[1]
|
(2018) Guidelines of Prevention and Treatment for Nonalcoholic Fatty Liver Disease: A 2018 Update. Chinese Journal of Hepatology, 26, 195-203.
|
[2]
|
Rinella, M.E., Neuschwander-Tetri, B.A., Siddiqui, M.S., Abdelmalek, M.F., Caldwell, S., Barb, D., et al. (2023) AASLD Practice Guidance on the Clinical Assessment and Management of Nonalcoholic Fatty Liver Disease. Hepatology, 77, 1797-1835. https://doi.org/10.1097/hep.0000000000000323
|
[3]
|
White, L., Fishman, P., Basu, A., Crane, P.K., Larson, E.B. and Coe, N.B. (2019) Medicare Expenditures Attributable to Dementia. Health Services Research, 54, 773-781. https://doi.org/10.1111/1475-6773.13134
|
[4]
|
骆雪, 王曦. 冠心病合并非酒精性脂肪肝患者心肺运动试验特点[J]. 临床心血管病杂志, 2023, 39(2): 145-149.
|
[5]
|
Duell, P.B., Welty, F.K., Miller, M., Chait, A., Hammond, G., Ahmad, Z., et al. (2022) Nonalcoholic Fatty Liver Disease and Cardiovascular Risk: A Scientific Statement from the American Heart Association. Arteriosclerosis, Thrombosis, and Vascular Biology, 42, e168-e185. https://doi.org/10.1161/atv.0000000000000153
|
[6]
|
Sun, D., Targher, G., Byrne, C.D., Wheeler, D.C., Wong, V.W., Fan, J., et al. (2023) An International Delphi Consensus Statement on Metabolic Dysfunction-Associated Fatty Liver Disease and Risk of Chronic Kidney Disease. Hepatobiliary Surgery and Nutrition, 12, 386-403. https://doi.org/10.21037/hbsn-22-421
|
[7]
|
Marušić, M., Paić, M., Knobloch, M. and Liberati Pršo, A. (2021) NAFLD, Insulin Resistance, and Diabetes Mellitus Type 2. Canadian Journal of Gastroenterology and Hepatology, 2021, Article ID: 6613827. https://doi.org/10.1155/2021/6613827
|
[8]
|
Tilg, H., Moschen, A.R. and Roden, M. (2016) NAFLD and Diabetes Mellitus. Nature Reviews Gastroenterology & Hepatology, 14, 32-42. https://doi.org/10.1038/nrgastro.2016.147
|
[9]
|
Samuel, V.T. and Shulman, G.I. (2019) Nonalcoholic Fatty Liver Disease, Insulin Resistance, and Ceramides. New England Journal of Medicine, 381, 1866-1869. https://doi.org/10.1056/nejmcibr1910023
|
[10]
|
Petta, S., Miele, L., Bugianesi, E., Cammà, C., Rosso, C., Boccia, S., et al. (2014) Glucokinase Regulatory Protein Gene Polymorphism Affects Liver Fibrosis in Non-Alcoholic Fatty Liver Disease. PLOS ONE, 9, e87523. https://doi.org/10.1371/journal.pone.0087523
|
[11]
|
Ratziu, V., Giral, P., Charlotte, F., Bruckert, E., Thibault, V., Theodorou, I., et al. (2000) Liver Fibrosis in Overweight Patients. Gastroenterology, 118, 1117-1123. https://doi.org/10.1016/s0016-5085(00)70364-7
|
[12]
|
Dam-Larsen, S., Becker, U., Franzmann, M., Larsen, K., Christoffersen, P. and Bendtsen, F. (2009) Final Results of a Long-Term, Clinical Follow-Up in Fatty Liver Patients. Scandinavian Journal of Gastroenterology, 44, 1236-1243. https://doi.org/10.1080/00365520903171284
|
[13]
|
Albillos, A., de Gottardi, A. and Rescigno, M. (2020) The Gut-Liver Axis in Liver Disease: Pathophysiological Basis for Therapy. Journal of Hepatology, 72, 558-577. https://doi.org/10.1016/j.jhep.2019.10.003
|
[14]
|
Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G.A.D., Gasbarrini, A., et al. (2019) What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 7, 14. https://doi.org/10.3390/microorganisms7010014
|
[15]
|
Boursier, J., Mueller, O., Barret, M., Machado, M., Fizanne, L., Araujo‐Perez, F., et al. (2016) The Severity of Nonalcoholic Fatty Liver Disease Is Associated with Gut Dysbiosis and Shift in the Metabolic Function of the Gut Microbiota. Hepatology, 63, 764-775. https://doi.org/10.1002/hep.28356
|
[16]
|
Morais, L.H., Schreiber, H.L. and Mazmanian, S.K. (2020) The Gut Microbiota-Brain Axis in Behaviour and Brain Disorders. Nature Reviews Microbiology, 19, 241-255. https://doi.org/10.1038/s41579-020-00460-0
|
[17]
|
Proctor, L.M., Creasy, H.H., Fettweis, J.M., Lloyd-Price, J., Mahurkar, A., Zhou, W., et al. (2019) The Integrative Human Microbiome Project. Nature, 569, 641-648. https://doi.org/10.1038/s41586-019-1238-8
|
[18]
|
Tilg, H., Adolph, T.E. and Trauner, M. (2022) Gut-Liver Axis: Pathophysiological Concepts and Clinical Implications. Cell Metabolism, 34, 1700-1718. https://doi.org/10.1016/j.cmet.2022.09.017
|
[19]
|
Rebelos, E., Iozzo, P., Guzzardi, M.A., Brunetto, M.R. and Bonino, F. (2021) Brain-Gut-Liver Interactions across the Spectrum of Insulin Resistance in Metabolic Fatty Liver Disease. World Journal of Gastroenterology, 27, 4999-5018. https://doi.org/10.3748/wjg.v27.i30.4999
|
[20]
|
Tett, A., Pasolli, E., Masetti, G., Ercolini, D. and Segata, N. (2021) Prevotella Diversity, Niches and Interactions with the Human Host. Nature Reviews Microbiology, 19, 585-599. https://doi.org/10.1038/s41579-021-00559-y
|
[21]
|
Astbury, S., Atallah, E., Vijay, A., Aithal, G.P., Grove, J.I. and Valdes, A.M. (2019) Lower Gut Microbiome Diversity and Higher Abundance of Proinflammatory Genus Collinsella Are Associated with Biopsy-Proven Nonalcoholic Steatohepatitis. Gut Microbes, 11, 569-580. https://doi.org/10.1080/19490976.2019.1681861
|
[22]
|
Cornejo-Pareja, I., Amiar, M.R., Ocaña-Wilhelmi, L., Soler-Humanes, R., Arranz-Salas, I., Garrido-Sánchez, L., et al. (2024) Non-alcoholic Fatty Liver Disease in Patients with Morbid Obesity: The Gut Microbiota Axis as a Potential Pathophysiology Mechanism. Journal of Gastroenterology, 59, 329-341. https://doi.org/10.1007/s00535-023-02075-7
|
[23]
|
Huang, F., Lyu, B., Xie, F., Li, F., Xing, Y., Han, Z., et al. (2024) From Gut to Liver: Unveiling the Differences of Intestinal Microbiota in NAFL and NASH Patients. Frontiers in Microbiology, 15, Article 1366744. https://doi.org/10.3389/fmicb.2024.1366744
|
[24]
|
Cai, W., Qiu, T., Hu, W. and Fang, T. (2024) Changes in the Intestinal Microbiota of Individuals with Non-Alcoholic Fatty Liver Disease Based on Sequencing: An Updated Systematic Review and Meta-Analysis. PLOS ONE, 19, e0299946. https://doi.org/10.1371/journal.pone.0299946
|
[25]
|
Lanthier, N., Rodriguez, J., Nachit, M., Hiel, S., Trefois, P., Neyrinck, A.M., et al. (2021) Microbiota Analysis and Transient Elastography Reveal New Extra-Hepatic Components of Liver Steatosis and Fibrosis in Obese Patients. Scientific Reports, 11, Article No. 659. https://doi.org/10.1038/s41598-020-79718-9
|
[26]
|
Cerqueira César Machado, M. and Pinheiro da Silva, F. (2016) Intestinal Barrier Dysfunction in Human Pathology and Aging. Current Pharmaceutical Design, 22, 4645-4650. https://doi.org/10.2174/1381612822666160510125331
|
[27]
|
Tilg, H., Zmora, N., Adolph, T.E. and Elinav, E. (2019) The Intestinal Microbiota Fuelling Metabolic Inflammation. Nature Reviews Immunology, 20, 40-54. https://doi.org/10.1038/s41577-019-0198-4
|
[28]
|
Britanova, L. and Diefenbach, A. (2017) Interplay of Innate Lymphoid Cells and the Microbiota. Immunological Reviews, 279, 36-51. https://doi.org/10.1111/imr.12580
|
[29]
|
Macia, L., Tan, J., Vieira, A.T., Leach, K., Stanley, D., Luong, S., et al. (2015) Metabolite-Sensing Receptors GPR43 and GPR109A Facilitate Dietary Fibre-Induced Gut Homeostasis through Regulation of the Inflammasome. Nature Communications, 6, Article No. 6734. https://doi.org/10.1038/ncomms7734
|
[30]
|
Morrison, D.J. and Preston, T. (2016) Formation of Short Chain Fatty Acids by the Gut Microbiota and Their Impact on Human Metabolism. Gut Microbes, 7, 189-200. https://doi.org/10.1080/19490976.2015.1134082
|
[31]
|
Shi, L., Jin, L. and Huang, W. (2023) Bile Acids, Intestinal Barrier Dysfunction, and Related Diseases. Cells, 12, Article 1888. https://doi.org/10.3390/cells12141888
|
[32]
|
Tian, Y., Gui, W., Koo, I., Smith, P.B., Allman, E.L., Nichols, R.G., et al. (2020) The Microbiome Modulating Activity of Bile Acids. Gut Microbes, 11, 979-996. https://doi.org/10.1080/19490976.2020.1732268
|
[33]
|
Ovadia, C., Perdones-Montero, A., Fan, H.M., Mullish, B.H., McDonald, J.A.K., Papacleovoulou, G., et al. (2020) Ursodeoxycholic Acid Enriches Intestinal Bile Salt Hydrolase-Expressing Bacteroidetes in Cholestatic Pregnancy. Scientific Reports, 10, Article No. 3895. https://doi.org/10.1038/s41598-020-60821-w
|
[34]
|
Inagaki, T., Moschetta, A., Lee, Y., Peng, L., Zhao, G., Downes, M., et al. (2006) Regulation of Antibacterial Defense in the Small Intestine by the Nuclear Bile Acid Receptor. Proceedings of the National Academy of Sciences of the United States of America, 103, 3920-3925. https://doi.org/10.1073/pnas.0509592103
|
[35]
|
Di Ciaula, A., Bonfrate, L., Baj, J., Khalil, M., Garruti, G., Stellaard, F., et al. (2022) Recent Advances in the Digestive, Metabolic and Therapeutic Effects of Farnesoid X Receptor and Fibroblast Growth Factor 19: From Cholesterol to Bile Acid Signaling. Nutrients, 14, Article 4950. https://doi.org/10.3390/nu14234950
|
[36]
|
Chiang, J.Y.L. and Ferrell, J.M. (2020) Bile Acid Receptors FXR and TGR5 Signaling in Fatty Liver Diseases and Therapy. American Journal of Physiology-Gastrointestinal and Liver Physiology, 318, G554-G573. https://doi.org/10.1152/ajpgi.00223.2019
|
[37]
|
Hsu, C.L. and Schnabl, B. (2023) The Gut-Liver Axis and Gut Microbiota in Health and Liver Disease. Nature Reviews Microbiology, 21, 719-733. https://doi.org/10.1038/s41579-023-00904-3
|
[38]
|
Li, Q., Rempel, J.D., Yang, J. and Minuk, G.Y. (2022) The Effects of Pathogen-Associated Molecular Patterns on Peripheral Blood Monocytes in Patients with Non-Alcoholic Fatty Liver Disease. Journal of Clinical and Experimental Hepatology, 12, 808-817. https://doi.org/10.1016/j.jceh.2021.11.011
|
[39]
|
Wu, J., Lu, A.D., Zhang, L.P., Zuo, Y.X. and Jia, Y.P. (2019) Study of Clinical Outcome and Prognosis in Pediatric Core Binding Factor-Acute Myeloid Leukemia. Chinese Journal of Hematology, 40, 52-57.
|
[40]
|
Xu, H., Xiong, J., Xu, J., Li, S., Zhou, Y., Chen, D., et al. (2017) Mosapride Stabilizes Intestinal Microbiota to Reduce Bacterial Translocation and Endotoxemia in CCL4-Induced Cirrhotic Rats. Digestive Diseases and Sciences, 62, 2801-2811. https://doi.org/10.1007/s10620-017-4704-x
|
[41]
|
Janeway, C.A. (1989) Approaching the Asymptote? Evolution and Revolution in Immunology. Cold Spring Harbor Symposia on Quantitative Biology, 54, 1-13. https://doi.org/10.1101/sqb.1989.054.01.003
|
[42]
|
Gong, T., Liu, L., Jiang, W. and Zhou, R. (2019) Damp-Sensing Receptors in Sterile Inflammation and Inflammatory Diseases. Nature Reviews Immunology, 20, 95-112. https://doi.org/10.1038/s41577-019-0215-7
|
[43]
|
Kemper, C. and Sack, M.N. (2022) Linking Nutrient Sensing, Mitochondrial Function, and PRR Immune Cell Signaling in Liver Disease. Trends in Immunology, 43, 886-900. https://doi.org/10.1016/j.it.2022.09.002
|
[44]
|
Huang, C., Zhou, Y., Cheng, J., Guo, X., Shou, D., Quan, Y., et al. (2023) Pattern Recognition Receptors in the Development of Nonalcoholic Fatty Liver Disease and Progression to Hepatocellular Carcinoma: An Emerging Therapeutic Strategy. Frontiers in Endocrinology, 14, Article 1145392. https://doi.org/10.3389/fendo.2023.1145392
|
[45]
|
Jones, N., Blagih, J., Zani, F., Rees, A., Hill, D.G., Jenkins, B.J., et al. (2021) Fructose Reprogrammes Glutamine-Dependent Oxidative Metabolism to Support LPS-Induced Inflammation. Nature Communications, 12, Article No. 1209. https://doi.org/10.1038/s41467-021-21461-4
|
[46]
|
Mouries, J., Brescia, P., Silvestri, A., Spadoni, I., Sorribas, M., Wiest, R., et al. (2019) Microbiota-Driven Gut Vascular Barrier Disruption Is a Prerequisite for Non-Alcoholic Steatohepatitis Development. Journal of Hepatology, 71, 1216-1228. https://doi.org/10.1016/j.jhep.2019.08.005
|
[47]
|
Li, D. and Wu, M. (2021) Pattern Recognition Receptors in Health and Diseases. Signal Transduction and Targeted Therapy, 6, Article No. 291. https://doi.org/10.1038/s41392-021-00687-0
|
[48]
|
Rumpret, M., von Richthofen, H.J., Peperzak, V. and Meyaard, L. (2021) Inhibitory Pattern Recognition Receptors. Journal of Experimental Medicine, 219, e20211463. https://doi.org/10.1084/jem.20211463
|
[49]
|
Fitzgerald, K.A. and Kagan, J.C. (2020) Toll-Like Receptors and the Control of Immunity. Cell, 180, 1044-1066. https://doi.org/10.1016/j.cell.2020.02.041
|
[50]
|
Wicherska-Pawłowska, K., Wróbel, T. and Rybka, J. (2021) Toll-Like Receptors (TLRs), Nod-Like Receptors (NLRs), and Rig-I-Like Receptors (RLRs) in Innate Immunity. TLRs, NLRs, and RLRs Ligands as Immunotherapeutic Agents for Hematopoietic Diseases. International Journal of Molecular Sciences, 22, Article 13397. https://doi.org/10.3390/ijms222413397
|
[51]
|
Kawai, T. and Akira, S. (2009) The Roles of TLRs, RLRs and NLRs in Pathogen Recognition. International Immunology, 21, 317-337. https://doi.org/10.1093/intimm/dxp017
|
[52]
|
Takeuchi, O. and Akira, S. (2010) Pattern Recognition Receptors and Inflammation. Cell, 140, 805-820. https://doi.org/10.1016/j.cell.2010.01.022
|
[53]
|
Yu, L. and Feng, Z. (2018) The Role of Toll-Like Receptor Signaling in the Progression of Heart Failure. Mediators of Inflammation, 2018, Article ID: 9874109. https://doi.org/10.1155/2018/9874109
|
[54]
|
Miura, K. (2014) Role of Gut Microbiota and Toll-Like Receptors in Nonalcoholic Fatty Liver Disease. World Journal of Gastroenterology, 20, 7381-7391. https://doi.org/10.3748/wjg.v20.i23.7381
|
[55]
|
Yu, J., Liu, X., Yang, N., Wang, B., Su, B., Fu, Q., et al. (2021) Characterization of Toll-Like Receptor 1 (TLR1) in Turbot (Scophthalmus maximus L.). Fish & Shellfish Immunology, 115, 27-34. https://doi.org/10.1016/j.fsi.2021.05.018
|
[56]
|
Baumann, A., Nier, A., Hernández-Arriaga, A., Brandt, A., Lorenzo Pisarello, M.J., Jin, C.J., et al. (2021) Toll-Like Receptor 1 as a Possible Target in Non-Alcoholic Fatty Liver Disease. Scientific Reports, 11, Article No. 17815. https://doi.org/10.1038/s41598-021-97346-9
|
[57]
|
Xu, R., Cao, J., Lv, H., Geng, Y. and Guo, M. (2024) Polyethylene Microplastics Induced Gut Microbiota Dysbiosis Leading to Liver Injury via the TLR2/NF-κB/NLRP3 Pathway in Mice. Science of The Total Environment, 917, Article ID: 170518. https://doi.org/10.1016/j.scitotenv.2024.170518
|
[58]
|
Wang, R., Tang, R., Li, B., Ma, X., Schnabl, B. and Tilg, H. (2020) Gut Microbiome, Liver Immunology, and Liver Diseases. Cellular & Molecular Immunology, 18, 4-17. https://doi.org/10.1038/s41423-020-00592-6
|
[59]
|
Nighot, M., Al-Sadi, R., Guo, S., Rawat, M., Nighot, P., Watterson, M.D., et al. (2017) Lipopolysaccharide-Induced Increase in Intestinal Epithelial Tight Permeability Is Mediated by Toll-Like Receptor 4/Myeloid Differentiation Primary Response 88 (MyD88) Activation of Myosin Light Chain Kinase Expression. The American Journal of Pathology, 187, 2698-2710. https://doi.org/10.1016/j.ajpath.2017.08.005
|
[60]
|
Shimazu, R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., Miyake, K., et al. (1999) MD-2, a Molecule That Confers Lipopolysaccharide Responsiveness on Toll-Like Receptor 4. The Journal of Experimental Medicine, 189, 1777-1782. https://doi.org/10.1084/jem.189.11.1777
|
[61]
|
Sharifnia, T., Antoun, J., Verriere, T.G.C., Suarez, G., Wattacheril, J., Wilson, K.T., et al. (2015) Hepatic TLR4 Signaling in Obese NAFLD. American Journal of Physiology-Gastrointestinal and Liver Physiology, 309, G270-G278. https://doi.org/10.1152/ajpgi.00304.2014
|
[62]
|
Toivonen, R., Vanhatalo, S., Hollmén, M., Munukka, E., Keskitalo, A., Pietilä, S., et al. (2021) Vascular Adhesion Protein 1 Mediates Gut Microbial Flagellin-Induced Inflammation, Leukocyte Infiltration, and Hepatic Steatosis. Sci, 3, Article 13. https://doi.org/10.3390/sci3010013
|
[63]
|
Salmi, M. and Jalkanen, S. (2019) Vascular Adhesion Protein-1: A Cell Surface Amine Oxidase in Translation. Antioxidants & Redox Signaling, 30, 314-332. https://doi.org/10.1089/ars.2017.7418
|
[64]
|
Shen, B., Gu, T., Shen, Z., Zhou, C., Guo, Y., Wang, J., et al. (2023) Escherichia Coli Promotes Endothelial to Mesenchymal Transformation of Liver Sinusoidal Endothelial Cells and Exacerbates Nonalcoholic Fatty Liver Disease via Its Flagellin. Cellular and Molecular Gastroenterology and Hepatology, 16, 857-879. https://doi.org/10.1016/j.jcmgh.2023.08.001
|
[65]
|
Takeshita, F., Leifer, C.A., Gursel, I., Ishii, K.J., Takeshita, S., Gursel, M., et al. (2001) Cutting Edge: Role of Toll-Like Receptor 9 in CPG DNA-Induced Activation of Human Cells. The Journal of Immunology, 167, 3555-3558. https://doi.org/10.4049/jimmunol.167.7.3555
|
[66]
|
Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., et al. (2000) A Toll-Like Receptor Recognizes Bacterial DNA. Nature, 408, 740-745. https://doi.org/10.1038/35047123
|
[67]
|
Jeong, S.W. (2020) Toll-like Receptor 9, a Possible Blocker of Non-Alcoholic Steatohepatitis? Clinical and Molecular Hepatology, 26, 185-186. https://doi.org/10.3350/cmh.2020.0046
|
[68]
|
Garcia-Martinez, I., Santoro, N., Chen, Y., Hoque, R., Ouyang, X., Caprio, S., et al. (2016) Hepatocyte Mitochondrial DNA Drives Nonalcoholic Steatohepatitis by Activation of TLR9. Journal of Clinical Investigation, 126, 859-864. https://doi.org/10.1172/jci83885
|
[69]
|
Ting, J.P. and Davis, B.K. (2005) Caterpiller: A Novel Gene Family Important in Immunity, Cell Death, and Diseases. Annual Review of Immunology, 23, 387-414. https://doi.org/10.1146/annurev.immunol.23.021704.115616
|
[70]
|
Schroder, K. and Tschopp, J. (2010) The Inflammasomes. Cell, 140, 821-832. https://doi.org/10.1016/j.cell.2010.01.040
|
[71]
|
Levy, M., Shapiro, H., Thaiss, C.A. and Elinav, E. (2017) NLRP6: A Multifaceted Innate Immune Sensor. Trends in Immunology, 38, 248-260. https://doi.org/10.1016/j.it.2017.01.001
|
[72]
|
Wang, P., Zhu, S., Yang, L., Cui, S., Pan, W., Jackson, R., et al. (2015) NLRP6 Regulates Intestinal Antiviral Innate Immunity. Science, 350, 826-830. https://doi.org/10.1126/science.aab3145
|
[73]
|
Levy, M., Thaiss, C.A., Zeevi, D., Dohnalová, L., Zilberman-Schapira, G., Mahdi, J.A., et al. (2015) Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling. Cell, 163, 1428-1443. https://doi.org/10.1016/j.cell.2015.10.048
|
[74]
|
Hara, H., Seregin, S.S., Yang, D., Fukase, K., Chamaillard, M., Alnemri, E.S., et al. (2018) The NLRP6 Inflammasome Recognizes Lipoteichoic Acid and Regulates Gram-Positive Pathogen Infection. Cell, 175, 1651-1664.e14. https://doi.org/10.1016/j.cell.2018.09.047
|
[75]
|
Henao-Mejia, J., Elinav, E., Jin, C., Hao, L., Mehal, W.Z., Strowig, T., et al. (2012) Inflammasome-Mediated Dysbiosis Regulates Progression of NAFLD and Obesity. Nature, 482, 179-185. https://doi.org/10.1038/nature10809
|
[76]
|
Schneider, K.M., Mohs, A., Gui, W., Galvez, E.J.C., Candels, L.S., Hoenicke, L., et al. (2022) Imbalanced Gut Microbiota Fuels Hepatocellular Carcinoma Development by Shaping the Hepatic Inflammatory Microenvironment. Nature Communications, 13, Article No. 3964. https://doi.org/10.1038/s41467-022-31312-5
|
[77]
|
Rauf, A., Khalil, A.A., Rahman, U., Khalid, A., Naz, S., Shariati, M.A., et al. (2021) Recent Advances in the Therapeutic Application of Short-Chain Fatty Acids (SCFAs): An Updated Review. Critical Reviews in Food Science and Nutrition, 62, 6034-6054. https://doi.org/10.1080/10408398.2021.1895064
|
[78]
|
Zhou, D., Chen, Y., Zhao, Z., Yang, R., Xin, F., Liu, X., et al. (2018) Sodium Butyrate Reduces High-Fat Diet-Induced Non-Alcoholic Steatohepatitis through Upregulation of Hepatic GLP-1R Expression. Experimental & Molecular Medicine, 50, 1-12. https://doi.org/10.1038/s12276-018-0183-1
|
[79]
|
Park, J., Kotani, T., Konno, T., Setiawan, J., Kitamura, Y., Imada, S., et al. (2016) Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids. PLOS ONE, 11, e0156334. https://doi.org/10.1371/journal.pone.0156334
|
[80]
|
Xu, H., Huang, H., Xu, J., He, J., Zhao, C., Peng, Y., et al. (2021) Cross-Talk between Butyric Acid and Gut Microbiota in Ulcerative Colitis Following Fecal Microbiota Transplantation. Frontiers in Microbiology, 12, Article 658292. https://doi.org/10.3389/fmicb.2021.658292
|
[81]
|
Del Chierico, F., Nobili, V., Vernocchi, P., Russo, A., De Stefanis, C., Gnani, D., et al. (2016) Gut Microbiota Profiling of Pediatric Nonalcoholic Fatty Liver Disease and Obese Patients Unveiled by an Integrated Meta‐Omics‐Based Approach. Hepatology, 65, 451-464. https://doi.org/10.1002/hep.28572
|
[82]
|
Canfora, E.E., van der Beek, C.M., Jocken, J.W.E., Goossens, G.H., Holst, J.J., Olde Damink, S.W.M., et al. (2017) Colonic Infusions of Short-Chain Fatty Acid Mixtures Promote Energy Metabolism in Overweight/Obese Men: A Randomized Crossover Trial. Scientific Reports, 7, Article No. 2360. https://doi.org/10.1038/s41598-017-02546-x
|
[83]
|
Panasevich, M.R., Morris, E.M., Chintapalli, S.V., Wankhade, U.D., Shankar, K., Britton, S.L., et al. (2016) Gut Microbiota Are Linked to Increased Susceptibility to Hepatic Steatosis in Low-Aerobic-Capacity Rats Fed an Acute High-Fat Diet. American Journal of Physiology-Gastrointestinal and Liver Physiology, 311, G166-G179. https://doi.org/10.1152/ajpgi.00065.2016
|
[84]
|
Jin, C.J., Engstler, A.J., Sellmann, C., Ziegenhardt, D., Landmann, M., Kanuri, G., et al. (2016) Sodium Butyrate Protects Mice from the Development of the Early Signs of Non-Alcoholic Fatty Liver Disease: Role of Melatonin and Lipid Peroxidation. British Journal of Nutrition, 116, 1682-1693. https://doi.org/10.1017/s0007114516004025
|
[85]
|
Letourneau, J., Holmes, Z.C., Dallow, E.P., Durand, H.K., Jiang, S., Carrion, V.M., et al. (2022) Ecological Memory of Prior Nutrient Exposure in the Human Gut Microbiome. The ISME Journal, 16, 2479-2490. https://doi.org/10.1038/s41396-022-01292-x
|
[86]
|
Chen, R., Xu, Y., Wu, P., Zhou, H., Lasanajak, Y., Fang, Y., et al. (2019) Transplantation of Fecal Microbiota Rich in Short Chain Fatty Acids and Butyric Acid Treat Cerebral Ischemic Stroke by Regulating Gut Microbiota. Pharmacological Research, 148, Article ID: 104403. https://doi.org/10.1016/j.phrs.2019.104403
|
[87]
|
Dawson, P.A. and Karpen, S.J. (2015) Intestinal Transport and Metabolism of Bile Acids. Journal of Lipid Research, 56, 1085-1099. https://doi.org/10.1194/jlr.r054114
|
[88]
|
Gonzalez, F.J., Jiang, C. and Patterson, A.D. (2016) An Intestinal Microbiota-Farnesoid X Receptor Axis Modulates Metabolic Disease. Gastroenterology, 151, 845-859. https://doi.org/10.1053/j.gastro.2016.08.057
|
[89]
|
Yang, Z., Shen, W. and Sun, H. (2010) Effects of Nuclear Receptor FXR on the Regulation of Liver Lipid Metabolism in Patients with Non-Alcoholic Fatty Liver Disease. Hepatology International, 4, 741-748. https://doi.org/10.1007/s12072-010-9202-6
|
[90]
|
Han, X., Cui, Z., Song, J., Piao, H., Lian, L., Hou, L., et al. (2019) Acanthoic Acid Modulates Lipogenesis in Nonalcoholic Fatty Liver Disease via FXR/LXRs-Dependent Manner. Chemico-Biological Interactions, 311, Article ID: 108794. https://doi.org/10.1016/j.cbi.2019.108794
|
[91]
|
Yang, Y. and Wu, C. (2022) Targeting Gut Microbial Bile Salt Hydrolase (BSH) by Diet Supplements: New Insights into Dietary Modulation of Human Health. Food & Function, 13, 7409-7422. https://doi.org/10.1039/d2fo01252a
|
[92]
|
Jiang, C., Xie, C., Li, F., Zhang, L., Nichols, R.G., Krausz, K.W., et al. (2014) Intestinal Farnesoid X Receptor Signaling Promotes Nonalcoholic Fatty Liver Disease. Journal of Clinical Investigation, 125, 386-402. https://doi.org/10.1172/jci76738
|
[93]
|
Fiorucci, S. and Distrutti, E. (2019) The Pharmacology of Bile Acids and Their Receptors. In: Fiorucci, S. and Distrutti, E., Eds., Bile Acids and Their Receptors, Springer, 3-18. https://doi.org/10.1007/164_2019_238
|
[94]
|
Li, X., Su, C., Jiang, Z., Yang, Y., Zhang, Y., Yang, M., et al. (2021) Berberine Attenuates Choline-Induced Atherosclerosis by Inhibiting Trimethylamine and Trimethylamine-N-Oxide Production via Manipulating the Gut Microbiome. npj Biofilms and Microbiomes, 7, Article No. 36. https://doi.org/10.1038/s41522-021-00205-8
|
[95]
|
Guerrerio, A.L., Colvin, R.M., Schwartz, A.K., Molleston, J.P., Murray, K.F., Diehl, A., et al. (2012) Choline Intake in a Large Cohort of Patients with Nonalcoholic Fatty Liver Disease. The American Journal of Clinical Nutrition, 95, 892-900. https://doi.org/10.3945/ajcn.111.020156
|
[96]
|
Jepsen, M.M. and Christensen, M.B. (2021) Emerging Glucagon-Like Peptide 1 Receptor Agonists for the Treatment of Obesity. Expert Opinion on Emerging Drugs, 26, 231-243. https://doi.org/10.1080/14728214.2021.1947240
|
[97]
|
León-Mimila, P., Villamil-Ramírez, H., Li, X.S., Shih, D.M., Hui, S.T., Ocampo-Medina, E., et al. (2021) Trimethylamine N-Oxide Levels Are Associated with NASH in Obese Subjects with Type 2 Diabetes. Diabetes & Metabolism, 47, Article ID: 101183. https://doi.org/10.1016/j.diabet.2020.07.010
|
[98]
|
Shi, C., Pei, M., Wang, Y., Chen, Q., Cao, P., Zhang, L., et al. (2022) Changes of Flavin-Containing Monooxygenases and Trimethylamine-N-Oxide May Be Involved in the Promotion of Non-Alcoholic Fatty Liver Disease by Intestinal Microbiota Metabolite Trimethylamine. Biochemical and Biophysical Research Communications, 594, 1-7. https://doi.org/10.1016/j.bbrc.2022.01.060
|
[99]
|
Theofilis, P., Vordoni, A. and Kalaitzidis, R.G. (2022) Trimethylamine N-Oxide Levels in Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Metabolites, 12, Article 1243. https://doi.org/10.3390/metabo12121243
|
[100]
|
Flores‐Guerrero, J.L., Post, A., van Dijk, P.R., Connelly, M.A., Garcia, E., Navis, G., et al. (2021) Circulating Trimethylamine‐N‐Oxide Is Associated with All‐Cause Mortality in Subjects with Nonalcoholic Fatty Liver Disease. Liver International, 41, 2371-2382. https://doi.org/10.1111/liv.14963
|
[101]
|
Jang, J.W., Capaldi, E., Smith, T., Verma, P., Varga, J. and Ho, K.J. (2024) Trimethylamine N-Oxide: A Meta-Organismal Axis Linking the Gut and Fibrosis. Molecular Medicine, 30, Article No. 128. https://doi.org/10.1186/s10020-024-00895-8
|
[102]
|
Soares, J., Pimentel-Nunes, P., Roncon-Albuquerque, R. and Leite-Moreira, A. (2010) The Role of Lipopolysaccharide/toll-Like Receptor 4 Signaling in Chronic Liver Diseases. Hepatology International, 4, 659-672. https://doi.org/10.1007/s12072-010-9219-x
|
[103]
|
毕占阳, 李高, 陈果, 杨柱, 龙奉玺, 罗莉, 等. 基于中医正邪理论探讨肠道菌群失调与肝癌的相关性[J]. 现代中西医结合杂志, 2022, 31(9): 1229-1234, 1262.
|
[104]
|
Sharpton, S.R., Maraj, B., Harding-Theobald, E., Vittinghoff, E. and Terrault, N.A. (2019) Gut Microbiome-Targeted Therapies in Nonalcoholic Fatty Liver Disease: A Systematic Review, Meta-Analysis, and Meta-Regression. The American Journal of Clinical Nutrition, 110, 139-149. https://doi.org/10.1093/ajcn/nqz042
|
[105]
|
Liu, L., Li, P., Liu, Y. and Zhang, Y. (2019) Efficacy of Probiotics and Synbiotics in Patients with Nonalcoholic Fatty Liver Disease: A Meta-Analysis. Digestive Diseases and Sciences, 64, 3402-3412. https://doi.org/10.1007/s10620-019-05699-z
|
[106]
|
Wu, H. and Chiou, J. (2021) Potential Benefits of Probiotics and Prebiotics for Coronary Heart Disease and Stroke. Nutrients, 13, Article 2878. https://doi.org/10.3390/nu13082878
|
[107]
|
Xie, H., Lu, Q., Wang, H., Zhu, X. and Guan, Z. (2018) Effects of Probiotics Combined with Enteral Nutrition on Immune Function and Inflammatory Response in Postoperative Patients with Gastric Cancer. JBUON, 23, 678-683.
|
[108]
|
Suk, K.T. and Kim, D.J. (2019) Gut Microbiota: Novel Therapeutic Target for Nonalcoholic Fatty Liver Disease. Expert Review of Gastroenterology & Hepatology, 13, 193-204. https://doi.org/10.1080/17474124.2019.1569513
|
[109]
|
Loguercio, C., Federico, A., Tuccillo, C., Terracciano, F., D’Auria, M.V., De Simone, C., et al. (2005) Beneficial Effects of a Probiotic VSL#3 on Parameters of Liver Dysfunction in Chronic Liver Diseases. Journal of Clinical Gastroenterology, 39, 540-543. https://doi.org/10.1097/01.mcg.0000165671.25272.0f
|
[110]
|
Wiest, R., Albillos, A., Trauner, M., Bajaj, J.S. and Jalan, R. (2017) Targeting the Gut-Liver Axis in Liver Disease. Journal of Hepatology, 67, 1084-1103. https://doi.org/10.1016/j.jhep.2017.05.007
|
[111]
|
Shu, Y.Y., Hu, L.L., Ye, J., Yang, L. and Jin, Y. (2024) Rifaximin Alleviates MCD Diet-Induced NASH in Mice by Restoring the Gut Microbiota and Intestinal Barrier. Life Sciences, 357, Article ID: 123095. https://doi.org/10.1016/j.lfs.2024.123095
|
[112]
|
Kuraji, R., Ye, C., Zhao, C., Gao, L., Martinez, A., Miyashita, Y., et al. (2024) Nisin Lantibiotic Prevents NAFLD Liver Steatosis and Mitochondrial Oxidative Stress Following Periodontal Disease by Abrogating Oral, Gut and Liver Dysbiosis. npj Biofilms and Microbiomes, 10, Article No. 3. https://doi.org/10.1038/s41522-024-00476-x
|
[113]
|
Sumida, Y. and Yoneda, M. (2017) Current and Future Pharmacological Therapies for NAFLD/NASH. Journal of Gastroenterology, 53, 362-376. https://doi.org/10.1007/s00535-017-1415-1
|
[114]
|
Rotman, Y. and Sanyal, A.J. (2016) Current and Upcoming Pharmacotherapy for Non-Alcoholic Fatty Liver Disease. Gut, 66, 180-190. https://doi.org/10.1136/gutjnl-2016-312431
|
[115]
|
Brandt, A., Jin, C., Nolte, K., Sellmann, C., Engstler, A. and Bergheim, I. (2017) Short-Term Intake of a Fructose-, Fat-and Cholesterol-Rich Diet Causes Hepatic Steatosis in Mice: Effect of Antibiotic Treatment. Nutrients, 9, Article 1013. https://doi.org/10.3390/nu9091013
|
[116]
|
Duan, Y., Llorente, C., Lang, S., Brandl, K., Chu, H., Jiang, L., et al. (2019) Bacteriophage Targeting of Gut Bacterium Attenuates Alcoholic Liver Disease. Nature, 575, 505-511. https://doi.org/10.1038/s41586-019-1742-x
|
[117]
|
Zhou, D., Pan, Q., Shen, F., Cao, H., Ding, W., Chen, Y., et al. (2017) Total Fecal Microbiota Transplantation Alleviates High-Fat Diet-Induced Steatohepatitis in Mice via Beneficial Regulation of Gut Microbiota. Scientific Reports, 7, Article No. 1529. https://doi.org/10.1038/s41598-017-01751-y
|
[118]
|
Xue, L., Deng, Z., Luo, W., He, X. and Chen, Y. (2022) Effect of Fecal Microbiota Transplantation on Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Frontiers in Cellular and Infection Microbiology, 12, Article 759306. https://doi.org/10.3389/fcimb.2022.759306
|
[119]
|
Stols-Gonçalves, D., Mak, A.L., Madsen, M.S., van der Vossen, E.W.J., Bruinstroop, E., Henneman, P., et al. (2023) Faecal Microbiota Transplantation Affects Liver DNA Methylation in Non-Alcoholic Fatty Liver Disease: A Multi-Omics Approach. Gut Microbes, 15, Article ID: 2223330. https://doi.org/10.1080/19490976.2023.2223330
|
[120]
|
Moreira, G., Azevedo, F., Ribeiro, L., Santos, A., Guadagnini, D., Gama, P., et al. (2018) Liraglutide Modulates Gut Microbiota and Reduces NAFLD in Obese Mice. The Journal of Nutritional Biochemistry, 62, 143-154. https://doi.org/10.1016/j.jnutbio.2018.07.009
|
[121]
|
He, Z., Li, X., Yang, H., Wu, P., Wang, S., Cao, D., et al. (2021) Effects of Oral Vitamin C Supplementation on Liver Health and Associated Parameters in Patients with Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Frontiers in Nutrition, 8, Article 745609. https://doi.org/10.3389/fnut.2021.745609
|
[122]
|
Koperska, A., Wesołek, A., Moszak, M. and Szulińska, M. (2022) Berberine in Non-Alcoholic Fatty Liver Disease—A Review. Nutrients, 14, Article 3459. https://doi.org/10.3390/nu14173459
|
[123]
|
Li, D., Zheng, J., Hu, Y., Hou, H., Hao, S., Liu, N., et al. (2017) Amelioration of Intestinal Barrier Dysfunction by Berberine in the Treatment of Nonalcoholic Fatty Liver Disease in Rats. Pharmacognosy Magazine, 13, 677-682. https://doi.org/10.4103/pm.pm_584_16
|
[124]
|
Zhang, X., Zhao, Y., Xu, J., Xue, Z., Zhang, M., Pang, X., et al. (2015) Modulation of Gut Microbiota by Berberine and Metformin during the Treatment of High-Fat Diet-Induced Obesity in Rats. Scientific Reports, 5, Article No. 14405. https://doi.org/10.1038/srep14405
|
[125]
|
Cui, H., Hu, Y., Li, J. and Yuan, K. (2018) Hypoglycemic Mechanism of the Berberine Organic Acid Salt under the Synergistic Effect of Intestinal Flora and Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2018, Article ID: 8930374. https://doi.org/10.1155/2018/8930374
|
[126]
|
Li, G., Zhou, F., Chen, Y., Zhang, W. and Wang, N. (2017) Kukoamine a Attenuates Insulin Resistance and Fatty Liver through Downregulation of SREBP-1C. Biomedicine & Pharmacotherapy, 89, 536-543. https://doi.org/10.1016/j.biopha.2017.02.024
|
[127]
|
Porras, D., Nistal, E., Martínez-Flórez, S., Pisonero-Vaquero, S., Olcoz, J.L., Jover, R., et al. (2017) Protective Effect of Quercetin on High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice Is Mediated by Modulating Intestinal Microbiota Imbalance and Related Gut-Liver Axis Activation. Free Radical Biology and Medicine, 102, 188-202. https://doi.org/10.1016/j.freeradbiomed.2016.11.037
|
[128]
|
Han, R., Qiu, H., Zhong, J., Zheng, N., Li, B., Hong, Y., et al. (2021) Si Miao Formula Attenuates Non-Alcoholic Fatty Liver Disease by Modulating Hepatic Lipid Metabolism and Gut Microbiota. Phytomedicine, 85, Article ID: 153544. https://doi.org/10.1016/j.phymed.2021.153544
|