从肠道菌群角度探讨非酒精性脂肪性肝病的研究进展
Research Progress of Non-Alcoholic Fatty Liver Disease from the Perspective of Intestinal Flora
DOI: 10.12677/acm.2025.153639, PDF, HTML, XML,   
作者: 罗 雪, 晏军莲, 任 红*:重庆医科大学附属第二医院感染与肝病中心,重庆
关键词: 肠道菌群非酒精性脂肪性肝病研究进展Intestinal Flora Non-Alcoholic Fatty Liver Disease Research Progress
摘要: 在过去的四十年中,非酒精性脂肪性肝病(non-alcoholic fatty liver disease, NAFLD)已成为最常见的慢性肝病,全球患病率约为成年人群的25%,其发病率持续上升,是全球的重大公共卫生问题。近年来,多项研究表明肠道菌群与NAFLD之间关系密切,NAFLD、慢性肝炎、肝硬化及肝癌等肝病患者均存在不同程度的肠道菌群失调,临床前研究证实了肠道菌群在NAFLD中的潜在因果作用。肠道菌群的组成、结构失衡会影响肠黏膜屏障及肠道代谢物,引起肠道通透性增加,产生肠源性内毒素血症,进而促进肝脏炎症反应,而肝损伤会进一步加重肠道通透性及全身炎症反应,由此形成恶性循环促进NAFLD的发生、发展。因而干预肠道菌群,可能是治疗及预防NAFLD的新策略。因此本文主要从肠道菌群的角度对NAFLD的发病机制及治疗作一综述。
Abstract: Over the past four decades, non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease, with a global prevalence of approximately 25% of the adult population, and its incidence continues to rise, making it a major public health NAFLD has become the most common chronic liver disease. In recent years, several studies have demonstrated the close relationship between intestinal flora and NAFLD. Patients with NAFLD, chronic hepatitis, cirrhosis and hepatocellular carcinoma, and other liver diseases have varying degrees of intestinal dysbiosis, and preclinical studies have confirmed the potential causal role of intestinal flora in NAFLD. Imbalance in the composition and structure of intestinal flora affects the intestinal mucosal barrier and intestinal metabolites, causing an increase in intestinal permeability, generating intestinal endotoxemia, which in turn promotes hepatic inflammatory response, and hepatic injury further exacerbates intestinal permeability and systemic inflammatory response, resulting in the formation of a vicious circle that promotes the onset and development of NAFLD. Thus, intervention of intestinal flora may be a new strategy for the treatment and prevention of NAFLD. Therefore, this article mainly reviews the pathogenesis and treatment of NAFLD from the perspective of intestinal flora.
文章引用:罗雪, 晏军莲, 任红. 从肠道菌群角度探讨非酒精性脂肪性肝病的研究进展[J]. 临床医学进展, 2025, 15(3): 477-490. https://doi.org/10.12677/acm.2025.153639

1. 引言

非酒精性脂肪性肝病是遗传易感个体由于营养过剩、胰岛素抵抗引起的慢性进展性肝病,以肝细胞发生脂质沉积、脂肪变性为主要病理变化的一种慢性肝病,按其发病进程通常包括单纯性脂肪变性、非酒精性脂肪性肝炎(non-alco‐ holic steatohepatitis, NASH),再到更晚期的疾病,包括晚期纤维化和肝硬化,最终可导致肝细胞癌、肝衰竭和死亡[1]-[4],除肝脏相关并发症外,NAFLD还增加了2型糖尿病(T2DM)、心血管和慢性肾脏疾病的风险[1]-[6]。既往有研究表明,过度氧化应激、炎症、肠屏障功能破坏、氧化和脂毒性脂质的蓄积、遗传因素以及固有免疫调节失衡可导致NAFLD的发生[7]-[12]。肠道菌群及其代谢物在疾病进展中有不可或缺的作用,肠道菌群失衡可以通过影响肠黏膜屏障完整性、炎症反应、菌群代谢物如短链脂肪酸(short chain fatty acids, SCFA)的生产、胆汁酸(Bile acids, Bas)代谢等多个途径参与肝脏脂质代谢及机体炎症免疫反应,最终促进NAFLD的发生发展[13]。肠道菌群及其代谢产物可通过门静脉进入肝脏,引起肝脏的炎症反应,影响肝脏的病理生理过程。本文将重点从肠道菌群的角度总结NAFLD的相关发病机制及治疗药物的研究进展,为靶向肠道菌群调节治疗NAFLD的药物研发提供参考。

2. 肠道菌群与NAFLD

人体肠道微生物主要包括细菌、古生菌、病毒和真菌等数以万亿计的微生物,其中肠道细菌是目前肠道微生态研究的主要对象。健康个体的肠道细菌以拟杆菌门和厚壁菌门最为丰富。其他不太普遍的分类群包括变形菌、疣状微生物、放线菌、梭菌和蓝细菌[14],肠道菌群通过参与宿主的能量代谢、炎症及免疫反应等多个方面影响人体健康[15] [16]。研究发现,肠道菌群失调在NAFLD疾病进展过程中起着关键的作用。肝脏主要通过门静脉连接到肠道,而肠–肝轴是肠道菌群和肝脏相互作用的主要机制[17]。一方面,肝脏中产生的生物活性物质,如胆汁酸和抗微生物分子,可以进入肠道调节肠道菌群的生长。另一方面,肠道微生物群的代谢产物可以随着门静脉循环进入肝脏,调节肝脏的功能。在NAFLD患者中,肠道菌群失调可引起肠上皮屏障的破坏及代谢紊乱发生,促使致病菌及内毒素通过门静脉进入肝脏,促进NAFLD发病的炎症过程和脂肪堆积[18] [19],此外,由于肝脏的功能失调,其分泌的生物活性物质发生改变,阻止了肠道生态系统的恢复,促进NAFLD进展的恶性循环。

肠道菌群的多样性在维持人类健康方面发挥着重要作用,而较低的α-多样性通常与炎症、肥胖和胰岛素抵抗有关[20]。Stuart Astbury等人发现,非酒精性脂肪性肝炎(NASH)患者的α-多样性较低,肝硬化患者的α-多样性进一步降低[21]。多项研究表明,NAFLD中肠杆菌科、拟杆菌门和梭杆菌门增加,瘤胃球菌、粪杆菌属和粪球菌属的相对丰度均下降[22]-[24]。肠道菌群组成在NAFLD进展过程中也发生了变化,Nicolas Lanthier等人的一项研究发现[25]:随着脂肪沉积和纤维化的开始,狭义梭菌的丰度显著降低。进一步的线性判别分析表明,大肠杆菌/志贺氏菌可能是纤维化的判别微生物。一项针对110例代谢相关性脂肪肝的研究证实[22]:大肠埃希菌与脂肪变性和坏死性炎症活性相关,而大肠埃希菌–志贺氏菌与纤维化和坏死性炎症活性相关。

3. 肠道菌群致病机制

3.1. 肠黏膜屏障损伤

肠黏膜屏障主要由机械、化学、微生物及免疫屏障组成,各屏障具有不同功能,相互作用,共同维持肠道稳态[26]。研究结果表明,肠屏障功能的改变,包括上皮、微生物、生物化学或免疫屏障相互作用调节的微小变化,可能导致代谢性疾病(包括NAFLD)的发生[18] [27]

正常情况下,保持稳定比例的肠道微生物可促进免疫系统的发育和成熟,并诱导局部产生抗菌肽和免疫球蛋白来维持维护肠道屏障的完整性[28]。肠道微生物群在食物发酵过程中产生的短链脂肪酸可激活肠结节样受体家族3结构域的炎症体,刺激IL-18的分泌[29],调节肠上皮细胞对细菌产物的耐受性[30],促进肠黏膜屏障的完整性。这类肠道微生物及其产物与肠道有益共生。

此外,已有研究证明Bas在维持肠黏膜屏障功能中有不可忽视的作用。Bas作为信号分子主要与FXR和TGR5两种Bas受体相互作用和调节,在维持肠黏膜屏障的稳态中发挥重要作用[31]。肝脏产生的Bas可通过作用于肠道上皮细胞产生抗菌肽等抑菌物质起到直接或间接抑制致病菌生长的作用。此外,BAs也可通过改变细菌群落结构直接而迅速地影响宿主代谢[32]。既往有研究表明,熊脱氧胆酸可以促进厚壁菌门与拟杆菌门的比例正常化并刺激富含胆盐水解酶(bilesalthydrolase, BSH)的细菌的生长来改善肠道微生物群的失衡[33]。在肝肠循环过程中,Bas可激活核受体FXR诱导肠道保护基因表达,并通过破坏细菌细胞膜抑制细菌过度生长和黏膜损伤[34]。成纤维细胞生长因子19 (fibroblast growth factor 19, FGF19)可由FXR调控其在肠道中的表达,FXR-FGF19轴的激活通过恢复正常的Bas库来调节肠道微生物群[35]。肠道微生物群也可以通过生成多种消化酶来调节Bas的合成和运输,进一步影响Bas介导的消化、吸收、信号传导等功能,进而对肠道微生物屏障进行调节。例如肠道微生物群中的BSH可降低肠道FXR拮抗剂牛磺-β-鼠胆酸(tauro-β-muricholicacid, T-βMCA)的表达,从而调节Bas代谢[36]

在NAFLD患者中,肝损伤可能引起肠黏膜缺血缺氧、肠动力障碍,有时可能伴随胆汁酸(Bas)排泄障碍,这些因素使得肠道细菌清除及排空减少,结肠菌群上移,最终导致共生菌群多样性降低,肠杆菌科、梭杆菌门等机会致病菌增加。饮食或环境变化(如高热量摄入或饮酒)也会导致肠道菌群的破坏(生态失调) [37]。例如,肥胖或NAFLD患者肠道细菌革兰氏阴性菌的数量显著增加,并表现出明显的内毒素血症[38]。此外,在肠道菌群失调时,SCFA生成减少,肠道中TNF-α、IL-1β的含量显著上升,干扰肠黏膜紧密连接。肠道菌群失调产生的内源性乙醇影响黏蛋白糖基化,直接破坏肠黏液层[39]。中间产物乙醛破坏肠黏膜紧密连接[40]。肠道菌群失调导致肠黏膜生物屏障受损,加重肠道通透性及全身炎症反应,促进NAFLD进展。

3.2. 模式识别受体和病原体相关分子模式

模式识别受体(PRRs)识别病原体相关分子模式(PAMPs)及受损组织中的损伤相关分子模式(DAMPs)并随后激活先天性和适应性免疫的概念已在1989年描述[41]。PAMPs通常是外源性的微生物产物,例如脂多糖(LPS)、肽聚糖(PGN)、细菌DNA和病毒双链RNA (dsRNA),是微生物生存的重要组成部分。DAMPs主要来源于受损和/或垂死细胞释放的内源性产物,组织损伤碎片和能量代谢物[42]。肠道菌群失调损伤肠黏膜屏障,其可生成PAMPs通过肠–肝循环进入血液,促进肝脏损伤,而肝细胞受损生成的DAMPs也会进入循环,肝脏作为免疫器官,通过PRRs来识别循环和微环境中的PAMPs和DAMPs以对抗感染或损伤[43] [44]。有研究分别对NAFLD患者及高脂饮食诱导的NASH小鼠进行肝脏活检和血清检测,结果发现实验组的血清及肝组织的LPS和炎症因子(IL-1, IL-6, TNF-α)水平均高于正常对照组[45]。高脂饮食不仅会改变肠道菌群平衡,进一步损害肠道屏障完整性和肠道血管屏障,促进细菌产物如脂多糖(lipopolysaccharide, LPS)、乙醇及三甲胺等通过门静脉进入肝脏,加剧肝脏炎症和代谢异常[46],还能促使脂质在肝脏中的积累,导致肝细胞损伤,产生DAMPs被PRRs识别,以激活炎性信号传导分子并介导肝脏炎症,促进NFALD的发展[43]

目前已经发现的模式识别受体主要有6种[47] [48]:TLRs、C型凝集素样受体(C-type lectin-like receptors, CLRs)、NLRs、维甲酸诱导基因样受体(retinoic acid inducible gene I-like receptors, RLRs)、AIM2样受体(absent in melanoma 2-like receptors, ALRs)、环鸟苷酸–腺苷酸合成酶(cyclic GMP-AMP synthase, cGAS)。与肠道菌群所致炎症反应有关的PRRs主要是TLRs和NLRs,本文着重介绍这两种PRRs。

3.2.1. TLRs

越来越多的证据表明TLRs与NAFLD进展之间存在关联。迄今为止,已在哺乳动物中鉴定了13种功能性TLRs,在人类中鉴定了10种已知的TLRs (TLR1~TLR10) [49]。PAMPs (LPS、蛋白、聚糖和核酸等)可激活TLRs信号转导,刺激免疫细胞产生炎症因子和共刺激分子[50] [51]。TLRs信号转导涉及髓系分化因子(MyD88)依赖性信号转导通路和MyD88非依赖性信号转导通路。在Myd88依赖性通路中,在与其相应配体结合后,除TLR3外,所有TLRs成员均通过MyD88转导信号,诱导级联反应,导致NF-κB (nuclear factor kappa-B)活化,并导致多种促炎细胞因子的产生,包括肿瘤坏死因子-α (TNF-α)和白细胞介素6 (IL-6) [52]。在MyD88非依赖性信号传导途径中,TLR3、TLR4和TLR5使用含Toll/IL-1R结构域的衔接子诱导IFN-β (TRIF)作为激活剂来介导下游信号,这也被称为TRIF依赖性途径[49] [53]。TRIF对TNF受体相关因子3 (TRAF3)的募集起重要作用。一旦被刺激,TRAF3募集IKK相关激酶,TRAF家族成员相关NF-κB结合激酶(TBK1)和IKKI的激活导致干扰素调节因子3 (IRF3)激活、二聚化和易位至细胞核,进而激活干扰素(IFN)诱导的基因表达,并导致炎症介质的释放。TRIF也可以通过其TRAF6结合基序直接结合TRAF6。然后TRAF6以类似于MyD88依赖性途径的方式激活转化生长因子β-活化激酶1 (TAK1),最终激活NF-κB和诱导炎性细胞因子。

有研究表明TLR1、TLR2、TLR4、TLR5、TLR9与NAFLD的发生发展密切相关[54] [55]。TLR1分布广泛,识别与肠道菌群密切相关的细菌三酰化脂肽和脂蛋白[55] [56]。肠道细菌多样性减少、肠道菌群失调可促进NAFLD的进展,在NAFLD的发展过程中,TLR1的表达与有害细菌Holdemanella属的丰度呈显著正相关,且与有益细菌的丰度呈显著负相关关系[56]。TLR2通过MyD88依赖途径与NOL1和NOL2共同识别PAMPs (肽聚糖(peptidoglycan,PGN)、脂磷壁酸(lipoteichoic acid, LTA)、脂阿拉伯甘露聚糖(lipoarabinomannan, LAM)、脂蛋白及脂肽等多种菌体成份);有研究发现,微塑料(MP)破坏肠道菌群的稳态,激活肝脏中的TLR2/NF-κB/NLRP3通路,从而促进肝损伤[57]。TLR4是最早发现的TLRs受体,其参与肝脂肪变性、肝纤维化和肝纤维化。LPS (脂多糖)是TLR4的经典配体,LPS是革兰阴性细菌死亡后细胞壁分解的产物,通过脂蛋白运载进入肠道毛细血管,最终汇入门静脉,肝脏是LPS的首个靶器官,LPS通过LPS结合蛋白(LBP)-CD14复合物诱导肝损伤,进而激活TLR4,触发炎症级联反应[58]并增加肠道通透性[59]。TLR4可与髓样分化蛋白2 (MD2)相互作用,并识别LPS以激活MyD88依赖性NF-κB和MAPK通路,从而诱导促炎细胞因子产生[60] [61]。此外,TLR4还可通过MyD88非依赖性信号传导途径,激活TRAF3和TRAF6,引发Ⅰ型干扰素反应及刺激NF-κB引起炎症反应[51]。TLR5识别革兰氏阴性菌中的鞭毛蛋白,在小鼠体内研究表明,鞭毛蛋白通过血管粘附蛋白1 (VAP-1)起作用,诱导肝脏脂肪变性。VAP-1是一种促炎蛋白,也参与内脏脂肪组织中细菌脂多糖诱导的炎症和脂解[62]。这反过来又促进了肝脏脂肪的积累[63]。最近的一项研究表明,大肠杆菌通过鞭毛蛋白介导的TLR5/NF-κB依赖性激活促进肝窦内皮细胞(LSEC)中MASLD的发生和内皮–间充质转化[64]。TLR9存在于细胞内的囊泡中,很少存在于细胞膜上[65]。主要识别并结合细菌DNA中的未甲基化胞嘧啶–磷酸–鸟嘌呤(CpG岛),通过MyD88依赖途径触发信号级联,导致促炎性细胞因子应答[66]。TLR9也可以被NAFLD患者血浆中高浓度肝细胞来源的线粒体DNA (mtDNA)激活,mtDNA可通过TLR9激活先天免疫系统,最终导致脂肪性肝炎、纤维化和胰岛素抵抗的发生[67] [68]

3.2.2. NLRs

主要位于免疫细胞、上皮细胞、巨噬细胞和中性粒细胞的细胞质中,在免疫防御中起着重要作用。在人类中共确定了23个NLR成员[69],NLR分为四个亚组,包括NLRA,NLRB,NLRC和NLRP (含pyrin结构域蛋白) [70]。NLRC和NLRP是参与由病原体入侵期间细胞稳态破坏引起的炎症的关键受体。NOD1和NOD2属于NLRC亚群,可识别所有革兰阴性细菌和部分革兰阳性细菌表面的PGN中的不同结构模体,引发炎症反应。NLRP6在调节先天免疫和宿主防御中发挥关键作用[71] [72],它可与ASC和caspase-1组装形成炎症小体,从而促进IL-18和IL-1β的成熟和分泌,并诱导细胞凋亡[73] [74],致肠源性内毒素生成增多,形成内毒素血症,加重肝脏损伤。有研究也揭示了NLRP6基因缺失小鼠肠道植物群的改变与代谢性疾病之间的相关性,NLRP6缺乏可通过TLR4和TLR9激动剂流入门静脉循环改变肠道菌群的组成[75]。微生物调节的代谢产物通过调节NLRP6炎性体信号传导来塑造肠道微环境[73],NLRP6可维持肠道环境的稳态和肠道植物群的组成,可有效防止MASLD发展为MASH,甚至降低MASLD的发生率[76]

3.3. 肠道菌群与代谢

3.3.1. SCFAs

短链脂肪酸(SCFAs)是肠道菌群发酵膳食纤维的主要代谢产物,其中乙酸(C2)、丙酸(C3)和丁酸(C4)是肠道中含量最高的SCFAs。SCFAs在机体代谢和免疫调节方面发挥着重要作用,如促进结肠蠕动、保护肠粘膜屏障、改变糖和脂代谢、参与免疫调节、改善电解质和营养素的吸收以及抗炎和抗肿瘤活性等[77]。其中,丁酸作为胃肠道微生物群的主要代谢底物,在肠屏障的功能中起着至关重要的作用[78]。丁酸抑制ChREBP和SREBP-1的活化,导致脂肪生成抑制[79]。动物体内研究表明,丁酸盐能通过激活过氧化物酶体增殖物激活受体α (peroxisome proliferatorsactivated receptor α, PPARα)、抑制肝脏炎症和增强胰高糖素样肽1受体(glucagon-like peptide-1 receptor, GLP-1R)的表达来改善高脂饮食诱导的NAFLD和NASH进程[80] [81]。丙酸可减少超重和肥胖患者中的脂质积累[82]。血清代谢组学显示NAFLD患者血清中丁酸盐和丙酸盐水平降低[83] [84],而加用富含产丙酸盐及丁酸盐的益生菌或膳食纤维,减少肝脏脂质积累和炎症反应,并改善肝脏胰岛素抵抗[30] [85] [86]

3.3.2. 胆汁酸(Bas)代谢

肠道内的微生物群可以通过化学作用改变胆汁酸池的组成,进一步影响NAFLD [87]。胆汁酸是胆固醇在肝脏中合成,可分为初级和次级胆汁酸。法尼醇X受体(FXR)是核受体的超家族成员,其主要功能是调节胆汁酸代谢和肠肝循环。肠道菌群可激活FXR而间接影响胆汁酸的代谢[88],FXR可以下调肝脏X受体(LXR)和神经酰胺和固醇调节元件结合蛋白(SREBP-1c)的表达,以减少肝脏中脂肪酸和甘油三酯的合成,进一步减少脂肪生成和糖异生。FXR还可激活成纤维细胞生长因子(FGF)15/19、PPARg、GLUT-4和GLP1上调肝糖原合成,增加胰岛素的敏感性[89] [90]。既往有研究表明,肠道微生物可直接作用于BAs,如产生胆汁盐水解酶(BSH)的细菌,BSH可促使结合胆汁酸解偶联,导致偶联BA水平降低,而偶联BA可激活肠道FXR表达并促进肝脏脂肪变性[91]

宿主胆汁酸反过来也能影响微生物的组成[92]。初级胆汁酸(PBAs)不仅通过直接抑制病原菌的过度生长来维持肠道菌群的稳态,还可作为肠道FXR的激动剂,激活其在回肠粘膜中的下游防御基因,保护肠上皮细胞免受细菌和微生物的破坏[93]。FXR调控成纤维细胞生长因子19 (FGF19)在肠道中的表达,FXR-FGF19轴的激活可以恢复正常的BAs库来进一步调节肠道微生物群[35]

3.3.3. 胆碱及其衍生物

胆碱及其衍生物,如TMA和TMAO,是肠内微生物的主要代谢物[94]。含有甲胺、胆碱、磷脂酰胆碱和肉毒碱的食物将被变形菌和厚壁菌中三甲胺裂解酶的分解代谢分解成包括TMA的各种代谢物[95]。TMA通过门静脉转移到肝脏,并被含黄素的单加氧酶转化为TMAO,TMAO可上调固醇调节元件结合蛋白1c (sterol regulatory element binding protein-1c, SREBP-1c)的表达,SREBP-1c可促进甘油三酯(triacylglycerol, TG)合成,加重肝脏脂肪变性[96]。与健康个体相比,NAFLD患者的血清TMA、TMAO和胆碱水平显著升高[97]-[100]。有研究表明慢性暴露于高浓度的TMAO似乎与血管损伤和多种情况下纤维化倾向增强有关,包括代谢功能障碍相关脂肪性肝病、慢性肾病、心力衰竭等疾病[101]。此外TMAO可通过减少胆固醇转化为胆汁酸来影响脂质代谢和胆固醇稳态[102],所以减少高胆碱食物摄入、抑制TMA的产生均能抑制或改善NAFLD。

4. 治疗

4.1. 益生菌类制剂

近年来的研究显示肠道菌群失调与肝脏疾病密切相关[103],因此通过益生菌、益生元、合生元类药物用以维持肠道内环境稳定是治疗NAFLD可行的研究方向[104]。益生菌是一种能通过调节宿主黏膜与系统免疫功能,保持肠道健康的活性微生物[105]。益生元作为益生菌的营养成分和底物,如乳果糖、低聚果糖和菊粉,可以促进如双歧杆菌和乳酸杆菌等有益肠道细菌的活性和选择性地生长,不仅使有害菌比例减少,还能促进机体抵抗病原微生物的入侵。合生菌是益生菌和益生元的结合体。作为安全的食用益生菌,乳酸杆菌和双歧杆菌不仅可以降低血液胆固醇水平[106],还能改善肠炎症微环境,促进肠上皮细胞的生长和生存,并通过调节免疫系统和宿主防御来抑制病原菌[107]。一项meta分析表明,益生菌还可以通过LPS/TLR4信号通路下调血清LPS和肝脏TLR4从而延缓NAFLD的进展[108]。针对NAFLD患者,通过补充肠道内的益生菌、益生元可以减少肝损伤,并可能改善肝功能[109]

4.2. 抗生素

抗生素有助于减少有害微生物过度增殖和细菌易位、减轻细菌肠道负担,延缓肝病进展[110],一项研究表明,利福昔明有效缓解MCD饮食诱导的NASH,逆转了菌群失调和肠道屏障功能障碍[111]。最近的一项研究表明,乳酸乳球菌素能够在减轻肠炎的同时将肠道和肝脏微生物组转变为与健康相称的新状态[112]。此外,索利霉素是一种高效抗生素,通过恢复肝功能和靶向肠道微生物组有益于NAFLD的恢复[113] [114];多粘菌素B和新霉素的组合减少了饮食诱导的NAFLD小鼠的脂质积累并改善了肠道屏障[115]。近年来,噬菌体疗法作为一种新的抗微生物剂受到了极大的关注。比如之前有研究表明,用噬菌体靶向根除HiAlc-Kpn有效地减轻了NAFLD模型小鼠中的细菌性自身免疫综合征和NASH [116]

4.3. 菌群移植

肠道菌群移植可能是抗NAFLD的一种新的治疗策略,有研究表明标准饮食小鼠的肠道菌群通过粪便微生物移植(FMT)至NASH小鼠肠道后,肠屏障功能较前改善,NASH小鼠肠道菌群结构发生了明显改变,LPS减少内毒素释放导致的炎症反应,肠道内有益菌群的丰度有所增加[117]。一项随机对照试验表明,FMT可以通过改善肠道菌群失调来减少肝脏中的脂肪堆积,从而减轻脂肪肝疾病[118]。一项对21名的NAFLD患者进行纯素同种异体供体或自体FMT 的研究中发现,与自体FMT相比,纯素同种异体供体FMT诱导了肠道微生物群谱的明显差异变化,包括锡拉真杆菌和潜在的益生菌韦氏白僵菌[119]表明同种异体FMT 更有益于对抗NAFLD。因此,肠道菌群的移植可能成为预防和治疗NAFLD的新策略。

4.4. 其他

胰高血糖素样肽1 (GLP-1)能够诱导胰岛素分泌,GLP-1类似物或受体激动剂已被批准用于治疗 T2DM和肥胖症。利拉鲁肽是一种GLP-1类似物,可降低HFD诱导的NAFLD小鼠的炎症和脂肪堆积,并使血糖参数和肠道微生物群组成正常化[120]。有研究证明,每日摄入维生素C后,NAFLD患者的肝功能、胰岛素敏感性和肠道微生物群多样性增加[121]。小檗碱(BBR, C20H18NO4)是一种主要从植物中提取的含氮天然碱性有机化合物,BBR的功能包括降脂、调节代谢紊乱和增强胰岛素敏感性[122],有研究证明,BBR直接影响肠道微生物群来调节脂质代谢[123]-[126]。槲皮素是一种多酚类黄酮,具有抗细胞凋亡、抗氧化、抗炎和抗癌活性,其通过toll样受体4/NF-κB信号通路恢复脂质代谢和肠道菌群平衡[127]。四妙方由黄柏、苍术、薏苡仁、牛膝按照质量比2∶1∶2∶1组成,具有清热利湿功效其显著改变了肠道菌群的组成和丰度,尤其是增加Akkermansia muciniphila的丰度特别明显[128]

5. 总结与展望

随着人类生活方式的改变,NAFLD发病率呈上升趋势,已成了发达国家慢性肝脏疾病的最常见的病因。但目前对于NAFLD的发病机制尚未完全了解,目前尚无正式获批的治疗药物。肠道菌群是近年来的研究热点,其与NAFLD的发病、进展及治疗有密不可分的联系。肠道菌群及其代谢产物可以通过改变肠道的免疫状态,进一步增加肠道通透性,引起肝脏的炎症反应,肠道微生物群有望成为NAFLD的新型生物标志物和治疗靶点。重建肠道微生态平衡可以延缓NAFLD病变进展,益生菌类制剂、抗生素治疗和粪便移植,已成为预防和治疗NAFLD的新策略。一些批准用于治疗糖尿病的药物及一些具有抗氧化、抗炎作用的维生素被创新性地用于研究治疗NAFLD;中西医结合对于防治NAFLD亦具有巨大优势与广阔前景。而NAFLD发病机制复杂,未来有必要结合肠道基因组学、代谢组学和蛋白质组学等对肠道微生物、菌群代谢产物和影响疾病的分子机制之间的关系进行深入研究,而16S rRNA测序、代谢组学和宏基因组学等技术的快速发展使得能够在与NAFLD相关的众多临床研究中识别微生物组特征、肠道微生物源性代谢物谱的改变以及微生物基因及组成,对建立以肠道菌群或其代谢物为靶点的NAFLD治疗策略具有重要意义,为治疗NAFLD提供更多的新方法、新思路。

NOTES

*通讯作者。

参考文献

[1] (2018) Guidelines of Prevention and Treatment for Nonalcoholic Fatty Liver Disease: A 2018 Update. Chinese Journal of Hepatology, 26, 195-203.
[2] Rinella, M.E., Neuschwander-Tetri, B.A., Siddiqui, M.S., Abdelmalek, M.F., Caldwell, S., Barb, D., et al. (2023) AASLD Practice Guidance on the Clinical Assessment and Management of Nonalcoholic Fatty Liver Disease. Hepatology, 77, 1797-1835.
https://doi.org/10.1097/hep.0000000000000323
[3] White, L., Fishman, P., Basu, A., Crane, P.K., Larson, E.B. and Coe, N.B. (2019) Medicare Expenditures Attributable to Dementia. Health Services Research, 54, 773-781.
https://doi.org/10.1111/1475-6773.13134
[4] 骆雪, 王曦. 冠心病合并非酒精性脂肪肝患者心肺运动试验特点[J]. 临床心血管病杂志, 2023, 39(2): 145-149.
[5] Duell, P.B., Welty, F.K., Miller, M., Chait, A., Hammond, G., Ahmad, Z., et al. (2022) Nonalcoholic Fatty Liver Disease and Cardiovascular Risk: A Scientific Statement from the American Heart Association. Arteriosclerosis, Thrombosis, and Vascular Biology, 42, e168-e185.
https://doi.org/10.1161/atv.0000000000000153
[6] Sun, D., Targher, G., Byrne, C.D., Wheeler, D.C., Wong, V.W., Fan, J., et al. (2023) An International Delphi Consensus Statement on Metabolic Dysfunction-Associated Fatty Liver Disease and Risk of Chronic Kidney Disease. Hepatobiliary Surgery and Nutrition, 12, 386-403.
https://doi.org/10.21037/hbsn-22-421
[7] Marušić, M., Paić, M., Knobloch, M. and Liberati Pršo, A. (2021) NAFLD, Insulin Resistance, and Diabetes Mellitus Type 2. Canadian Journal of Gastroenterology and Hepatology, 2021, Article ID: 6613827.
https://doi.org/10.1155/2021/6613827
[8] Tilg, H., Moschen, A.R. and Roden, M. (2016) NAFLD and Diabetes Mellitus. Nature Reviews Gastroenterology & Hepatology, 14, 32-42.
https://doi.org/10.1038/nrgastro.2016.147
[9] Samuel, V.T. and Shulman, G.I. (2019) Nonalcoholic Fatty Liver Disease, Insulin Resistance, and Ceramides. New England Journal of Medicine, 381, 1866-1869.
https://doi.org/10.1056/nejmcibr1910023
[10] Petta, S., Miele, L., Bugianesi, E., Cammà, C., Rosso, C., Boccia, S., et al. (2014) Glucokinase Regulatory Protein Gene Polymorphism Affects Liver Fibrosis in Non-Alcoholic Fatty Liver Disease. PLOS ONE, 9, e87523.
https://doi.org/10.1371/journal.pone.0087523
[11] Ratziu, V., Giral, P., Charlotte, F., Bruckert, E., Thibault, V., Theodorou, I., et al. (2000) Liver Fibrosis in Overweight Patients. Gastroenterology, 118, 1117-1123.
https://doi.org/10.1016/s0016-5085(00)70364-7
[12] Dam-Larsen, S., Becker, U., Franzmann, M., Larsen, K., Christoffersen, P. and Bendtsen, F. (2009) Final Results of a Long-Term, Clinical Follow-Up in Fatty Liver Patients. Scandinavian Journal of Gastroenterology, 44, 1236-1243.
https://doi.org/10.1080/00365520903171284
[13] Albillos, A., de Gottardi, A. and Rescigno, M. (2020) The Gut-Liver Axis in Liver Disease: Pathophysiological Basis for Therapy. Journal of Hepatology, 72, 558-577.
https://doi.org/10.1016/j.jhep.2019.10.003
[14] Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G.A.D., Gasbarrini, A., et al. (2019) What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 7, 14.
https://doi.org/10.3390/microorganisms7010014
[15] Boursier, J., Mueller, O., Barret, M., Machado, M., Fizanne, L., Araujo‐Perez, F., et al. (2016) The Severity of Nonalcoholic Fatty Liver Disease Is Associated with Gut Dysbiosis and Shift in the Metabolic Function of the Gut Microbiota. Hepatology, 63, 764-775.
https://doi.org/10.1002/hep.28356
[16] Morais, L.H., Schreiber, H.L. and Mazmanian, S.K. (2020) The Gut Microbiota-Brain Axis in Behaviour and Brain Disorders. Nature Reviews Microbiology, 19, 241-255.
https://doi.org/10.1038/s41579-020-00460-0
[17] Proctor, L.M., Creasy, H.H., Fettweis, J.M., Lloyd-Price, J., Mahurkar, A., Zhou, W., et al. (2019) The Integrative Human Microbiome Project. Nature, 569, 641-648.
https://doi.org/10.1038/s41586-019-1238-8
[18] Tilg, H., Adolph, T.E. and Trauner, M. (2022) Gut-Liver Axis: Pathophysiological Concepts and Clinical Implications. Cell Metabolism, 34, 1700-1718.
https://doi.org/10.1016/j.cmet.2022.09.017
[19] Rebelos, E., Iozzo, P., Guzzardi, M.A., Brunetto, M.R. and Bonino, F. (2021) Brain-Gut-Liver Interactions across the Spectrum of Insulin Resistance in Metabolic Fatty Liver Disease. World Journal of Gastroenterology, 27, 4999-5018.
https://doi.org/10.3748/wjg.v27.i30.4999
[20] Tett, A., Pasolli, E., Masetti, G., Ercolini, D. and Segata, N. (2021) Prevotella Diversity, Niches and Interactions with the Human Host. Nature Reviews Microbiology, 19, 585-599.
https://doi.org/10.1038/s41579-021-00559-y
[21] Astbury, S., Atallah, E., Vijay, A., Aithal, G.P., Grove, J.I. and Valdes, A.M. (2019) Lower Gut Microbiome Diversity and Higher Abundance of Proinflammatory Genus Collinsella Are Associated with Biopsy-Proven Nonalcoholic Steatohepatitis. Gut Microbes, 11, 569-580.
https://doi.org/10.1080/19490976.2019.1681861
[22] Cornejo-Pareja, I., Amiar, M.R., Ocaña-Wilhelmi, L., Soler-Humanes, R., Arranz-Salas, I., Garrido-Sánchez, L., et al. (2024) Non-alcoholic Fatty Liver Disease in Patients with Morbid Obesity: The Gut Microbiota Axis as a Potential Pathophysiology Mechanism. Journal of Gastroenterology, 59, 329-341.
https://doi.org/10.1007/s00535-023-02075-7
[23] Huang, F., Lyu, B., Xie, F., Li, F., Xing, Y., Han, Z., et al. (2024) From Gut to Liver: Unveiling the Differences of Intestinal Microbiota in NAFL and NASH Patients. Frontiers in Microbiology, 15, Article 1366744.
https://doi.org/10.3389/fmicb.2024.1366744
[24] Cai, W., Qiu, T., Hu, W. and Fang, T. (2024) Changes in the Intestinal Microbiota of Individuals with Non-Alcoholic Fatty Liver Disease Based on Sequencing: An Updated Systematic Review and Meta-Analysis. PLOS ONE, 19, e0299946.
https://doi.org/10.1371/journal.pone.0299946
[25] Lanthier, N., Rodriguez, J., Nachit, M., Hiel, S., Trefois, P., Neyrinck, A.M., et al. (2021) Microbiota Analysis and Transient Elastography Reveal New Extra-Hepatic Components of Liver Steatosis and Fibrosis in Obese Patients. Scientific Reports, 11, Article No. 659.
https://doi.org/10.1038/s41598-020-79718-9
[26] Cerqueira César Machado, M. and Pinheiro da Silva, F. (2016) Intestinal Barrier Dysfunction in Human Pathology and Aging. Current Pharmaceutical Design, 22, 4645-4650.
https://doi.org/10.2174/1381612822666160510125331
[27] Tilg, H., Zmora, N., Adolph, T.E. and Elinav, E. (2019) The Intestinal Microbiota Fuelling Metabolic Inflammation. Nature Reviews Immunology, 20, 40-54.
https://doi.org/10.1038/s41577-019-0198-4
[28] Britanova, L. and Diefenbach, A. (2017) Interplay of Innate Lymphoid Cells and the Microbiota. Immunological Reviews, 279, 36-51.
https://doi.org/10.1111/imr.12580
[29] Macia, L., Tan, J., Vieira, A.T., Leach, K., Stanley, D., Luong, S., et al. (2015) Metabolite-Sensing Receptors GPR43 and GPR109A Facilitate Dietary Fibre-Induced Gut Homeostasis through Regulation of the Inflammasome. Nature Communications, 6, Article No. 6734.
https://doi.org/10.1038/ncomms7734
[30] Morrison, D.J. and Preston, T. (2016) Formation of Short Chain Fatty Acids by the Gut Microbiota and Their Impact on Human Metabolism. Gut Microbes, 7, 189-200.
https://doi.org/10.1080/19490976.2015.1134082
[31] Shi, L., Jin, L. and Huang, W. (2023) Bile Acids, Intestinal Barrier Dysfunction, and Related Diseases. Cells, 12, Article 1888.
https://doi.org/10.3390/cells12141888
[32] Tian, Y., Gui, W., Koo, I., Smith, P.B., Allman, E.L., Nichols, R.G., et al. (2020) The Microbiome Modulating Activity of Bile Acids. Gut Microbes, 11, 979-996.
https://doi.org/10.1080/19490976.2020.1732268
[33] Ovadia, C., Perdones-Montero, A., Fan, H.M., Mullish, B.H., McDonald, J.A.K., Papacleovoulou, G., et al. (2020) Ursodeoxycholic Acid Enriches Intestinal Bile Salt Hydrolase-Expressing Bacteroidetes in Cholestatic Pregnancy. Scientific Reports, 10, Article No. 3895.
https://doi.org/10.1038/s41598-020-60821-w
[34] Inagaki, T., Moschetta, A., Lee, Y., Peng, L., Zhao, G., Downes, M., et al. (2006) Regulation of Antibacterial Defense in the Small Intestine by the Nuclear Bile Acid Receptor. Proceedings of the National Academy of Sciences of the United States of America, 103, 3920-3925.
https://doi.org/10.1073/pnas.0509592103
[35] Di Ciaula, A., Bonfrate, L., Baj, J., Khalil, M., Garruti, G., Stellaard, F., et al. (2022) Recent Advances in the Digestive, Metabolic and Therapeutic Effects of Farnesoid X Receptor and Fibroblast Growth Factor 19: From Cholesterol to Bile Acid Signaling. Nutrients, 14, Article 4950.
https://doi.org/10.3390/nu14234950
[36] Chiang, J.Y.L. and Ferrell, J.M. (2020) Bile Acid Receptors FXR and TGR5 Signaling in Fatty Liver Diseases and Therapy. American Journal of Physiology-Gastrointestinal and Liver Physiology, 318, G554-G573.
https://doi.org/10.1152/ajpgi.00223.2019
[37] Hsu, C.L. and Schnabl, B. (2023) The Gut-Liver Axis and Gut Microbiota in Health and Liver Disease. Nature Reviews Microbiology, 21, 719-733.
https://doi.org/10.1038/s41579-023-00904-3
[38] Li, Q., Rempel, J.D., Yang, J. and Minuk, G.Y. (2022) The Effects of Pathogen-Associated Molecular Patterns on Peripheral Blood Monocytes in Patients with Non-Alcoholic Fatty Liver Disease. Journal of Clinical and Experimental Hepatology, 12, 808-817.
https://doi.org/10.1016/j.jceh.2021.11.011
[39] Wu, J., Lu, A.D., Zhang, L.P., Zuo, Y.X. and Jia, Y.P. (2019) Study of Clinical Outcome and Prognosis in Pediatric Core Binding Factor-Acute Myeloid Leukemia. Chinese Journal of Hematology, 40, 52-57.
[40] Xu, H., Xiong, J., Xu, J., Li, S., Zhou, Y., Chen, D., et al. (2017) Mosapride Stabilizes Intestinal Microbiota to Reduce Bacterial Translocation and Endotoxemia in CCL4-Induced Cirrhotic Rats. Digestive Diseases and Sciences, 62, 2801-2811.
https://doi.org/10.1007/s10620-017-4704-x
[41] Janeway, C.A. (1989) Approaching the Asymptote? Evolution and Revolution in Immunology. Cold Spring Harbor Symposia on Quantitative Biology, 54, 1-13.
https://doi.org/10.1101/sqb.1989.054.01.003
[42] Gong, T., Liu, L., Jiang, W. and Zhou, R. (2019) Damp-Sensing Receptors in Sterile Inflammation and Inflammatory Diseases. Nature Reviews Immunology, 20, 95-112.
https://doi.org/10.1038/s41577-019-0215-7
[43] Kemper, C. and Sack, M.N. (2022) Linking Nutrient Sensing, Mitochondrial Function, and PRR Immune Cell Signaling in Liver Disease. Trends in Immunology, 43, 886-900.
https://doi.org/10.1016/j.it.2022.09.002
[44] Huang, C., Zhou, Y., Cheng, J., Guo, X., Shou, D., Quan, Y., et al. (2023) Pattern Recognition Receptors in the Development of Nonalcoholic Fatty Liver Disease and Progression to Hepatocellular Carcinoma: An Emerging Therapeutic Strategy. Frontiers in Endocrinology, 14, Article 1145392.
https://doi.org/10.3389/fendo.2023.1145392
[45] Jones, N., Blagih, J., Zani, F., Rees, A., Hill, D.G., Jenkins, B.J., et al. (2021) Fructose Reprogrammes Glutamine-Dependent Oxidative Metabolism to Support LPS-Induced Inflammation. Nature Communications, 12, Article No. 1209.
https://doi.org/10.1038/s41467-021-21461-4
[46] Mouries, J., Brescia, P., Silvestri, A., Spadoni, I., Sorribas, M., Wiest, R., et al. (2019) Microbiota-Driven Gut Vascular Barrier Disruption Is a Prerequisite for Non-Alcoholic Steatohepatitis Development. Journal of Hepatology, 71, 1216-1228.
https://doi.org/10.1016/j.jhep.2019.08.005
[47] Li, D. and Wu, M. (2021) Pattern Recognition Receptors in Health and Diseases. Signal Transduction and Targeted Therapy, 6, Article No. 291.
https://doi.org/10.1038/s41392-021-00687-0
[48] Rumpret, M., von Richthofen, H.J., Peperzak, V. and Meyaard, L. (2021) Inhibitory Pattern Recognition Receptors. Journal of Experimental Medicine, 219, e20211463.
https://doi.org/10.1084/jem.20211463
[49] Fitzgerald, K.A. and Kagan, J.C. (2020) Toll-Like Receptors and the Control of Immunity. Cell, 180, 1044-1066.
https://doi.org/10.1016/j.cell.2020.02.041
[50] Wicherska-Pawłowska, K., Wróbel, T. and Rybka, J. (2021) Toll-Like Receptors (TLRs), Nod-Like Receptors (NLRs), and Rig-I-Like Receptors (RLRs) in Innate Immunity. TLRs, NLRs, and RLRs Ligands as Immunotherapeutic Agents for Hematopoietic Diseases. International Journal of Molecular Sciences, 22, Article 13397.
https://doi.org/10.3390/ijms222413397
[51] Kawai, T. and Akira, S. (2009) The Roles of TLRs, RLRs and NLRs in Pathogen Recognition. International Immunology, 21, 317-337.
https://doi.org/10.1093/intimm/dxp017
[52] Takeuchi, O. and Akira, S. (2010) Pattern Recognition Receptors and Inflammation. Cell, 140, 805-820.
https://doi.org/10.1016/j.cell.2010.01.022
[53] Yu, L. and Feng, Z. (2018) The Role of Toll-Like Receptor Signaling in the Progression of Heart Failure. Mediators of Inflammation, 2018, Article ID: 9874109.
https://doi.org/10.1155/2018/9874109
[54] Miura, K. (2014) Role of Gut Microbiota and Toll-Like Receptors in Nonalcoholic Fatty Liver Disease. World Journal of Gastroenterology, 20, 7381-7391.
https://doi.org/10.3748/wjg.v20.i23.7381
[55] Yu, J., Liu, X., Yang, N., Wang, B., Su, B., Fu, Q., et al. (2021) Characterization of Toll-Like Receptor 1 (TLR1) in Turbot (Scophthalmus maximus L.). Fish & Shellfish Immunology, 115, 27-34.
https://doi.org/10.1016/j.fsi.2021.05.018
[56] Baumann, A., Nier, A., Hernández-Arriaga, A., Brandt, A., Lorenzo Pisarello, M.J., Jin, C.J., et al. (2021) Toll-Like Receptor 1 as a Possible Target in Non-Alcoholic Fatty Liver Disease. Scientific Reports, 11, Article No. 17815.
https://doi.org/10.1038/s41598-021-97346-9
[57] Xu, R., Cao, J., Lv, H., Geng, Y. and Guo, M. (2024) Polyethylene Microplastics Induced Gut Microbiota Dysbiosis Leading to Liver Injury via the TLR2/NF-κB/NLRP3 Pathway in Mice. Science of The Total Environment, 917, Article ID: 170518.
https://doi.org/10.1016/j.scitotenv.2024.170518
[58] Wang, R., Tang, R., Li, B., Ma, X., Schnabl, B. and Tilg, H. (2020) Gut Microbiome, Liver Immunology, and Liver Diseases. Cellular & Molecular Immunology, 18, 4-17.
https://doi.org/10.1038/s41423-020-00592-6
[59] Nighot, M., Al-Sadi, R., Guo, S., Rawat, M., Nighot, P., Watterson, M.D., et al. (2017) Lipopolysaccharide-Induced Increase in Intestinal Epithelial Tight Permeability Is Mediated by Toll-Like Receptor 4/Myeloid Differentiation Primary Response 88 (MyD88) Activation of Myosin Light Chain Kinase Expression. The American Journal of Pathology, 187, 2698-2710.
https://doi.org/10.1016/j.ajpath.2017.08.005
[60] Shimazu, R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., Miyake, K., et al. (1999) MD-2, a Molecule That Confers Lipopolysaccharide Responsiveness on Toll-Like Receptor 4. The Journal of Experimental Medicine, 189, 1777-1782.
https://doi.org/10.1084/jem.189.11.1777
[61] Sharifnia, T., Antoun, J., Verriere, T.G.C., Suarez, G., Wattacheril, J., Wilson, K.T., et al. (2015) Hepatic TLR4 Signaling in Obese NAFLD. American Journal of Physiology-Gastrointestinal and Liver Physiology, 309, G270-G278.
https://doi.org/10.1152/ajpgi.00304.2014
[62] Toivonen, R., Vanhatalo, S., Hollmén, M., Munukka, E., Keskitalo, A., Pietilä, S., et al. (2021) Vascular Adhesion Protein 1 Mediates Gut Microbial Flagellin-Induced Inflammation, Leukocyte Infiltration, and Hepatic Steatosis. Sci, 3, Article 13.
https://doi.org/10.3390/sci3010013
[63] Salmi, M. and Jalkanen, S. (2019) Vascular Adhesion Protein-1: A Cell Surface Amine Oxidase in Translation. Antioxidants & Redox Signaling, 30, 314-332.
https://doi.org/10.1089/ars.2017.7418
[64] Shen, B., Gu, T., Shen, Z., Zhou, C., Guo, Y., Wang, J., et al. (2023) Escherichia Coli Promotes Endothelial to Mesenchymal Transformation of Liver Sinusoidal Endothelial Cells and Exacerbates Nonalcoholic Fatty Liver Disease via Its Flagellin. Cellular and Molecular Gastroenterology and Hepatology, 16, 857-879.
https://doi.org/10.1016/j.jcmgh.2023.08.001
[65] Takeshita, F., Leifer, C.A., Gursel, I., Ishii, K.J., Takeshita, S., Gursel, M., et al. (2001) Cutting Edge: Role of Toll-Like Receptor 9 in CPG DNA-Induced Activation of Human Cells. The Journal of Immunology, 167, 3555-3558.
https://doi.org/10.4049/jimmunol.167.7.3555
[66] Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., et al. (2000) A Toll-Like Receptor Recognizes Bacterial DNA. Nature, 408, 740-745.
https://doi.org/10.1038/35047123
[67] Jeong, S.W. (2020) Toll-like Receptor 9, a Possible Blocker of Non-Alcoholic Steatohepatitis? Clinical and Molecular Hepatology, 26, 185-186.
https://doi.org/10.3350/cmh.2020.0046
[68] Garcia-Martinez, I., Santoro, N., Chen, Y., Hoque, R., Ouyang, X., Caprio, S., et al. (2016) Hepatocyte Mitochondrial DNA Drives Nonalcoholic Steatohepatitis by Activation of TLR9. Journal of Clinical Investigation, 126, 859-864.
https://doi.org/10.1172/jci83885
[69] Ting, J.P. and Davis, B.K. (2005) Caterpiller: A Novel Gene Family Important in Immunity, Cell Death, and Diseases. Annual Review of Immunology, 23, 387-414.
https://doi.org/10.1146/annurev.immunol.23.021704.115616
[70] Schroder, K. and Tschopp, J. (2010) The Inflammasomes. Cell, 140, 821-832.
https://doi.org/10.1016/j.cell.2010.01.040
[71] Levy, M., Shapiro, H., Thaiss, C.A. and Elinav, E. (2017) NLRP6: A Multifaceted Innate Immune Sensor. Trends in Immunology, 38, 248-260.
https://doi.org/10.1016/j.it.2017.01.001
[72] Wang, P., Zhu, S., Yang, L., Cui, S., Pan, W., Jackson, R., et al. (2015) NLRP6 Regulates Intestinal Antiviral Innate Immunity. Science, 350, 826-830.
https://doi.org/10.1126/science.aab3145
[73] Levy, M., Thaiss, C.A., Zeevi, D., Dohnalová, L., Zilberman-Schapira, G., Mahdi, J.A., et al. (2015) Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling. Cell, 163, 1428-1443.
https://doi.org/10.1016/j.cell.2015.10.048
[74] Hara, H., Seregin, S.S., Yang, D., Fukase, K., Chamaillard, M., Alnemri, E.S., et al. (2018) The NLRP6 Inflammasome Recognizes Lipoteichoic Acid and Regulates Gram-Positive Pathogen Infection. Cell, 175, 1651-1664.e14.
https://doi.org/10.1016/j.cell.2018.09.047
[75] Henao-Mejia, J., Elinav, E., Jin, C., Hao, L., Mehal, W.Z., Strowig, T., et al. (2012) Inflammasome-Mediated Dysbiosis Regulates Progression of NAFLD and Obesity. Nature, 482, 179-185.
https://doi.org/10.1038/nature10809
[76] Schneider, K.M., Mohs, A., Gui, W., Galvez, E.J.C., Candels, L.S., Hoenicke, L., et al. (2022) Imbalanced Gut Microbiota Fuels Hepatocellular Carcinoma Development by Shaping the Hepatic Inflammatory Microenvironment. Nature Communications, 13, Article No. 3964.
https://doi.org/10.1038/s41467-022-31312-5
[77] Rauf, A., Khalil, A.A., Rahman, U., Khalid, A., Naz, S., Shariati, M.A., et al. (2021) Recent Advances in the Therapeutic Application of Short-Chain Fatty Acids (SCFAs): An Updated Review. Critical Reviews in Food Science and Nutrition, 62, 6034-6054.
https://doi.org/10.1080/10408398.2021.1895064
[78] Zhou, D., Chen, Y., Zhao, Z., Yang, R., Xin, F., Liu, X., et al. (2018) Sodium Butyrate Reduces High-Fat Diet-Induced Non-Alcoholic Steatohepatitis through Upregulation of Hepatic GLP-1R Expression. Experimental & Molecular Medicine, 50, 1-12.
https://doi.org/10.1038/s12276-018-0183-1
[79] Park, J., Kotani, T., Konno, T., Setiawan, J., Kitamura, Y., Imada, S., et al. (2016) Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids. PLOS ONE, 11, e0156334.
https://doi.org/10.1371/journal.pone.0156334
[80] Xu, H., Huang, H., Xu, J., He, J., Zhao, C., Peng, Y., et al. (2021) Cross-Talk between Butyric Acid and Gut Microbiota in Ulcerative Colitis Following Fecal Microbiota Transplantation. Frontiers in Microbiology, 12, Article 658292.
https://doi.org/10.3389/fmicb.2021.658292
[81] Del Chierico, F., Nobili, V., Vernocchi, P., Russo, A., De Stefanis, C., Gnani, D., et al. (2016) Gut Microbiota Profiling of Pediatric Nonalcoholic Fatty Liver Disease and Obese Patients Unveiled by an Integrated Meta‐Omics‐Based Approach. Hepatology, 65, 451-464.
https://doi.org/10.1002/hep.28572
[82] Canfora, E.E., van der Beek, C.M., Jocken, J.W.E., Goossens, G.H., Holst, J.J., Olde Damink, S.W.M., et al. (2017) Colonic Infusions of Short-Chain Fatty Acid Mixtures Promote Energy Metabolism in Overweight/Obese Men: A Randomized Crossover Trial. Scientific Reports, 7, Article No. 2360.
https://doi.org/10.1038/s41598-017-02546-x
[83] Panasevich, M.R., Morris, E.M., Chintapalli, S.V., Wankhade, U.D., Shankar, K., Britton, S.L., et al. (2016) Gut Microbiota Are Linked to Increased Susceptibility to Hepatic Steatosis in Low-Aerobic-Capacity Rats Fed an Acute High-Fat Diet. American Journal of Physiology-Gastrointestinal and Liver Physiology, 311, G166-G179.
https://doi.org/10.1152/ajpgi.00065.2016
[84] Jin, C.J., Engstler, A.J., Sellmann, C., Ziegenhardt, D., Landmann, M., Kanuri, G., et al. (2016) Sodium Butyrate Protects Mice from the Development of the Early Signs of Non-Alcoholic Fatty Liver Disease: Role of Melatonin and Lipid Peroxidation. British Journal of Nutrition, 116, 1682-1693.
https://doi.org/10.1017/s0007114516004025
[85] Letourneau, J., Holmes, Z.C., Dallow, E.P., Durand, H.K., Jiang, S., Carrion, V.M., et al. (2022) Ecological Memory of Prior Nutrient Exposure in the Human Gut Microbiome. The ISME Journal, 16, 2479-2490.
https://doi.org/10.1038/s41396-022-01292-x
[86] Chen, R., Xu, Y., Wu, P., Zhou, H., Lasanajak, Y., Fang, Y., et al. (2019) Transplantation of Fecal Microbiota Rich in Short Chain Fatty Acids and Butyric Acid Treat Cerebral Ischemic Stroke by Regulating Gut Microbiota. Pharmacological Research, 148, Article ID: 104403.
https://doi.org/10.1016/j.phrs.2019.104403
[87] Dawson, P.A. and Karpen, S.J. (2015) Intestinal Transport and Metabolism of Bile Acids. Journal of Lipid Research, 56, 1085-1099.
https://doi.org/10.1194/jlr.r054114
[88] Gonzalez, F.J., Jiang, C. and Patterson, A.D. (2016) An Intestinal Microbiota-Farnesoid X Receptor Axis Modulates Metabolic Disease. Gastroenterology, 151, 845-859.
https://doi.org/10.1053/j.gastro.2016.08.057
[89] Yang, Z., Shen, W. and Sun, H. (2010) Effects of Nuclear Receptor FXR on the Regulation of Liver Lipid Metabolism in Patients with Non-Alcoholic Fatty Liver Disease. Hepatology International, 4, 741-748.
https://doi.org/10.1007/s12072-010-9202-6
[90] Han, X., Cui, Z., Song, J., Piao, H., Lian, L., Hou, L., et al. (2019) Acanthoic Acid Modulates Lipogenesis in Nonalcoholic Fatty Liver Disease via FXR/LXRs-Dependent Manner. Chemico-Biological Interactions, 311, Article ID: 108794.
https://doi.org/10.1016/j.cbi.2019.108794
[91] Yang, Y. and Wu, C. (2022) Targeting Gut Microbial Bile Salt Hydrolase (BSH) by Diet Supplements: New Insights into Dietary Modulation of Human Health. Food & Function, 13, 7409-7422.
https://doi.org/10.1039/d2fo01252a
[92] Jiang, C., Xie, C., Li, F., Zhang, L., Nichols, R.G., Krausz, K.W., et al. (2014) Intestinal Farnesoid X Receptor Signaling Promotes Nonalcoholic Fatty Liver Disease. Journal of Clinical Investigation, 125, 386-402.
https://doi.org/10.1172/jci76738
[93] Fiorucci, S. and Distrutti, E. (2019) The Pharmacology of Bile Acids and Their Receptors. In: Fiorucci, S. and Distrutti, E., Eds., Bile Acids and Their Receptors, Springer, 3-18.
https://doi.org/10.1007/164_2019_238
[94] Li, X., Su, C., Jiang, Z., Yang, Y., Zhang, Y., Yang, M., et al. (2021) Berberine Attenuates Choline-Induced Atherosclerosis by Inhibiting Trimethylamine and Trimethylamine-N-Oxide Production via Manipulating the Gut Microbiome. npj Biofilms and Microbiomes, 7, Article No. 36.
https://doi.org/10.1038/s41522-021-00205-8
[95] Guerrerio, A.L., Colvin, R.M., Schwartz, A.K., Molleston, J.P., Murray, K.F., Diehl, A., et al. (2012) Choline Intake in a Large Cohort of Patients with Nonalcoholic Fatty Liver Disease. The American Journal of Clinical Nutrition, 95, 892-900.
https://doi.org/10.3945/ajcn.111.020156
[96] Jepsen, M.M. and Christensen, M.B. (2021) Emerging Glucagon-Like Peptide 1 Receptor Agonists for the Treatment of Obesity. Expert Opinion on Emerging Drugs, 26, 231-243.
https://doi.org/10.1080/14728214.2021.1947240
[97] León-Mimila, P., Villamil-Ramírez, H., Li, X.S., Shih, D.M., Hui, S.T., Ocampo-Medina, E., et al. (2021) Trimethylamine N-Oxide Levels Are Associated with NASH in Obese Subjects with Type 2 Diabetes. Diabetes & Metabolism, 47, Article ID: 101183.
https://doi.org/10.1016/j.diabet.2020.07.010
[98] Shi, C., Pei, M., Wang, Y., Chen, Q., Cao, P., Zhang, L., et al. (2022) Changes of Flavin-Containing Monooxygenases and Trimethylamine-N-Oxide May Be Involved in the Promotion of Non-Alcoholic Fatty Liver Disease by Intestinal Microbiota Metabolite Trimethylamine. Biochemical and Biophysical Research Communications, 594, 1-7.
https://doi.org/10.1016/j.bbrc.2022.01.060
[99] Theofilis, P., Vordoni, A. and Kalaitzidis, R.G. (2022) Trimethylamine N-Oxide Levels in Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Metabolites, 12, Article 1243.
https://doi.org/10.3390/metabo12121243
[100] Flores‐Guerrero, J.L., Post, A., van Dijk, P.R., Connelly, M.A., Garcia, E., Navis, G., et al. (2021) Circulating Trimethylamine‐N‐Oxide Is Associated with All‐Cause Mortality in Subjects with Nonalcoholic Fatty Liver Disease. Liver International, 41, 2371-2382.
https://doi.org/10.1111/liv.14963
[101] Jang, J.W., Capaldi, E., Smith, T., Verma, P., Varga, J. and Ho, K.J. (2024) Trimethylamine N-Oxide: A Meta-Organismal Axis Linking the Gut and Fibrosis. Molecular Medicine, 30, Article No. 128.
https://doi.org/10.1186/s10020-024-00895-8
[102] Soares, J., Pimentel-Nunes, P., Roncon-Albuquerque, R. and Leite-Moreira, A. (2010) The Role of Lipopolysaccharide/toll-Like Receptor 4 Signaling in Chronic Liver Diseases. Hepatology International, 4, 659-672.
https://doi.org/10.1007/s12072-010-9219-x
[103] 毕占阳, 李高, 陈果, 杨柱, 龙奉玺, 罗莉, 等. 基于中医正邪理论探讨肠道菌群失调与肝癌的相关性[J]. 现代中西医结合杂志, 2022, 31(9): 1229-1234, 1262.
[104] Sharpton, S.R., Maraj, B., Harding-Theobald, E., Vittinghoff, E. and Terrault, N.A. (2019) Gut Microbiome-Targeted Therapies in Nonalcoholic Fatty Liver Disease: A Systematic Review, Meta-Analysis, and Meta-Regression. The American Journal of Clinical Nutrition, 110, 139-149.
https://doi.org/10.1093/ajcn/nqz042
[105] Liu, L., Li, P., Liu, Y. and Zhang, Y. (2019) Efficacy of Probiotics and Synbiotics in Patients with Nonalcoholic Fatty Liver Disease: A Meta-Analysis. Digestive Diseases and Sciences, 64, 3402-3412.
https://doi.org/10.1007/s10620-019-05699-z
[106] Wu, H. and Chiou, J. (2021) Potential Benefits of Probiotics and Prebiotics for Coronary Heart Disease and Stroke. Nutrients, 13, Article 2878.
https://doi.org/10.3390/nu13082878
[107] Xie, H., Lu, Q., Wang, H., Zhu, X. and Guan, Z. (2018) Effects of Probiotics Combined with Enteral Nutrition on Immune Function and Inflammatory Response in Postoperative Patients with Gastric Cancer. JBUON, 23, 678-683.
[108] Suk, K.T. and Kim, D.J. (2019) Gut Microbiota: Novel Therapeutic Target for Nonalcoholic Fatty Liver Disease. Expert Review of Gastroenterology & Hepatology, 13, 193-204.
https://doi.org/10.1080/17474124.2019.1569513
[109] Loguercio, C., Federico, A., Tuccillo, C., Terracciano, F., D’Auria, M.V., De Simone, C., et al. (2005) Beneficial Effects of a Probiotic VSL#3 on Parameters of Liver Dysfunction in Chronic Liver Diseases. Journal of Clinical Gastroenterology, 39, 540-543.
https://doi.org/10.1097/01.mcg.0000165671.25272.0f
[110] Wiest, R., Albillos, A., Trauner, M., Bajaj, J.S. and Jalan, R. (2017) Targeting the Gut-Liver Axis in Liver Disease. Journal of Hepatology, 67, 1084-1103.
https://doi.org/10.1016/j.jhep.2017.05.007
[111] Shu, Y.Y., Hu, L.L., Ye, J., Yang, L. and Jin, Y. (2024) Rifaximin Alleviates MCD Diet-Induced NASH in Mice by Restoring the Gut Microbiota and Intestinal Barrier. Life Sciences, 357, Article ID: 123095.
https://doi.org/10.1016/j.lfs.2024.123095
[112] Kuraji, R., Ye, C., Zhao, C., Gao, L., Martinez, A., Miyashita, Y., et al. (2024) Nisin Lantibiotic Prevents NAFLD Liver Steatosis and Mitochondrial Oxidative Stress Following Periodontal Disease by Abrogating Oral, Gut and Liver Dysbiosis. npj Biofilms and Microbiomes, 10, Article No. 3.
https://doi.org/10.1038/s41522-024-00476-x
[113] Sumida, Y. and Yoneda, M. (2017) Current and Future Pharmacological Therapies for NAFLD/NASH. Journal of Gastroenterology, 53, 362-376.
https://doi.org/10.1007/s00535-017-1415-1
[114] Rotman, Y. and Sanyal, A.J. (2016) Current and Upcoming Pharmacotherapy for Non-Alcoholic Fatty Liver Disease. Gut, 66, 180-190.
https://doi.org/10.1136/gutjnl-2016-312431
[115] Brandt, A., Jin, C., Nolte, K., Sellmann, C., Engstler, A. and Bergheim, I. (2017) Short-Term Intake of a Fructose-, Fat-and Cholesterol-Rich Diet Causes Hepatic Steatosis in Mice: Effect of Antibiotic Treatment. Nutrients, 9, Article 1013.
https://doi.org/10.3390/nu9091013
[116] Duan, Y., Llorente, C., Lang, S., Brandl, K., Chu, H., Jiang, L., et al. (2019) Bacteriophage Targeting of Gut Bacterium Attenuates Alcoholic Liver Disease. Nature, 575, 505-511.
https://doi.org/10.1038/s41586-019-1742-x
[117] Zhou, D., Pan, Q., Shen, F., Cao, H., Ding, W., Chen, Y., et al. (2017) Total Fecal Microbiota Transplantation Alleviates High-Fat Diet-Induced Steatohepatitis in Mice via Beneficial Regulation of Gut Microbiota. Scientific Reports, 7, Article No. 1529.
https://doi.org/10.1038/s41598-017-01751-y
[118] Xue, L., Deng, Z., Luo, W., He, X. and Chen, Y. (2022) Effect of Fecal Microbiota Transplantation on Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Frontiers in Cellular and Infection Microbiology, 12, Article 759306.
https://doi.org/10.3389/fcimb.2022.759306
[119] Stols-Gonçalves, D., Mak, A.L., Madsen, M.S., van der Vossen, E.W.J., Bruinstroop, E., Henneman, P., et al. (2023) Faecal Microbiota Transplantation Affects Liver DNA Methylation in Non-Alcoholic Fatty Liver Disease: A Multi-Omics Approach. Gut Microbes, 15, Article ID: 2223330.
https://doi.org/10.1080/19490976.2023.2223330
[120] Moreira, G., Azevedo, F., Ribeiro, L., Santos, A., Guadagnini, D., Gama, P., et al. (2018) Liraglutide Modulates Gut Microbiota and Reduces NAFLD in Obese Mice. The Journal of Nutritional Biochemistry, 62, 143-154.
https://doi.org/10.1016/j.jnutbio.2018.07.009
[121] He, Z., Li, X., Yang, H., Wu, P., Wang, S., Cao, D., et al. (2021) Effects of Oral Vitamin C Supplementation on Liver Health and Associated Parameters in Patients with Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Frontiers in Nutrition, 8, Article 745609.
https://doi.org/10.3389/fnut.2021.745609
[122] Koperska, A., Wesołek, A., Moszak, M. and Szulińska, M. (2022) Berberine in Non-Alcoholic Fatty Liver Disease—A Review. Nutrients, 14, Article 3459.
https://doi.org/10.3390/nu14173459
[123] Li, D., Zheng, J., Hu, Y., Hou, H., Hao, S., Liu, N., et al. (2017) Amelioration of Intestinal Barrier Dysfunction by Berberine in the Treatment of Nonalcoholic Fatty Liver Disease in Rats. Pharmacognosy Magazine, 13, 677-682.
https://doi.org/10.4103/pm.pm_584_16
[124] Zhang, X., Zhao, Y., Xu, J., Xue, Z., Zhang, M., Pang, X., et al. (2015) Modulation of Gut Microbiota by Berberine and Metformin during the Treatment of High-Fat Diet-Induced Obesity in Rats. Scientific Reports, 5, Article No. 14405.
https://doi.org/10.1038/srep14405
[125] Cui, H., Hu, Y., Li, J. and Yuan, K. (2018) Hypoglycemic Mechanism of the Berberine Organic Acid Salt under the Synergistic Effect of Intestinal Flora and Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2018, Article ID: 8930374.
https://doi.org/10.1155/2018/8930374
[126] Li, G., Zhou, F., Chen, Y., Zhang, W. and Wang, N. (2017) Kukoamine a Attenuates Insulin Resistance and Fatty Liver through Downregulation of SREBP-1C. Biomedicine & Pharmacotherapy, 89, 536-543.
https://doi.org/10.1016/j.biopha.2017.02.024
[127] Porras, D., Nistal, E., Martínez-Flórez, S., Pisonero-Vaquero, S., Olcoz, J.L., Jover, R., et al. (2017) Protective Effect of Quercetin on High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice Is Mediated by Modulating Intestinal Microbiota Imbalance and Related Gut-Liver Axis Activation. Free Radical Biology and Medicine, 102, 188-202.
https://doi.org/10.1016/j.freeradbiomed.2016.11.037
[128] Han, R., Qiu, H., Zhong, J., Zheng, N., Li, B., Hong, Y., et al. (2021) Si Miao Formula Attenuates Non-Alcoholic Fatty Liver Disease by Modulating Hepatic Lipid Metabolism and Gut Microbiota. Phytomedicine, 85, Article ID: 153544.
https://doi.org/10.1016/j.phymed.2021.153544