[1]
|
Bayat, M., Asgari, M., Abdollahifar, M., Moradi, A., Zare, F., Kouhkheil, R., et al. (2024) Photobiomodulation and Mesenchymal Stem Cell-Conditioned Medium for the Repair of Experimental Critical-Size Defects. Lasers in Medical Science, 39, Article No. 158. https://doi.org/10.1007/s10103-024-04109-9
|
[2]
|
Schmidt, A.H. (2021) Autologous Bone Graft: Is It Still the Gold Standard? Injury, 52, S18-S22. https://doi.org/10.1016/j.injury.2021.01.043
|
[3]
|
Ziroglu, N., Koluman, A., Kaleci, B., Tanriverdi, B., Tanriverdi, G., Kural, A., et al. (2024) Modified and Alternative Bone Cements Can Improve the Induced Membrane: Critical Size Bone Defect Model in Rat Femur. Injury, 55, Article ID: 111627. https://doi.org/10.1016/j.injury.2024.111627
|
[4]
|
Dahl, M.T. and Morrison, S. (2021) Segmental Bone Defects and the History of Bone Transport. Journal of Orthopaedic Trauma, 35, S1-S7. https://doi.org/10.1097/bot.0000000000002124
|
[5]
|
Viale, G.J., Garabano, G., Pesciallo, C. and Sel, H.D. (2021) Structural Allograft and Induced Membrane Technique for Treatment of 10-cm Segmental Femoral Bone Defect: A Case Report. JBJS Case Connector, 11, e21.00372. https://doi.org/10.2106/jbjs.cc.21.00372
|
[6]
|
Valtanen, R.S., Yang, Y.P., Gurtner, G.C., Maloney, W.J. and Lowenberg, D.W. (2021) Synthetic and Bone Tissue Engineering Graft Substitutes: What Is the Future? Injury, 52, S72-S77. https://doi.org/10.1016/j.injury.2020.07.040
|
[7]
|
Migliorini, F., La Padula, G., Torsiello, E., Spiezia, F., Oliva, F. and Maffulli, N. (2021) Strategies for Large Bone Defect Reconstruction after Trauma, Infections or Tumour Excision: A Comprehensive Review of the Literature. European Journal of Medical Research, 26, Article No. 118. https://doi.org/10.1186/s40001-021-00593-9
|
[8]
|
Mauffrey, C., Barlow, B.T. and Smith, W. (2015) Management of Segmental Bone Defects. Journal of the American Academy of Orthopaedic Surgeons, 23, 143-153. https://doi.org/10.5435/jaaos-d-14-00018
|
[9]
|
Nauth, A., Schemitsch, E., Norris, B., Nollin, Z. and Watson, J.T. (2018) Critical-Size Bone Defects: Is There a Consensus for Diagnosis and Treatment? Journal of Orthopaedic Trauma, 32, S7-S11. https://doi.org/10.1097/bot.0000000000001115
|
[10]
|
Kalaiselvan, E., Maiti, S.K., Shivaramu, S., Banu, S.A., Sharun, K., Mohan, D., et al. (2024) Bone Marrow-Derived Mesenchymal Stem Cell-Laden Nanocomposite Scaffolds Enhance Bone Regeneration in Rabbit Critical-Size Segmental Bone Defect Model. Journal of Functional Biomaterials, 15, Article 66. https://doi.org/10.3390/jfb15030066
|
[11]
|
Hollinger, J.O. and Kleinschmidt, J.C. (1990) The Critical Size Defect as an Experimental Model to Test Bone Repair Materials. Journal of Craniofacial Surgery, 1, 60-68. https://doi.org/10.1097/00001665-199001000-00011
|
[12]
|
Kessler, F., Arnke, K., Eggerschwiler, B., Neldner, Y., Märsmann, S., Gröninger, O., et al. (2024) Murine IPSC-Loaded Scaffold Grafts Improve Bone Regeneration in Critical-Size Bone Defects. International Journal of Molecular Sciences, 25, Article 5555. https://doi.org/10.3390/ijms25105555
|
[13]
|
Awadeen, M.A., Al-Belasy, F.A., Ameen, L.E., Helal, M.E. and Grawish, M.E. (2020) Early Therapeutic Effect of Platelet-Rich Fibrin Combined with Allogeneic Bone Marrow-Derived Stem Cells on Rats’ Critical-Sized Mandibular Defects. World Journal of Stem Cells, 12, 55-69. https://doi.org/10.4252/wjsc.v12.i1.55
|
[14]
|
李福兵, 徐永清, 潘兴华, 等. 小鼠胫骨中段1/3不同缺损直径单层骨皮质缺损模型比较研究[J]. 中国修复重建外科杂志, 2012, 26(10): 1218-1222.
|
[15]
|
熊伟, 袁灵梅, 钱国文, 等. 临界骨缺损动物模型评估骨组织工程支架成骨效能的价值[J]. 中国组织工程研究, 27(35): 5714-5720.
|
[16]
|
Entezari, A., Wu, Q., Mirkhalaf, M., Lu, Z., Roohani, I., Li, Q., et al. (2024) Unraveling the Influence of Channel Size and Shape in 3D Printed Ceramic Scaffolds on Osteogenesis. Acta Biomaterialia, 180, 115-127. https://doi.org/10.1016/j.actbio.2024.04.020
|
[17]
|
Shaul, J.L., Hill, R.S., Bouxsein, M.L., Burr, D.B., Tilton, A.K. and Howe, J.G. (2022) AGN1 Implant Material to Treat Bone Loss: Resorbable Implant Forms Normal Bone with and without Alendronate in a Canine Critical Size Humeral Defect Model. Bone, 154, Article ID: 116246. https://doi.org/10.1016/j.bone.2021.116246
|
[18]
|
Cai, E.Z., Teo, N.M.H., Lee, Z.P., Yeo, J.Y.H., Liu, Y., Ong, Z.X., et al. (2023) Straight-Segment Mandibulectomy: A Reproducible Porcine Mandibular Critical-Size Defect Model. British Journal of Oral and Maxillofacial Surgery, 61, 53-60. https://doi.org/10.1016/j.bjoms.2022.11.003
|
[19]
|
Garot, C., Schoffit, S., Monfoulet, C., Machillot, P., Deroy, C., Roques, S., et al. (2023) 3D‐Printed Osteoinductive Polymeric Scaffolds with Optimized Architecture to Repair a Sheep Metatarsal Critical‐size Bone Defect. Advanced Healthcare Materials, 12, e2301692. https://doi.org/10.1002/adhm.202301692
|
[20]
|
Huang, Y., Jakus, A.E., Jordan, S.W., Dumanian, Z., Parker, K., Zhao, L., et al. (2019) Three-dimensionally Printed Hyperelastic Bone Scaffolds Accelerate Bone Regeneration in Critical-Size Calvarial Bone Defects. Plastic & Reconstructive Surgery, 143, 1397-1407. https://doi.org/10.1097/prs.0000000000005530
|
[21]
|
Moest, T., Schlegel, K.A., Kesting, M., Fenner, M., Lutz, R., Beck, D.M., et al. (2019) A New Standardized Critical Size Bone Defect Model in the Pig Forehead for Comparative Testing of Bone Regeneration Materials. Clinical Oral Investigations, 24, 1651-1661. https://doi.org/10.1007/s00784-019-03020-w
|
[22]
|
Nau, C., Simon, S., Schaible, A., Seebach, C., Schröder, K., Marzi, I., et al. (2018) Influence of the Induced Membrane Filled with Syngeneic Bone and Regenerative Cells on Bone Healing in a Critical Size Defect Model of the Rat’s Femur. Injury, 49, 1721-1731. https://doi.org/10.1016/j.injury.2018.06.041
|
[23]
|
艾子政, 董谢平. 新西兰兔骨缺损模型的文献综述[J]. 中国矫形外科杂志, 2021, 29(20): 1863-1867.
|
[24]
|
Kim, Y. and Ku, J. (2023) Rat Calvaria Model Mimicking the Intraoral Lesion of Medication-Related Osteonecrosis in the Jaw: A Preliminary Test. Journal of Clinical Medicine, 12, Article 6731. https://doi.org/10.3390/jcm12216731
|
[25]
|
Saunders, W.B., Dejardin, L.M., Soltys-Niemann, E.V., Kaulfus, C.N., Eichelberger, B.M., Dobson, L.K., et al. (2022) Angle-Stable Interlocking Nailing in a Canine Critical-Sized Femoral Defect Model for Bone Regeneration Studies: In Pursuit of the Principle of the 3R’s. Frontiers in Bioengineering and Biotechnology, 10, Article 921486. https://doi.org/10.3389/fbioe.2022.921486
|
[26]
|
Finze, R., Laubach, M., Russo Serafini, M., Kneser, U. and Medeiros Savi, F. (2023) Histological and Immunohistochemical Characterization of Osteoimmunological Processes in Scaffold-Guided Bone Regeneration in an Ovine Large Segmental Defect Model. Biomedicines, 11, Article 2781. https://doi.org/10.3390/biomedicines11102781
|
[27]
|
Li, S., Zhou, H., Hu, C., Yang, J., Ye, J., Zhou, Y., et al. (2021) Total Flavonoids of Rhizoma Drynariae Promotes Differentiation of Osteoblasts and Growth of Bone Graft in Induced Membrane Partly by Activating Wnt/β-Catenin Signaling Pathway. Frontiers in Pharmacology, 12, Article 675470. https://doi.org/10.3389/fphar.2021.675470
|
[28]
|
徐石庄, 王进, 潘文振, 等. 兔股骨髁临界性骨缺损动物模型制备及临界骨缺损值[J]. 中国组织工程研究, 2020, 24(20): 3191-3195.
|
[29]
|
Yin, N., Wang, Y., Ding, L., Yuan, J., Du, L., Zhu, Z., et al. (2020) Platelet-Rich Plasma Enhances the Repair Capacity of Muscle-Derived Mesenchymal Stem Cells to Large Humeral Bone Defect in Rabbits. Scientific Reports, 10, Article No. 6771. https://doi.org/10.1038/s41598-020-63496-5
|
[30]
|
Sargolzaei-Aval, F., Saberi, E.A., Arab, M.R., Sargolzaei, N., Sanchooli, T. and Tavakolinezhad, S. (2019) Octacalcium Phosphate/Gelatin Composite Facilitates Bone Regeneration of Critical-Sized Mandibular Defects in Rats: A Quantitative Study. Journal of Dental Research, Dental Clinics, Dental Prospects, 13, 258-266. https://doi.org/10.15171/joddd.2019.040
|
[31]
|
Schlund, M., Depeyre, A., Kotagudda Ranganath, S., Marchandise, P., Ferri, J. and Chai, F. (2022) Rabbit Calvarial and Mandibular Critical-Sized Bone Defects as an Experimental Model for the Evaluation of Craniofacial Bone Tissue Regeneration. Journal of Stomatology, Oral and Maxillofacial Surgery, 123, 601-609. https://doi.org/10.1016/j.jormas.2021.12.001
|
[32]
|
McGovern, J.A., Griffin, M. and Hutmacher, D.W. (2018) Animal Models for Bone Tissue Engineering and Modelling Disease. Disease Models & Mechanisms, 11, dmm033084. https://doi.org/10.1242/dmm.033084
|
[33]
|
黄玉凡, 李晓青. 胫骨注射和左心室注射乳腺癌细胞小鼠骨定植模型的研究[J]. 天津医科大学学报, 2024, 30(3): 200-204.
|
[34]
|
Beagan, M.L.C., Dreyer, C.H., Jensen, L.K., Jensen, H.E., Andersen, T.E., Overgaard, S., et al. (2024) The Potential of Sheep in Preclinical Models for Bone Infection Research—A Systematic Review. Journal of Orthopaedic Translation, 45, 120-131. https://doi.org/10.1016/j.jot.2024.02.002
|
[35]
|
Zhao, Y., Su, J., Xu, C., Li, Y., Hu, T., Li, Y., et al. (2024) Establishment of a Mandible Defect Model in Rabbits Infected with Multiple Bacteria and Bioinformatics Analysis. Frontiers in Bioengineering and Biotechnology, 12, Article 1350024. https://doi.org/10.3389/fbioe.2024.1350024
|
[36]
|
Dao, A., O’Donohue, A.K., Vasiljevski, E.R., Bobyn, J.D., Little, D.G. and Schindeler, A. (2023) Murine Models of Orthopedic Infection Featuring Staphylococcus aureus Biofilm. Journal of Bone and Joint Infection, 8, 81-89. https://doi.org/10.5194/jbji-8-81-2023
|
[37]
|
Liu, W., Li, G., Li, J. and Chen, W. (2022) Long Noncoding RNA TRG-AS1 Protects against Glucocorticoid-Induced Osteoporosis in a Rat Model by Regulating miR-802-Mediated CAB39/AMPK/SIRT-1/NF-κB Axis. Human Cell, 35, 1424-1439. https://doi.org/10.1007/s13577-022-00741-1
|
[38]
|
Eskandarynasab, M., Doustimotlagh, A.H., Takzaree, N., Etemad-Moghadam, S., Alaeddini, M., Dehpour, A.R., et al. (2020) Phosphatidylserine Nanoliposomes Inhibit Glucocorticoid-Induced Osteoporosis: A Potential Combination Therapy with Alendronate. Life Sciences, 257, Article ID: 118033. https://doi.org/10.1016/j.lfs.2020.118033
|
[39]
|
Cheng, M., Liang, X., Wang, Q., Deng, Y., Zhao, Z. and Liu, X. (2018) Ursolic Acid Prevents Retinoic Acid-Induced Bone Loss in Rats. Chinese Journal of Integrative Medicine, 25, 210-215. https://doi.org/10.1007/s11655-018-3050-y
|
[40]
|
Ren, M., Wang, X., Hu, M., Jiang, Y., Xu, D., Xiang, H., et al. (2022) Enhanced Bone Formation in Rat Critical-Size Tibia Defect by a Novel Quercetin-Containing Alpha-Calcium Sulphate Hemihydrate/Nano-Hydroxyapatite Composite. Biomedicine & Pharmacotherapy, 146, Article ID: 112570. https://doi.org/10.1016/j.biopha.2021.112570
|
[41]
|
Guimarães, J.A.M., Scorza, B.J.B., Machado, J.A.P., Cavalcanti, A.D.S. and Duarte, M.E.L. (2023) Characterization of the Masquelet Induced Membrane Technique in a Murine Segmental Bone Defect Model. Revista Brasileira de Ortopedia, 58, e798-e807. https://doi.org/10.1055/s-0043-1771490
|
[42]
|
Beitlitum, I., Rayyan, F., Pokhojaev, A., Tal, H. and Sarig, R. (2024) A Novel Micro-CT Analysis for Evaluating the Regenerative Potential of Bone Augmentation Xenografts in Rabbit Calvarias. Scientific Reports, 14, Article No. 4321. https://doi.org/10.1038/s41598-024-54313-4
|
[43]
|
Alrumaih, S., Alshibani, N., Alssum, L., Alshehri, F.A., AlMayrifi, M.A., AlMayouf, M., et al. (2023) The Impact of Resolvin E1 on Bone Regeneration in Critical‐Sized Calvarial Defects of Rat Model—A Gene Expression and Micro‐CT Analysis. Journal of Periodontal Research, 59, 195-203. https://doi.org/10.1111/jre.13206
|
[44]
|
张娜, 刘学芳, 冯素香, 等. 肺癌骨转移动物模型研究进展[J]. 中国比较医学杂志, 2020, 30(10): 128-131, 137.
|
[45]
|
周浩伟, 王秉谦, 张宇辰, 等. 基于数据挖掘的骨质疏松症动物模型建立与分析[J]. 中国实验动物学报, 2023, 31(8): 1042-1050.
|
[46]
|
Wang, Y., Zhang, X., Mei, S., Li, Y., Khan, A.A., Guan, S., et al. (2023) Determination of Critical-Sized Defect of Mandible in a Rabbit Model: Micro-Computed Tomography, and Histological Evaluation. Heliyon, 9, e18047. https://doi.org/10.1016/j.heliyon.2023.e18047
|
[47]
|
Tian, M., Han, Y., Yang, G., Li, J., Shi, C. and Tian, D. (2023) The Role of Lactoferrin in Bone Remodeling: Evaluation of Its Potential in Targeted Delivery and Treatment of Metabolic Bone Diseases and Orthopedic Conditions. Frontiers in Endocrinology, 14, Article 1218148. https://doi.org/10.3389/fendo.2023.1218148
|
[48]
|
许刚, 何纯青, 张飞, 等. 万古霉素/PLGA/TCP多孔复合材料修复羊感染性骨缺损[J]. 实用医学杂志, 2020, 36(24): 3317-3322.
|