[1]
|
Wang, J., Liu, Y., Liu, Y., Huang, H., Roy, S., Song, Z., et al. (2023) Recent Advances in Nanomedicines for Imaging and Therapy of Myocardial Ischemia-Reperfusion Injury. Journal of Controlled Release, 353, 563-590. https://doi.org/10.1016/j.jconrel.2022.11.057
|
[2]
|
Zhang, C., Yan, Y. and Luo, Q. (2024) The Molecular Mechanisms and Potential Drug Targets of Ferroptosis in Myocardial Ischemia-Reperfusion Injury. Life Sciences, 340, Article ID: 122439. https://doi.org/10.1016/j.lfs.2024.122439
|
[3]
|
Li, J., Cao, F., Yin, H., Huang, Z., Lin, Z., Mao, N., et al. (2020) Ferroptosis: Past, Present and Future. Cell Death & Disease, 11, Article No. 88. https://doi.org/10.1038/s41419-020-2298-2
|
[4]
|
Sukhbaatar, N. and Weichhart, T. (2018) Iron Regulation: Macrophages in Control. Pharmaceuticals, 11, Article 137. https://doi.org/10.3390/ph11040137
|
[5]
|
Du, C., Zhou, L., Qian, J., He, M., Zhang, Z., Feng, C., et al. (2021) Ultrasmall Zwitterionic Polypeptide-Coordinated Nanohybrids for Highly Efficient Cancer Photothermal Ferrotherapy. ACS Applied Materials & Interfaces, 13, 44002-44012. https://doi.org/10.1021/acsami.1c11381
|
[6]
|
Fang, X., Cai, Z., Wang, H., Han, D., Cheng, Q., Zhang, P., et al. (2020) Loss of Cardiac Ferritin H Facilitates Cardiomyopathy via Slc7a11-Mediated Ferroptosis. Circulation Research, 127, 486-501. https://doi.org/10.1161/circresaha.120.316509
|
[7]
|
Lakhal-Littleton, S., Wolna, M., Carr, C.A., Miller, J.J.J., Christian, H.C., Ball, V., et al. (2015) Cardiac Ferroportin Regulates Cellular Iron Homeostasis and Is Important for Cardiac Function. Proceedings of the National Academy of Sciences, 112, 3164-3169. https://doi.org/10.1073/pnas.1422373112
|
[8]
|
Di Paola, A., Tortora, C., Argenziano, M., Marrapodi, M.M. and Rossi, F. (2022) Emerging Roles of the Iron Chelators in Inflammation. International Journal of Molecular Sciences, 23, Article 7977. https://doi.org/10.3390/ijms23147977
|
[9]
|
Fang, J., Kong, B., Shuai, W., Xiao, Z., Dai, C., Qin, T., et al. (2021) Ferroportin-Mediated Ferroptosis Involved in New-Onset Atrial Fibrillation with Lps-Induced Endotoxemia. European Journal of Pharmacology, 913, Article ID: 174622. https://doi.org/10.1016/j.ejphar.2021.174622
|
[10]
|
Zlatanova, I., Pinto, C., Bonnin, P., Mathieu, J.R.R., Bakker, W., Vilar, J., et al. (2019) Iron Regulator Hepcidin Impairs Macrophage-Dependent Cardiac Repair after Injury. Circulation, 139, 1530-1547. https://doi.org/10.1161/circulationaha.118.034545
|
[11]
|
Ghafourian, K., Shapiro, J.S., Goodman, L. and Ardehali, H. (2020) Iron and Heart Failure. JACC: Basic to Translational Science, 5, 300-313. https://doi.org/10.1016/j.jacbts.2019.08.009
|
[12]
|
Jankowska, E.A., Kasztura, M., Sokolski, M., Bronisz, M., Nawrocka, S., Ole Kowska-Florek, W., et al. (2014) Iron Deficiency Defined as Depleted Iron Stores Accompanied by Unmet Cellular Iron Requirements Identifies Patients at the Highest Risk of Death after an Episode of Acute Heart Failure. European Heart Journal, 35, 2468-2476. https://doi.org/10.1093/eurheartj/ehu235
|
[13]
|
Yamamoto, K., Kuragano, T., Kimura, T., Nanami, M., Hasuike, Y. and Nakanishi, T. (2018) Interplay of Adipocyte and Hepatocyte: Leptin Upregulates Hepcidin. Biochemical and Biophysical Research Communications, 495, 1548-1554. https://doi.org/10.1016/j.bbrc.2017.11.103
|
[14]
|
Fang, X., Wang, H., Han, D., Xie, E., Yang, X., Wei, J., et al. (2019) Ferroptosis as a Target for Protection against Cardiomyopathy. Proceedings of the National Academy of Sciences, 116, 2672-2680. https://doi.org/10.1073/pnas.1821022116
|
[15]
|
Jiang, L., Hickman, J.H., Wang, S. and Gu, W. (2015) Dynamic Roles of P53-Mediated Metabolic Activities in Ros-Induced Stress Responses. Cell Cycle, 14, 2881-2885. https://doi.org/10.1080/15384101.2015.1068479
|
[16]
|
Su, H., Cantrell, A.C., Chen, J., Gu, W. and Zeng, H. (2023) SIRT3 Deficiency Enhances Ferroptosis and Promotes Cardiac Fibrosis via P53 Acetylation. Cells, 12, Article 1428. https://doi.org/10.3390/cells12101428
|
[17]
|
Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., et al. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171, 273-285. https://doi.org/10.1016/j.cell.2017.09.021
|
[18]
|
Shi, Y., Han, L., Zhang, X., Xie, L., Pan, P. and Chen, F. (2022) Selenium Alleviates Cerebral Ischemia/Reperfusion Injury by Regulating Oxidative Stress, Mitochondrial Fusion and Ferroptosis. Neurochemical Research, 47, 2992-3002. https://doi.org/10.1007/s11064-022-03643-8
|
[19]
|
Zhang, Y., Swanda, R.V., Nie, L., Liu, X., Wang, C., Lee, H., et al. (2021) Mtorc1 Couples Cyst(e)ine Availability with GPX4 Protein Synthesis and Ferroptosis Regulation. Nature Communications, 12, Article No. 1589. https://doi.org/10.1038/s41467-021-21841-w
|
[20]
|
Tang, L., Luo, X., Tu, H., Chen, H., Xiong, X., Li, N., et al. (2020) Ferroptosis Occurs in Phase of Reperfusion but Not Ischemia in Rat Heart Following Ischemia or Ischemia/Reperfusion. Naunyn-Schmiedeberg’s Archives of Pharmacology, 394, 401-410. https://doi.org/10.1007/s00210-020-01932-z
|
[21]
|
Jelinek, A., Heyder, L., Daude, M., Plessner, M., Krippner, S., Grosse, R., et al. (2018) Mitochondrial Rescue Prevents Glutathione Peroxidase-Dependent Ferroptosis. Free Radical Biology and Medicine, 117, 45-57. https://doi.org/10.1016/j.freeradbiomed.2018.01.019
|
[22]
|
Fang, X., Wang, H., Han, D., Xie, E., Yang, X., Wei, J., et al. (2019) Ferroptosis as a Target for Protection against Cardiomyopathy. Proceedings of the National Academy of Sciences, 116, 2672-2680. https://doi.org/10.1073/pnas.1821022116
|
[23]
|
Wu, X., Li, Y., Zhang, S. and Zhou, X. (2021) Ferroptosis as a Novel Therapeutic Target for Cardiovascular Disease. Theranostics, 11, 3052-3059. https://doi.org/10.7150/thno.54113
|
[24]
|
Bochkov, V.N., Oskolkova, O.V., Birukov, K.G., Levonen, A., Binder, C.J. and Stöckl, J. (2010) Generation and Biological Activities of Oxidized Phospholipids. Antioxidants & Redox Signaling, 12, 1009-1059. https://doi.org/10.1089/ars.2009.2597
|
[25]
|
Yin, H., Xu, L. and Porter, N.A. (2011) Free Radical Lipid Peroxidation: Mechanisms and Analysis. Chemical Reviews, 111, 5944-5972. https://doi.org/10.1021/cr200084z
|
[26]
|
Kuhn, H., Banthiya, S. and van Leyen, K. (2015) Mammalian Lipoxygenases and Their Biological Relevance. Biochimica et Biophysica Acta—Molecular and Cell Biology of Lipids, 1851, 308-330. https://doi.org/10.1016/j.bbalip.2014.10.002
|
[27]
|
Kraft, V.A.N., Bezjian, C.T., Pfeiffer, S., Ringelstetter, L., Müller, C., Zandkarimi, F., et al. (2019) GTP Cyclohydrolase 1/Tetrahydrobiopterin Counteract Ferroptosis through Lipid Remodeling. ACS Central Science, 6, 41-53. https://doi.org/10.1021/acscentsci.9b01063
|
[28]
|
Stockwell, B.R., Friedmann Angeli, J.P., Bayir, H., Bush, A.I., Conrad, M., Dixon, S.J., et al. (2017) Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease. Cell, 171, 273-285. https://doi.org/10.1016/j.cell.2017.09.021
|
[29]
|
D’Oria, R., Schipani, R., Leonardini, A., Natalicchio, A., Perrini, S., Cignarelli, A., et al. (2020) The Role of Oxidative Stress in Cardiac Disease: From Physiological Response to Injury Factor. Oxidative Medicine and Cellular Longevity, 2020, 1-29. https://doi.org/10.1155/2020/5732956
|
[30]
|
Romuk, E., Wojciechowska, C., Jacheć, W., Zemła-Woszek, A., Momot, A., Buczkowska, M., et al. (2019) Malondialdehyde and Uric Acid as Predictors of Adverse Outcome in Patients with Chronic Heart Failure. Oxidative Medicine and Cellular Longevity, 2019, 1-15. https://doi.org/10.1155/2019/9246138
|
[31]
|
Walter, M.F., Jacob, R.F., Jeffers, B., Ghadanfar, M.M., Preston, G.M., Buch, J., et al. (2004) Serum Levels of Thiobarbituric Acid Reactive Substances Predict Cardiovascular Events in Patients with Stable Coronary Artery Disease. Journal of the American College of Cardiology, 44, 1996-2002. https://doi.org/10.1016/j.jacc.2004.08.029
|
[32]
|
Gianazza, E., Brioschi, M., Martinez Fernandez, A., Casalnuovo, F., Altomare, A., Aldini, G., et al. (2021) Lipid Peroxidation in Atherosclerotic Cardiovascular Diseases. Antioxidants & Redox Signaling, 34, 49-98. https://doi.org/10.1089/ars.2019.7955
|
[33]
|
Zhang, Y., Tan, H., Daniels, J.D., Zandkarimi, F., Liu, H., Brown, L.M., et al. (2019) Imidazole Ketone Erastin Induces Ferroptosis and Slows Tumor Growth in a Mouse Lymphoma Model. Cell Chemical Biology, 26, 623-633.e9. https://doi.org/10.1016/j.chembiol.2019.01.008
|
[34]
|
Yagoda, N., von Rechenberg, M., Zaganjor, E., Bauer, A.J., Yang, W.S., Fridman, D.J., et al. (2007) RAS-RAF-MEK-Dependent Oxidative Cell Death Involving Voltage-Dependent Anion Channels. Nature, 447, 865-869. https://doi.org/10.1038/nature05859
|
[35]
|
Sui, X., Zhang, R., Liu, S., Duan, T., Zhai, L., Zhang, M., et al. (2018) RSL3 Drives Ferroptosis through GPX4 Inactivation and ROS Production in Colorectal Cancer. Frontiers in Pharmacology, 9, Article 1371. https://doi.org/10.3389/fphar.2018.01371
|
[36]
|
Cui, Y., Zhang, Z., Zhou, X., Zhao, Z., Zhao, R., Xu, X., et al. (2021) Microglia and Macrophage Exhibit Attenuated Inflammatory Response and Ferroptosis Resistance after RSL3 Stimulation via Increasing Nrf2 Expression. Journal of Neuroinflammation, 18, Article No. 249. https://doi.org/10.1186/s12974-021-02231-x
|
[37]
|
Sun, Y., Berleth, N., Wu, W., Schlütermann, D., Deitersen, J., Stuhldreier, F., et al. (2021) Fin56-induced Ferroptosis Is Supported by Autophagy-Mediated GPX4 Degradation and Functions Synergistically with mTOR Inhibition to Kill Bladder Cancer Cells. Cell Death & Disease, 12, Article No. 1028. https://doi.org/10.1038/s41419-021-04306-2
|
[38]
|
Zhang, L., Luo, Y.L., Xiang, Y., Bai, X.Y., Qiang, R.R., Zhang, X., et al. (2024) Ferroptosis Inhibitors: Past, Present and Future. Frontiers in Pharmacology, 15, Article 1407335. https://doi.org/10.3389/fphar.2024.1407335
|
[39]
|
Yao, X., Zhang, Y., Fan, B., Pang, Y., Shen, W., Wang, X., et al. (2020) Neuroprotective Effect of Deferoxamine on Erastininduced Ferroptosis in Primary Cortical Neurons. Neural Regeneration Research, 15, 1539-1545. https://doi.org/10.4103/1673-5374.274344
|
[40]
|
Abdul Ghani, M.A., Ugusman, A., Latip, J. and Zainalabidin, S. (2023) Role of Terpenophenolics in Modulating Inflammation and Apoptosis in Cardiovascular Diseases: A Review. International Journal of Molecular Sciences, 24, Article 5339. https://doi.org/10.3390/ijms24065339
|
[41]
|
Kattamis, A. (2019) Renal Function Abnormalities and Deferasirox. The Lancet Child & Adolescent Health, 3, 2-3. https://doi.org/10.1016/s2352-4642(18)30350-x
|
[42]
|
Zilka, O., Shah, R., Li, B., Friedmann Angeli, J.P., Griesser, M., Conrad, M., et al. (2017) On the Mechanism of Cytoprotection by Ferrostatin-1 and Liproxstatin-1 and the Role of Lipid Peroxidation in Ferroptotic Cell Death. ACS Central Science, 3, 232-243. https://doi.org/10.1021/acscentsci.7b00028
|
[43]
|
Cai, Y., Li, X., Tan, X., Wang, P., Zhao, X., Zhang, H., et al. (2022) Vitamin D Suppresses Ferroptosis and Protects against Neonatal Hypoxic-Ischemic Encephalopathy by Activating the Nrf2/HO-1 Pathway. Translational Pediatrics, 11, 1633-1644. https://doi.org/10.21037/tp-22-397
|
[44]
|
Li, W., Liang, L., Liu, S., Yi, H. and Zhou, Y. (2023) FSP1: A Key Regulator of Ferroptosis. Trends in Molecular Medicine, 29, 753-764. https://doi.org/10.1016/j.molmed.2023.05.013
|
[45]
|
Dodson, M., Castro-Portuguez, R. and Zhang, D.D. (2019) NRF2 Plays a Critical Role in Mitigating Lipid Peroxidation and Ferroptosis. Redox Biology, 23, Article ID: 101107. https://doi.org/10.1016/j.redox.2019.101107
|
[46]
|
Fu, C., Wu, Y., Liu, S., Luo, C., Lu, Y., Liu, M., et al. (2022) Rehmannioside a Improves Cognitive Impairment and Alleviates Ferroptosis via Activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 Signaling Pathway after Ischemia. Journal of Ethnopharmacology, 289, Article ID: 115021. https://doi.org/10.1016/j.jep.2022.115021
|