改变和脑软化(8.9%) [9],还可表现为髓鞘化延迟、弥漫性或局灶性水肿、脑室扩张。生化检测:可表现为尿液中有机酸升高;脑脊液及血液中PLP水平降低;脑脊液中甘氨酸、苏氨酸水平升高;血液中乳酸水平升高、精氨酸水平正常或偏低。但有报道少数患儿的血浆PLP及其他代谢产物水平正常[10],因此尚不能通过上述代谢产物正常排除PNPO缺乏症的诊断,仍需通过基因检测确诊。本例患儿母亲产前诊断为“胎儿宫内窘迫”,且为早产儿,生后第2天即出现癫痫发作,伴贫血,颅脑MR提示多发异常信号,血遗传代谢筛查未见异常,全外显子组基因测序提示c.481C > T位点纯合突变,确诊为PNPO缺乏症,但未行尿液及脑脊液相关代谢物检查,未能丰富该部分临床资料。

3.2. 基因突变及发病机制

PNPO基因(OMIM 6032870)位于染色体17q21.2上,长度约7.5 kb,包含7个外显子,可编码261个氨基酸。目前报道的致病位点主要包括:① 错义突变:p. R229W、c.481C > T (p.R161C)、c.421C > T (p.R141C)、c.674G > A (p.R225H) [11]-[15];② 移码突变;③ 无义突变:p.A174X [6];④ 剪切位点突变:IVS3-1g.a [1];⑤ 终止密码子突变:X262Q [1];⑥ 碱基对缺失:c.279_290del等[14]。本例患儿为第5外显子上的纯合变异c.481C > T,并在父母来源中进行验证,符合常染色体隐性遗传。

PNPO为催化磷酸吡哆醇和磷酸吡哆胺生成PLP的催化酶,在肝脏中发挥作用。PLP为维生素B6在体内的最终活性形式,仅有PLP可通过中枢神经系统细胞膜,参与氨基酸脱羧、糖原磷酸化、调节类固醇及调节基因表达等[16],维持细胞正常的生理功能。在体外,维生素B6主要以吡哆醇、吡哆醛及吡哆胺的形式存在,在体内经磷酸酶激化生成磷酸吡哆醇、磷酸吡哆醛和磷酸吡哆胺,在PNPO的催化下生成PLP。PNPO基因突变患儿体内PNPO活性较野生型明显降低甚至失去活性[1],从而导致PLP生成不足,进而引起多种物质代谢障碍。PLP作为谷氨酸脱羧酶的辅酶,参与神经递质γ-氨基丁酸的合成,进一步导致γ-氨基丁酸合成减少,最终引起严重的癫痫性脑病。

根据突变所致的蛋白质结构中的位置和突变类型的改变,可以将PNPO变体分为四类[17]。第一类包含直接影响催化位点及其配体和辅因子结合能力的突变,破坏了PLP中带负电荷的磷酸基团的配位。本例患儿c.481C > T位点的突变即属于此类,第161位精氨酸Arg变成了半胱氨酸Cys,氢键增加,氨基酸由碱性氨基酸变为亲水氨基酸,从而影响蛋白质功能(图2);第二类是由于侧链取代而影响蛋白质折叠和稳定性的突变,其影响程度轻重不一,可影响表面相互作用及疏水相互作用,甚至可引起蛋白质结构的严重的不稳定性;第三类包含过早终止密码子生成、终止密码子丢失等所致后续蛋白序列丢失所形成的变体,可能影响配体结合以及蛋白质的折叠,严重损害蛋白质的结构和功能;第四类变体为D33V [18],D33V为人类特有的N’端延伸,不影响蛋白质的3D结构和催化功能。

3.3. 治疗

PNPO缺乏症患儿单纯应用抗癫痫药物治疗不能完全控制,一旦怀疑患儿存在PNPO缺乏症时,应尽早应用吡哆醇或磷酸吡哆醛进行试验性治疗。目前对于长期应用PLP的治疗的剂量尚无明确建议,主要依据患儿对药物的反应及癫痫控制情况进行调整,磷酸吡哆醛使用剂量范围大多在10 mg/(kg∙d)~100 mg/(kg∙d)之间,分4~6次服用[19],部分患儿在初次加用PLP后出现一过性病情加重的情况,可表现为短暂的呼吸暂停、嗜睡、肌肉张力减退和喂养困难,甚至癫痫发作加重的情况[20],可能是该部分患儿的基因突变对PNPO蛋白构象影响较小,仍存在部分酶活性,应用大剂量PLP导致负反馈抑制残留的部分酶活性,从而引起病情加重所致[14]。核黄素(维生素B2)是PNPO的辅因子,可以稳定具有部分功能的PNPO蛋白,核黄素与PLP联用可提高PLP血药浓度[21] [22]。少数患儿应用吡哆醇单药治疗有效,可完全控制癫痫发作[15]。尽管吡哆醇或磷酸吡哆醛可控制患儿癫痫发作,但仍有部分患儿在感染、发热时会出现暂时性癫痫发作[18]。本例患儿应用有效成分为吡哆醇盐酸盐的维生素B6单药即可控制癫痫发作。

3.4. 预后

Malak等人根据患儿PNPO突变后蛋白质活性功能的改变及预后情况将基因型分为3组[17]:正常型、轻中度型及严重型。其中,终止密码子突变X262Q因氨基酸提前终止导致酶活性及功能完全丧失,存在该突变的2例患儿均死亡[1]。PNPO缺乏症所引起的癫痫病残率及病死率较高,患儿死亡率约为30% [11],即便接受吡哆醇或磷酸吡哆醛治疗后,仍有约36%的患儿存在不同程度的精神运动发育落后,一旦确诊该病需尽早应用吡哆醇或PLP进行治疗,以免病情进一步恶化。

4. 结论

综上所述,本文报道了一例PNPO缺乏症为罕见c.481C > T位点PNPO基因突变的患儿,加用磷酸吡哆醇单药后癫痫发作控制良好,提示早期行基因检测可对疾病诊断治疗提供指导性意见,同时经验性添加维生素B6或磷酸吡哆醛也对患儿早期治疗具有积极意义。但需注意的是,在PNPO缺乏症患儿后续随访过程中,应随患儿生长发育及时调整用药剂量。

NOTES

*通讯作者。

参考文献

[1] Mills, P.B., Surtees, R.A.H., Champion, M.P., Beesley, C.E., Dalton, N., Scambler, P.J., et al. (2005) Neonatal Epileptic Encephalopathy Caused by Mutations in the PNPO Gene Encoding Pyridox(am)ine 5’-Phosphate Oxidase. Human Molecular Genetics, 14, 1077-1086.
https://doi.org/10.1093/hmg/ddi120
[2] Guerin, A., Aziz, A.S., Mutch, C., Lewis, J., Go, C.Y. and Mercimek-Mahmutoglu, S. (2014) Pyridox(am)ine-5-Phosphate Oxidase Deficiency Treatable Cause of Neonatal Epileptic Encephalopathy with Burst Suppression. Journal of Child Neurology, 30, 1218-1225.
https://doi.org/10.1177/0883073814550829
[3] Veeravigrom, M., Damrongphol, P., Ittiwut, R., Ittiwut, C., Suphapeetiporn, K. and Shotelersuk, V. (2015) Pyridoxal 5’-Phosphate-Responsive Epilepsy with Novel Mutations in the PNPO Gene: A Case Report. Genetics and Molecular Research, 14, 14130-14135.
https://doi.org/10.4238/2015.october.29.34
[4] 朱海霞, 李小晶, 王秀英, 等. 磷酸吡哆醇(胺)氧化酶缺乏症1例报告并文献复习[J]. 癫癎与神经电生理学杂志, 2017, 26(4): 193-196.
[5] Hoffmann, G.F., Schmitt, B., Windfuhr, M., Wagner, N., Strehl, H., Bagci, S., et al. (2006) Pyridoxal 5’‐Phosphate May Be Curative in Early‐Onset Epileptic Encephalopathy. Journal of Inherited Metabolic Disease, 30, 96-99.
https://doi.org/10.1007/s10545-006-0508-4
[6] Ruiz, A., García-Villoria, J., Ormazabal, A., Zschocke, J., Fiol, M., Navarro-Sastre, A., et al. (2008) A New Fatal Case of Pyridox(am)ine 5’-Phosphate Oxidase (PNPO) Deficiency. Molecular Genetics and Metabolism, 93, 216-218.
https://doi.org/10.1016/j.ymgme.2007.10.003
[7] Schmitt, B., Baumgartner, M., Mills, P.B., Clayton, P.T., Jakobs, C., Keller, E., et al. (2010) Seizures and Paroxysmal Events: Symptoms Pointing to the Diagnosis of Pyridoxine‐Dependent Epilepsy and Pyridoxine Phosphate Oxidase Deficiency. Developmental Medicine & Child Neurology, 52, e133-e142.
https://doi.org/10.1111/j.1469-8749.2010.03660.x
[8] Sudarsanam, A., Singh, H., Wilcken, B., Stormon, M., Arbuckle, S., Schmitt, B., et al. (2014) Cirrhosis Associated with Pyridoxal 5’-Phosphate Treatment of Pyridoxamine 5’-Phosphate Oxidase Deficiency. JIMD Reports, 17, 67-70.
https://doi.org/10.1007/8904_2014_338
[9] 单媛媛, 周也群, 杨琳, 等. 磷酸吡哆醇(胺)氧化酶基因突变相关新生儿癫痫一例并文献复习[J]. 中国小儿急救医学, 2021, 28(8): 731-733.
[10] Khayat, M., Korman, S.H., Frankel, P., Weintraub, Z., Hershckowitz, S., Sheffer, V.F., et al. (2008) PNPO Deficiency: An under Diagnosed Inborn Error of Pyridoxine Metabolism. Molecular Genetics and Metabolism, 94, 431-434.
https://doi.org/10.1016/j.ymgme.2008.04.008
[11] Levtova, A., Camuzeaux, S., Laberge, A., Allard, P., Brunel-Guitton, C., Diadori, P., et al. (2015) Normal Cerebrospinal Fluid Pyridoxal 5’-Phosphate Level in a PNPO-Deficient Patient with Neonatal-Onset Epileptic Encephalopathy. JIMD Reports, 22, 67-75.
https://doi.org/10.1007/8904_2015_413
[12] Bräutigam, C., Hyland, K., Wevers, R., Sharma, R., Wagner, L., Stock, G., et al. (2002) Clinical and Laboratory Findings in Twins with Neonatal Epileptic Encephalopathy Mimicking Aromatic L-Amino Acid Decarboxylase Deficiency. Neuropediatrics, 33, 113-117.
https://doi.org/10.1055/s-2002-33673
[13] Ware, T.L., Earl, J., Salomons, G.S., Struys, E.A., Peters, H.L., Howell, K.B., et al. (2013) Typical and Atypical Phenotypes of PNPO Deficiency with Elevated CSF and Plasma Pyridoxamine on Treatment. Developmental Medicine & Child Neurology, 56, 498-502.
https://doi.org/10.1111/dmcn.12346
[14] Plecko, B., Paul, K., Mills, P., Clayton, P., Paschke, E., Maier, O., et al. (2014) Pyridoxine Responsiveness in Novel Mutations of the PNPO Gene. Neurology, 82, 1425-1433.
https://doi.org/10.1212/wnl.0000000000000344
[15] Jaeger, B., Abeling, N.G., Salomons, G.S., Struys, E.A., Simas-Mendes, M., Geukers, V.G., et al. (2016) Pyridoxine Responsive Epilepsy Caused by a Novel Homozygous PNPO Mutation. Molecular Genetics and Metabolism Reports, 6, 60-63.
https://doi.org/10.1016/j.ymgmr.2016.01.004
[16] Bender, D.A. (1994) Novel Functions of Vitamin B6. Proceedings of the Nutrition Society, 53, 625-630.
https://doi.org/10.1079/pns19940071
[17] Alghamdi, M., Bashiri, F.A., Abdelhakim, M., Adly, N., Jamjoom, D.Z., Sumaily, K.M., et al. (2020) Phenotypic and Molecular Spectrum of Pyridoxamine‐5’‐Phosphate Oxidase Deficiency: A Scoping Review of 87 Cases of Pyridoxamine‐5’‐Phosphate Oxidase Deficiency. Clinical Genetics, 99, 99-110.
https://doi.org/10.1111/cge.13843
[18] Goyal, M., Fequiere, P.R., McGrath, T.M. and Hyland, K. (2013) Seizures with Decreased Levels of Pyridoxal Phosphate in Cerebrospinal Fluid. Pediatric Neurology, 48, 227-231.
https://doi.org/10.1016/j.pediatrneurol.2012.11.006
[19] Veerapandiyan, A., Winchester, S.A., Gallentine, W.B., Smith, E.C., Kansagra, S., Hyland, K., et al. (2011) Electroencephalographic and Seizure Manifestations of Pyridoxal 5’-Phosphate-Dependent Epilepsy. Epilepsy & Behavior, 20, 494-501.
https://doi.org/10.1016/j.yebeh.2010.12.046
[20] di Salvo, M.L., Mastrangelo, M., Nogués, I., Tolve, M., Paiardini, A., Carducci, C., et al. (2017) Pyridoxine-5’-Phosphate Oxidase (PNPO) Deficiency: Clinical and Biochemical Alterations Associated with the C.347g > A (P.∙Arg116gln) Mutation. Molecular Genetics and Metabolism, 122, 135-142.
https://doi.org/10.1016/j.ymgme.2017.08.003
[21] Porri, S., Fluss, J., Plecko, B., Paschke, E., Korff, C. and Kern, I. (2013) Positive Outcome Following Early Diagnosis and Treatment of Pyridoxal-5’-Phosphate Oxidase Deficiency: A Case Report. Neuropediatrics, 45, 064-068.
https://doi.org/10.1055/s-0033-1353489
[22] Mohanlal, S., Bindu, P.S., Sureshbabu, S. and Kumar, S. (2020) Variable Treatment Response in a Patient with Pyridoxal N Phosphate Oxidase (PNPO) Deficiency-Understanding the Paradox. Epilepsy & Behavior Reports, 14, Article ID: 100357.
https://doi.org/10.1016/j.ebr.2020.100357