[1]
|
Poznyak, A., Grechko, A.V., Poggio, P., Myasoedova, V.A., Alfieri, V. and Orekhov, A.N. (2020) The Diabetes Mellitus-Atherosclerosis Connection: The Role of Lipid and Glucose Metabolism and Chronic Inflammation. International Journal of Molecular Sciences, 21, Article 1835. https://doi.org/10.3390/ijms21051835
|
[2]
|
江瑶, 张茵, 耿荧阳, 等. 冠状动脉粥样硬化病变快速进展的研究现状及进展[J]. 中国循环杂志, 2024, 39(12): 1223-1228.
|
[3]
|
Wang, Z., Wang, D. and Wang, Y. (2017) Cigarette Smoking and Adipose Tissue: The Emerging Role in Progression of Atherosclerosis. Mediators of Inflammation, 2017, Article ID: 3102737. https://doi.org/10.1155/2017/3102737
|
[4]
|
Libby, P., Ridker, P.M. and Hansson, G.K. (2011) Progress and Challenges in Translating the Biology of Atherosclerosis. Nature, 473, 317-325. https://doi.org/10.1038/nature10146
|
[5]
|
Malgor, R.D., Alalahdab, F., Elraiyah, T.A., Rizvi, A.Z., Lane, M.A., Prokop, L.J., et al. (2015) A Systematic Review of Treatment of Intermittent Claudication in the Lower Extremities. Journal of Vascular Surgery, 61, 54S-73S. https://doi.org/10.1016/j.jvs.2014.12.007
|
[6]
|
Teraa, M., Conte, M.S., Moll, F.L. and Verhaar, M.C. (2016) Critical Limb Ischemia: Current Trends and Future Directions. Journal of the American Heart Association, 5, e002938. https://doi.org/10.1161/jaha.115.002938
|
[7]
|
BASIL Trial Participants. (2005) Bypass versus Angioplasty in Severe Ischaemia of the Leg (BASIL): Multicentre, Randomised Controlled Trial. The Lancet, 366, 1925-1934. https://doi.org/10.1016/S0140-6736(05)67704-5
|
[8]
|
Abu Dabrh, A.M., Steffen, M.W., Undavalli, C., Asi, N., Wang, Z., Elamin, M.B., et al. (2015) The Natural History of Untreated Severe or Critical Limb Ischemia. Journal of Vascular Surgery, 62, 1642-1651.E3. https://doi.org/10.1016/j.jvs.2015.07.065
|
[9]
|
Becker, F., Robert-Ebadi, H., Ricco, J.-B., Setacci, C., Cao, P., de Donato, G., et al. (2011) Chapter I: Definitions, Epidemiology, Clinical Presentation and Prognosis. European Journal of Vascular and Endovascular Surgery, 42, S4-S12. https://doi.org/10.1016/s1078-5884(11)60009-9
|
[10]
|
刘欣, 唐红悦, 郭畅, 等. 血管平滑肌细胞表型转换与细胞焦亡在腹主动脉瘤中的作用及研究进展[J]. 中国比较医学杂志, 2024, 34(11): 100-106.
|
[11]
|
谭娟娟, 姚庆苹, 党琳, 等. miRNA-652在血管平滑肌细胞增殖中的作用及可能机制[J]. 实用心脑肺血管病杂志, 2022, 30(7): 86-90, 95.
|
[12]
|
Carlos, P., Ángeles, M.A., Patricia, R., et al. (2017) Ubiquinol Effects on Antiphospholipid Syndrome Prothrombotic Profile: A Randomized, Placebo-Controlled Trial. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 1923-1932.
|
[13]
|
Kumar, S., Kim, C.W., Simmons, R.D. and Jo, H. (2014) Role of Flow-Sensitive MicroRNAs in Endothelial Dysfunction and Atherosclerosis: Mechanosensitive Athero-miRs. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 2206-2216. https://doi.org/10.1161/atvbaha.114.303425
|
[14]
|
Zhang, L., Hu, Y., Huang, R., Xu, Y., Dong, S., Guo, F., et al. (2024) Intraplatelet miRNA-126 Regulates Thrombosis and Its Reduction Contributes to Platelet Inhibition. Cardiovascular Research, 120, 1622-1635. https://doi.org/10.1093/cvr/cvae138
|
[15]
|
Neth, P., Nazari-Jahantigh, M., Schober, A. and Weber, C. (2013) MicroRNAs in Flow-Dependent Vascular Remodelling. Cardiovascular Research, 99, 294-303. https://doi.org/10.1093/cvr/cvt096
|
[16]
|
Nakamachi, Y., Kawano, S., Takenokuchi, M., Nishimura, K., Sakai, Y., Chin, T., et al. (2009) MicroRNA‐124a Is a Key Regulator of Proliferation and Monocyte Chemoattractant Protein 1 Secretion in Fibroblast‐Like Synoviocytes from Patients with Rheumatoid Arthritis. Arthritis & Rheumatism, 60, 1294-1304. https://doi.org/10.1002/art.24475
|
[17]
|
Chang, C., Yang, Y., Li, Y., Chen, S., Lin, B., Wu, T., et al. (2017) Corrigendum to “MicroRNA-17/20a Functions to Inhibit Cell Migration and Can Be Used a Prognostic Marker in Oral Squamous Cell Carcinoma” [Oral Oncol. 49(9) (2013) 923-931]. Oral Oncology, 72, 202-203. https://doi.org/10.1016/j.oraloncology.2017.06.021
|
[18]
|
Wei, Y., Nazari-Jahantigh, M., Chan, L., Zhu, M., Heyll, K., Corbalán-Campos, J., et al. (2013) The microRNA-342-5p Fosters Inflammatory Macrophage Activation through an Akt1-and microRNA-155-Dependent Pathway during Atherosclerosis. Circulation, 127, 1609-1619. https://doi.org/10.1161/circulationaha.112.000736
|
[19]
|
Farina, F.M., Hall, I.F., Serio, S., Zani, S., Climent, M., Salvarani, N., et al. (2020) MiR-128-3p Is a Novel Regulator of Vascular Smooth Muscle Cell Phenotypic Switch and Vascular Diseases. Circulation Research, 126, e120-e135. https://doi.org/10.1161/circresaha.120.316489
|
[20]
|
Peng, J., He, X., Zhang, L. and Liu, P. (2018) MicroRNA-26a Protects Vascular Smooth Muscle Cells against H2O2-Induced Injury through Activation of the PTEN/AKT/mTOR Pathway. International Journal of Molecular Medicine, 42, 1367-1378. https://doi.org/10.3892/ijmm.2018.3746
|
[21]
|
Kim, K., Yang, D.K., Kim, S. and Kang, H. (2015) MiR‐142‐3p Is a Regulator of the TGFβ‐Mediated Vascular Smooth Muscle Cell Phenotype. Journal of Cellular Biochemistry, 116, 2325-2333. https://doi.org/10.1002/jcb.25183
|
[22]
|
Yu, M., Wang, J., Wang, G., You, X., Zhao, X., Jing, Q., et al. (2011) Vascular Smooth Muscle Cell Proliferation Is Influenced by Let-7d MicroRNA and Its Interaction with KRAS. Circulation Journal, 75, 703-709. https://doi.org/10.1253/circj.cj-10-0393
|
[23]
|
李文超, 肖骋风, 曾朝阳, 等. 微RNA的发现及其意义——2024年诺贝尔生理学或医学奖的启示[J]. 生物化学与生物物理进展, 2024, 51(12): 3061-3072.
|
[24]
|
张丽娜. 血管损伤后血管重构的分子机制及其干预的实验研究[D]: [博士学位论文]. 扬州: 扬州大学, 2023.
|
[25]
|
张志岗, 孙宇飞, 范国权. miR-149-5p对ox-LDL诱导的血管平滑肌细胞增殖和迁移的研究[J]. 中国临床药理学杂志, 2021, 37(8): 981-984.
|
[26]
|
Chistiakov, D.A., Bobryshev, Y.V. and Orekhov, A.N. (2015) Macrophage‐Mediated Cholesterol Handling in Atherosclerosis. Journal of Cellular and Molecular Medicine, 20, 17-28. https://doi.org/10.1111/jcmm.12689
|
[27]
|
Shi, N. and Chen, S.-Y. (2014) Mechanisms Simultaneously Regulate Smooth Muscle Proliferation and Differentiation. The Journal of Biomedical Research, 28, 40-46. https://doi.org/10.7555/jbr.28.20130130
|
[28]
|
方欣, 刘含怡, 孟小虎, 等. 下肢动脉硬化闭塞症的治疗研究进展[J]. 浙江医学, 2024, 46(10): 1009-1016.
|
[29]
|
Jakic, B., Carlsson, M., Buszko, M., Cappellano, G., Ploner, C., Onestingel, E., et al. (2018) The Effects of Endurance Exercise and Diet on Atherosclerosis in Young and Aged ApoE–/– and Wild-Type Mice. Gerontology, 65, 45-56. https://doi.org/10.1159/000492571
|
[30]
|
梁天, 李飞, 刘超. 内皮细胞功能障碍与动脉粥样硬化的研究进展[J]. 中华老年心脑血管病杂志, 2024, 26(12): 1504-1507.
|
[31]
|
徐廷斌. 冠状动脉主要解剖与斑块稳定性关系研究[J]. 西藏医药, 2024, 45(6): 63-65.
|
[32]
|
张馨予, 谢子月, 王梓安, 等. 动脉粥样硬化中抗内皮细胞功能障碍的治疗进展[J/OL]. 中国动脉硬化: 1-11. http://kns.cnki.net/kcms/detail/43.1262.R.20241205.1414.006.html, 2025-01-14.
|
[33]
|
Huang, J. and Parmacek, M.S. (2012) Modulation of Smooth Muscle Cell Phenotype: The Other Side of the Story. Circulation Research, 111, 659-661. https://doi.org/10.1161/circresaha.112.277368
|
[34]
|
Hayashi, K., Sasamura, H., Nakamura, M., Azegami, T., Oguchi, H., Sakamaki, Y., et al. (2014) KLF4-Dependent Epigenetic Remodeling Modulates Podocyte Phenotypes and Attenuates Proteinuria. Journal of Clinical Investigation, 124, 2523-2537. https://doi.org/10.1172/jci69557
|
[35]
|
Qu, C., Liu, X., Guo, Y., Fo, Y., Chen, X., Zhou, J., et al. (2020) MiR-128-3p Inhibits Vascular Smooth Muscle Cell Proliferation and Migration by Repressing FOXO4/MMP9 Signaling Pathway. Molecular Medicine, 26, Article No. 116. https://doi.org/10.1186/s10020-020-00242-7
|
[36]
|
王晖, 徐雪莹, 张徐. miR-381靶向MAP3K2抑制前列腺癌细胞增殖、迁移和侵袭[J]. 江苏大学学报(医学版), 2019, 29(3): 208-215.
|
[37]
|
梁彦. MicroRNA-381靶向调控LRH-1对结肠癌细胞增殖和侵袭影响及机制的研究[D]: [博士学位论文]. 石家庄: 河北医科大学, 2016.
|
[38]
|
魏晓妍, 耿子昂, 杨冬. microRNA在胃癌发生发展和转移中的表达[J]. 锦州医科大学学报, 2021, 42(1): 98-103.
|
[39]
|
王丽, 田美娟, 张佳. 胃癌中microRNA-381的表达及与临床病理参数和预后的关系[J]. 现代肿瘤医学, 2018, 26(16): 2565-2567.
|
[40]
|
黄日胜. MicroRNA-485-5p和MicroRNA-381在非小细胞肺癌中的表达、临床意义及生物学功能研究[D]: [博士学位论文]. 苏州: 苏州大学, 2018.
|
[41]
|
吕瑜玫, 陈丹, 朱桥, 等. 宫颈癌患者血清微小核糖核酸-381、微小核糖核酸-145水平变化及与临床病理参数相关性分析[J]. 陕西医学杂志, 2023, 52(7): 925-928.
|
[42]
|
徐洁欢, 向琳, 李耀军, 等. miRNA-381在恶性肿瘤中的研究进展[J]. 中国当代医药, 2020, 27(21): 22-25.
|
[43]
|
孙卉, 孙文凯, 孟朝暾, 等. MiR-381及FGFR与相关肿瘤研究进展[J]. 中国医学文摘(耳鼻咽喉科学), 2019, 34(4): 288-290, 282, 321.
|
[44]
|
Tang, H., Wang, Z., Liu, Q., Liu, X., Wu, M. and Li, G. (2014) Disturbing miR-182 and-381 Inhibits BRD7 Transcription and Glioma Growth by Directly Targeting LRRC4. PLOS ONE, 9, e84146. https://doi.org/10.1371/journal.pone.0084146
|
[45]
|
Tang, H., Liu, X., Wang, Z., She, X., Zeng, X., Deng, M., et al. (2011) Interaction of Hsa-miR-381 and Glioma Suppressor LRRC4 Is Involved in Glioma Growth. Brain Research, 1390, 21-32. https://doi.org/10.1016/j.brainres.2011.03.034
|
[46]
|
Li, Y., Zhao, C., Yu, Z., Chen, J., She, X., Li, P., et al. (2016) Low Expression of miR-381 Is a Favorite Prognosis Factor and Enhances the Chemosensitivity of Osteosarcoma. Oncotarget, 7, 68585-68596. https://doi.org/10.18632/oncotarget.11861
|