|
[1]
|
(2018) Guidelines of Prevention and Treatment for Nonalcoholic Fatty Liver Disease: A 2018 Update. Chinese Journal of Hepatology, 26, 195-203.
|
|
[2]
|
Rinella, M.E., Neuschwander-Tetri, B.A., Siddiqui, M.S., Abdelmalek, M.F., Caldwell, S., Barb, D., et al. (2023) AASLD Practice Guidance on the Clinical Assessment and Management of Nonalcoholic Fatty Liver Disease. Hepatology, 77, 1797-1835. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
White, L., Fishman, P., Basu, A., Crane, P.K., Larson, E.B. and Coe, N.B. (2019) Medicare Expenditures Attributable to Dementia. Health Services Research, 54, 773-781. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
骆雪, 王曦. 冠心病合并非酒精性脂肪肝患者心肺运动试验特点[J]. 临床心血管病杂志, 2023, 39(2): 145-149.
|
|
[5]
|
Duell, P.B., Welty, F.K., Miller, M., Chait, A., Hammond, G., Ahmad, Z., et al. (2022) Nonalcoholic Fatty Liver Disease and Cardiovascular Risk: A Scientific Statement from the American Heart Association. Arteriosclerosis, Thrombosis, and Vascular Biology, 42, e168-e185. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Sun, D., Targher, G., Byrne, C.D., Wheeler, D.C., Wong, V.W., Fan, J., et al. (2023) An International Delphi Consensus Statement on Metabolic Dysfunction-Associated Fatty Liver Disease and Risk of Chronic Kidney Disease. Hepatobiliary Surgery and Nutrition, 12, 386-403. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Marušić, M., Paić, M., Knobloch, M. and Liberati Pršo, A. (2021) NAFLD, Insulin Resistance, and Diabetes Mellitus Type 2. Canadian Journal of Gastroenterology and Hepatology, 2021, Article ID: 6613827. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Tilg, H., Moschen, A.R. and Roden, M. (2016) NAFLD and Diabetes Mellitus. Nature Reviews Gastroenterology & Hepatology, 14, 32-42. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Samuel, V.T. and Shulman, G.I. (2019) Nonalcoholic Fatty Liver Disease, Insulin Resistance, and Ceramides. New England Journal of Medicine, 381, 1866-1869. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Petta, S., Miele, L., Bugianesi, E., Cammà, C., Rosso, C., Boccia, S., et al. (2014) Glucokinase Regulatory Protein Gene Polymorphism Affects Liver Fibrosis in Non-Alcoholic Fatty Liver Disease. PLOS ONE, 9, e87523. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Ratziu, V., Giral, P., Charlotte, F., Bruckert, E., Thibault, V., Theodorou, I., et al. (2000) Liver Fibrosis in Overweight Patients. Gastroenterology, 118, 1117-1123. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Dam-Larsen, S., Becker, U., Franzmann, M., Larsen, K., Christoffersen, P. and Bendtsen, F. (2009) Final Results of a Long-Term, Clinical Follow-Up in Fatty Liver Patients. Scandinavian Journal of Gastroenterology, 44, 1236-1243. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Albillos, A., de Gottardi, A. and Rescigno, M. (2020) The Gut-Liver Axis in Liver Disease: Pathophysiological Basis for Therapy. Journal of Hepatology, 72, 558-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G.A.D., Gasbarrini, A., et al. (2019) What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 7, 14. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Boursier, J., Mueller, O., Barret, M., Machado, M., Fizanne, L., Araujo‐Perez, F., et al. (2016) The Severity of Nonalcoholic Fatty Liver Disease Is Associated with Gut Dysbiosis and Shift in the Metabolic Function of the Gut Microbiota. Hepatology, 63, 764-775. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Morais, L.H., Schreiber, H.L. and Mazmanian, S.K. (2020) The Gut Microbiota-Brain Axis in Behaviour and Brain Disorders. Nature Reviews Microbiology, 19, 241-255. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Proctor, L.M., Creasy, H.H., Fettweis, J.M., Lloyd-Price, J., Mahurkar, A., Zhou, W., et al. (2019) The Integrative Human Microbiome Project. Nature, 569, 641-648. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Tilg, H., Adolph, T.E. and Trauner, M. (2022) Gut-Liver Axis: Pathophysiological Concepts and Clinical Implications. Cell Metabolism, 34, 1700-1718. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Rebelos, E., Iozzo, P., Guzzardi, M.A., Brunetto, M.R. and Bonino, F. (2021) Brain-Gut-Liver Interactions across the Spectrum of Insulin Resistance in Metabolic Fatty Liver Disease. World Journal of Gastroenterology, 27, 4999-5018. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Tett, A., Pasolli, E., Masetti, G., Ercolini, D. and Segata, N. (2021) Prevotella Diversity, Niches and Interactions with the Human Host. Nature Reviews Microbiology, 19, 585-599. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Astbury, S., Atallah, E., Vijay, A., Aithal, G.P., Grove, J.I. and Valdes, A.M. (2019) Lower Gut Microbiome Diversity and Higher Abundance of Proinflammatory Genus Collinsella Are Associated with Biopsy-Proven Nonalcoholic Steatohepatitis. Gut Microbes, 11, 569-580. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Cornejo-Pareja, I., Amiar, M.R., Ocaña-Wilhelmi, L., Soler-Humanes, R., Arranz-Salas, I., Garrido-Sánchez, L., et al. (2024) Non-alcoholic Fatty Liver Disease in Patients with Morbid Obesity: The Gut Microbiota Axis as a Potential Pathophysiology Mechanism. Journal of Gastroenterology, 59, 329-341. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Huang, F., Lyu, B., Xie, F., Li, F., Xing, Y., Han, Z., et al. (2024) From Gut to Liver: Unveiling the Differences of Intestinal Microbiota in NAFL and NASH Patients. Frontiers in Microbiology, 15, Article 1366744. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Cai, W., Qiu, T., Hu, W. and Fang, T. (2024) Changes in the Intestinal Microbiota of Individuals with Non-Alcoholic Fatty Liver Disease Based on Sequencing: An Updated Systematic Review and Meta-Analysis. PLOS ONE, 19, e0299946. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Lanthier, N., Rodriguez, J., Nachit, M., Hiel, S., Trefois, P., Neyrinck, A.M., et al. (2021) Microbiota Analysis and Transient Elastography Reveal New Extra-Hepatic Components of Liver Steatosis and Fibrosis in Obese Patients. Scientific Reports, 11, Article No. 659. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Cerqueira César Machado, M. and Pinheiro da Silva, F. (2016) Intestinal Barrier Dysfunction in Human Pathology and Aging. Current Pharmaceutical Design, 22, 4645-4650. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Tilg, H., Zmora, N., Adolph, T.E. and Elinav, E. (2019) The Intestinal Microbiota Fuelling Metabolic Inflammation. Nature Reviews Immunology, 20, 40-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Britanova, L. and Diefenbach, A. (2017) Interplay of Innate Lymphoid Cells and the Microbiota. Immunological Reviews, 279, 36-51. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Macia, L., Tan, J., Vieira, A.T., Leach, K., Stanley, D., Luong, S., et al. (2015) Metabolite-Sensing Receptors GPR43 and GPR109A Facilitate Dietary Fibre-Induced Gut Homeostasis through Regulation of the Inflammasome. Nature Communications, 6, Article No. 6734. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Morrison, D.J. and Preston, T. (2016) Formation of Short Chain Fatty Acids by the Gut Microbiota and Their Impact on Human Metabolism. Gut Microbes, 7, 189-200. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Shi, L., Jin, L. and Huang, W. (2023) Bile Acids, Intestinal Barrier Dysfunction, and Related Diseases. Cells, 12, Article 1888. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Tian, Y., Gui, W., Koo, I., Smith, P.B., Allman, E.L., Nichols, R.G., et al. (2020) The Microbiome Modulating Activity of Bile Acids. Gut Microbes, 11, 979-996. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ovadia, C., Perdones-Montero, A., Fan, H.M., Mullish, B.H., McDonald, J.A.K., Papacleovoulou, G., et al. (2020) Ursodeoxycholic Acid Enriches Intestinal Bile Salt Hydrolase-Expressing Bacteroidetes in Cholestatic Pregnancy. Scientific Reports, 10, Article No. 3895. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Inagaki, T., Moschetta, A., Lee, Y., Peng, L., Zhao, G., Downes, M., et al. (2006) Regulation of Antibacterial Defense in the Small Intestine by the Nuclear Bile Acid Receptor. Proceedings of the National Academy of Sciences of the United States of America, 103, 3920-3925. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Di Ciaula, A., Bonfrate, L., Baj, J., Khalil, M., Garruti, G., Stellaard, F., et al. (2022) Recent Advances in the Digestive, Metabolic and Therapeutic Effects of Farnesoid X Receptor and Fibroblast Growth Factor 19: From Cholesterol to Bile Acid Signaling. Nutrients, 14, Article 4950. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Chiang, J.Y.L. and Ferrell, J.M. (2020) Bile Acid Receptors FXR and TGR5 Signaling in Fatty Liver Diseases and Therapy. American Journal of Physiology-Gastrointestinal and Liver Physiology, 318, G554-G573. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Hsu, C.L. and Schnabl, B. (2023) The Gut-Liver Axis and Gut Microbiota in Health and Liver Disease. Nature Reviews Microbiology, 21, 719-733. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Li, Q., Rempel, J.D., Yang, J. and Minuk, G.Y. (2022) The Effects of Pathogen-Associated Molecular Patterns on Peripheral Blood Monocytes in Patients with Non-Alcoholic Fatty Liver Disease. Journal of Clinical and Experimental Hepatology, 12, 808-817. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Wu, J., Lu, A.D., Zhang, L.P., Zuo, Y.X. and Jia, Y.P. (2019) Study of Clinical Outcome and Prognosis in Pediatric Core Binding Factor-Acute Myeloid Leukemia. Chinese Journal of Hematology, 40, 52-57.
|
|
[40]
|
Xu, H., Xiong, J., Xu, J., Li, S., Zhou, Y., Chen, D., et al. (2017) Mosapride Stabilizes Intestinal Microbiota to Reduce Bacterial Translocation and Endotoxemia in CCL4-Induced Cirrhotic Rats. Digestive Diseases and Sciences, 62, 2801-2811. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Janeway, C.A. (1989) Approaching the Asymptote? Evolution and Revolution in Immunology. Cold Spring Harbor Symposia on Quantitative Biology, 54, 1-13. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Gong, T., Liu, L., Jiang, W. and Zhou, R. (2019) Damp-Sensing Receptors in Sterile Inflammation and Inflammatory Diseases. Nature Reviews Immunology, 20, 95-112. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Kemper, C. and Sack, M.N. (2022) Linking Nutrient Sensing, Mitochondrial Function, and PRR Immune Cell Signaling in Liver Disease. Trends in Immunology, 43, 886-900. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Huang, C., Zhou, Y., Cheng, J., Guo, X., Shou, D., Quan, Y., et al. (2023) Pattern Recognition Receptors in the Development of Nonalcoholic Fatty Liver Disease and Progression to Hepatocellular Carcinoma: An Emerging Therapeutic Strategy. Frontiers in Endocrinology, 14, Article 1145392. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Jones, N., Blagih, J., Zani, F., Rees, A., Hill, D.G., Jenkins, B.J., et al. (2021) Fructose Reprogrammes Glutamine-Dependent Oxidative Metabolism to Support LPS-Induced Inflammation. Nature Communications, 12, Article No. 1209. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Mouries, J., Brescia, P., Silvestri, A., Spadoni, I., Sorribas, M., Wiest, R., et al. (2019) Microbiota-Driven Gut Vascular Barrier Disruption Is a Prerequisite for Non-Alcoholic Steatohepatitis Development. Journal of Hepatology, 71, 1216-1228. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Li, D. and Wu, M. (2021) Pattern Recognition Receptors in Health and Diseases. Signal Transduction and Targeted Therapy, 6, Article No. 291. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Rumpret, M., von Richthofen, H.J., Peperzak, V. and Meyaard, L. (2021) Inhibitory Pattern Recognition Receptors. Journal of Experimental Medicine, 219, e20211463. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Fitzgerald, K.A. and Kagan, J.C. (2020) Toll-Like Receptors and the Control of Immunity. Cell, 180, 1044-1066. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Wicherska-Pawłowska, K., Wróbel, T. and Rybka, J. (2021) Toll-Like Receptors (TLRs), Nod-Like Receptors (NLRs), and Rig-I-Like Receptors (RLRs) in Innate Immunity. TLRs, NLRs, and RLRs Ligands as Immunotherapeutic Agents for Hematopoietic Diseases. International Journal of Molecular Sciences, 22, Article 13397. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Kawai, T. and Akira, S. (2009) The Roles of TLRs, RLRs and NLRs in Pathogen Recognition. International Immunology, 21, 317-337. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Takeuchi, O. and Akira, S. (2010) Pattern Recognition Receptors and Inflammation. Cell, 140, 805-820. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Yu, L. and Feng, Z. (2018) The Role of Toll-Like Receptor Signaling in the Progression of Heart Failure. Mediators of Inflammation, 2018, Article ID: 9874109. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Miura, K. (2014) Role of Gut Microbiota and Toll-Like Receptors in Nonalcoholic Fatty Liver Disease. World Journal of Gastroenterology, 20, 7381-7391. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Yu, J., Liu, X., Yang, N., Wang, B., Su, B., Fu, Q., et al. (2021) Characterization of Toll-Like Receptor 1 (TLR1) in Turbot (Scophthalmus maximus L.). Fish & Shellfish Immunology, 115, 27-34. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Baumann, A., Nier, A., Hernández-Arriaga, A., Brandt, A., Lorenzo Pisarello, M.J., Jin, C.J., et al. (2021) Toll-Like Receptor 1 as a Possible Target in Non-Alcoholic Fatty Liver Disease. Scientific Reports, 11, Article No. 17815. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Xu, R., Cao, J., Lv, H., Geng, Y. and Guo, M. (2024) Polyethylene Microplastics Induced Gut Microbiota Dysbiosis Leading to Liver Injury via the TLR2/NF-κB/NLRP3 Pathway in Mice. Science of The Total Environment, 917, Article ID: 170518. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Wang, R., Tang, R., Li, B., Ma, X., Schnabl, B. and Tilg, H. (2020) Gut Microbiome, Liver Immunology, and Liver Diseases. Cellular & Molecular Immunology, 18, 4-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Nighot, M., Al-Sadi, R., Guo, S., Rawat, M., Nighot, P., Watterson, M.D., et al. (2017) Lipopolysaccharide-Induced Increase in Intestinal Epithelial Tight Permeability Is Mediated by Toll-Like Receptor 4/Myeloid Differentiation Primary Response 88 (MyD88) Activation of Myosin Light Chain Kinase Expression. The American Journal of Pathology, 187, 2698-2710. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Shimazu, R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., Miyake, K., et al. (1999) MD-2, a Molecule That Confers Lipopolysaccharide Responsiveness on Toll-Like Receptor 4. The Journal of Experimental Medicine, 189, 1777-1782. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Sharifnia, T., Antoun, J., Verriere, T.G.C., Suarez, G., Wattacheril, J., Wilson, K.T., et al. (2015) Hepatic TLR4 Signaling in Obese NAFLD. American Journal of Physiology-Gastrointestinal and Liver Physiology, 309, G270-G278. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Toivonen, R., Vanhatalo, S., Hollmén, M., Munukka, E., Keskitalo, A., Pietilä, S., et al. (2021) Vascular Adhesion Protein 1 Mediates Gut Microbial Flagellin-Induced Inflammation, Leukocyte Infiltration, and Hepatic Steatosis. Sci, 3, Article 13. [Google Scholar] [CrossRef]
|
|
[63]
|
Salmi, M. and Jalkanen, S. (2019) Vascular Adhesion Protein-1: A Cell Surface Amine Oxidase in Translation. Antioxidants & Redox Signaling, 30, 314-332. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Shen, B., Gu, T., Shen, Z., Zhou, C., Guo, Y., Wang, J., et al. (2023) Escherichia Coli Promotes Endothelial to Mesenchymal Transformation of Liver Sinusoidal Endothelial Cells and Exacerbates Nonalcoholic Fatty Liver Disease via Its Flagellin. Cellular and Molecular Gastroenterology and Hepatology, 16, 857-879. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Takeshita, F., Leifer, C.A., Gursel, I., Ishii, K.J., Takeshita, S., Gursel, M., et al. (2001) Cutting Edge: Role of Toll-Like Receptor 9 in CPG DNA-Induced Activation of Human Cells. The Journal of Immunology, 167, 3555-3558. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., et al. (2000) A Toll-Like Receptor Recognizes Bacterial DNA. Nature, 408, 740-745. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Jeong, S.W. (2020) Toll-like Receptor 9, a Possible Blocker of Non-Alcoholic Steatohepatitis? Clinical and Molecular Hepatology, 26, 185-186. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Garcia-Martinez, I., Santoro, N., Chen, Y., Hoque, R., Ouyang, X., Caprio, S., et al. (2016) Hepatocyte Mitochondrial DNA Drives Nonalcoholic Steatohepatitis by Activation of TLR9. Journal of Clinical Investigation, 126, 859-864. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Ting, J.P. and Davis, B.K. (2005) Caterpiller: A Novel Gene Family Important in Immunity, Cell Death, and Diseases. Annual Review of Immunology, 23, 387-414. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Schroder, K. and Tschopp, J. (2010) The Inflammasomes. Cell, 140, 821-832. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Levy, M., Shapiro, H., Thaiss, C.A. and Elinav, E. (2017) NLRP6: A Multifaceted Innate Immune Sensor. Trends in Immunology, 38, 248-260. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Wang, P., Zhu, S., Yang, L., Cui, S., Pan, W., Jackson, R., et al. (2015) NLRP6 Regulates Intestinal Antiviral Innate Immunity. Science, 350, 826-830. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Levy, M., Thaiss, C.A., Zeevi, D., Dohnalová, L., Zilberman-Schapira, G., Mahdi, J.A., et al. (2015) Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling. Cell, 163, 1428-1443. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Hara, H., Seregin, S.S., Yang, D., Fukase, K., Chamaillard, M., Alnemri, E.S., et al. (2018) The NLRP6 Inflammasome Recognizes Lipoteichoic Acid and Regulates Gram-Positive Pathogen Infection. Cell, 175, 1651-1664.e14. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Henao-Mejia, J., Elinav, E., Jin, C., Hao, L., Mehal, W.Z., Strowig, T., et al. (2012) Inflammasome-Mediated Dysbiosis Regulates Progression of NAFLD and Obesity. Nature, 482, 179-185. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Schneider, K.M., Mohs, A., Gui, W., Galvez, E.J.C., Candels, L.S., Hoenicke, L., et al. (2022) Imbalanced Gut Microbiota Fuels Hepatocellular Carcinoma Development by Shaping the Hepatic Inflammatory Microenvironment. Nature Communications, 13, Article No. 3964. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Rauf, A., Khalil, A.A., Rahman, U., Khalid, A., Naz, S., Shariati, M.A., et al. (2021) Recent Advances in the Therapeutic Application of Short-Chain Fatty Acids (SCFAs): An Updated Review. Critical Reviews in Food Science and Nutrition, 62, 6034-6054. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Zhou, D., Chen, Y., Zhao, Z., Yang, R., Xin, F., Liu, X., et al. (2018) Sodium Butyrate Reduces High-Fat Diet-Induced Non-Alcoholic Steatohepatitis through Upregulation of Hepatic GLP-1R Expression. Experimental & Molecular Medicine, 50, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Park, J., Kotani, T., Konno, T., Setiawan, J., Kitamura, Y., Imada, S., et al. (2016) Promotion of Intestinal Epithelial Cell Turnover by Commensal Bacteria: Role of Short-Chain Fatty Acids. PLOS ONE, 11, e0156334. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Xu, H., Huang, H., Xu, J., He, J., Zhao, C., Peng, Y., et al. (2021) Cross-Talk between Butyric Acid and Gut Microbiota in Ulcerative Colitis Following Fecal Microbiota Transplantation. Frontiers in Microbiology, 12, Article 658292. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Del Chierico, F., Nobili, V., Vernocchi, P., Russo, A., De Stefanis, C., Gnani, D., et al. (2016) Gut Microbiota Profiling of Pediatric Nonalcoholic Fatty Liver Disease and Obese Patients Unveiled by an Integrated Meta‐Omics‐Based Approach. Hepatology, 65, 451-464. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Canfora, E.E., van der Beek, C.M., Jocken, J.W.E., Goossens, G.H., Holst, J.J., Olde Damink, S.W.M., et al. (2017) Colonic Infusions of Short-Chain Fatty Acid Mixtures Promote Energy Metabolism in Overweight/Obese Men: A Randomized Crossover Trial. Scientific Reports, 7, Article No. 2360. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Panasevich, M.R., Morris, E.M., Chintapalli, S.V., Wankhade, U.D., Shankar, K., Britton, S.L., et al. (2016) Gut Microbiota Are Linked to Increased Susceptibility to Hepatic Steatosis in Low-Aerobic-Capacity Rats Fed an Acute High-Fat Diet. American Journal of Physiology-Gastrointestinal and Liver Physiology, 311, G166-G179. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Jin, C.J., Engstler, A.J., Sellmann, C., Ziegenhardt, D., Landmann, M., Kanuri, G., et al. (2016) Sodium Butyrate Protects Mice from the Development of the Early Signs of Non-Alcoholic Fatty Liver Disease: Role of Melatonin and Lipid Peroxidation. British Journal of Nutrition, 116, 1682-1693. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Letourneau, J., Holmes, Z.C., Dallow, E.P., Durand, H.K., Jiang, S., Carrion, V.M., et al. (2022) Ecological Memory of Prior Nutrient Exposure in the Human Gut Microbiome. The ISME Journal, 16, 2479-2490. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Chen, R., Xu, Y., Wu, P., Zhou, H., Lasanajak, Y., Fang, Y., et al. (2019) Transplantation of Fecal Microbiota Rich in Short Chain Fatty Acids and Butyric Acid Treat Cerebral Ischemic Stroke by Regulating Gut Microbiota. Pharmacological Research, 148, Article ID: 104403. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Dawson, P.A. and Karpen, S.J. (2015) Intestinal Transport and Metabolism of Bile Acids. Journal of Lipid Research, 56, 1085-1099. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Gonzalez, F.J., Jiang, C. and Patterson, A.D. (2016) An Intestinal Microbiota-Farnesoid X Receptor Axis Modulates Metabolic Disease. Gastroenterology, 151, 845-859. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Yang, Z., Shen, W. and Sun, H. (2010) Effects of Nuclear Receptor FXR on the Regulation of Liver Lipid Metabolism in Patients with Non-Alcoholic Fatty Liver Disease. Hepatology International, 4, 741-748. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Han, X., Cui, Z., Song, J., Piao, H., Lian, L., Hou, L., et al. (2019) Acanthoic Acid Modulates Lipogenesis in Nonalcoholic Fatty Liver Disease via FXR/LXRs-Dependent Manner. Chemico-Biological Interactions, 311, Article ID: 108794. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Yang, Y. and Wu, C. (2022) Targeting Gut Microbial Bile Salt Hydrolase (BSH) by Diet Supplements: New Insights into Dietary Modulation of Human Health. Food & Function, 13, 7409-7422. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Jiang, C., Xie, C., Li, F., Zhang, L., Nichols, R.G., Krausz, K.W., et al. (2014) Intestinal Farnesoid X Receptor Signaling Promotes Nonalcoholic Fatty Liver Disease. Journal of Clinical Investigation, 125, 386-402. [Google Scholar] [CrossRef] [PubMed]
|
|
[93]
|
Fiorucci, S. and Distrutti, E. (2019) The Pharmacology of Bile Acids and Their Receptors. In: Fiorucci, S. and Distrutti, E., Eds., Bile Acids and Their Receptors, Springer, 3-18. [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Li, X., Su, C., Jiang, Z., Yang, Y., Zhang, Y., Yang, M., et al. (2021) Berberine Attenuates Choline-Induced Atherosclerosis by Inhibiting Trimethylamine and Trimethylamine-N-Oxide Production via Manipulating the Gut Microbiome. npj Biofilms and Microbiomes, 7, Article No. 36. [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
Guerrerio, A.L., Colvin, R.M., Schwartz, A.K., Molleston, J.P., Murray, K.F., Diehl, A., et al. (2012) Choline Intake in a Large Cohort of Patients with Nonalcoholic Fatty Liver Disease. The American Journal of Clinical Nutrition, 95, 892-900. [Google Scholar] [CrossRef] [PubMed]
|
|
[96]
|
Jepsen, M.M. and Christensen, M.B. (2021) Emerging Glucagon-Like Peptide 1 Receptor Agonists for the Treatment of Obesity. Expert Opinion on Emerging Drugs, 26, 231-243. [Google Scholar] [CrossRef] [PubMed]
|
|
[97]
|
León-Mimila, P., Villamil-Ramírez, H., Li, X.S., Shih, D.M., Hui, S.T., Ocampo-Medina, E., et al. (2021) Trimethylamine N-Oxide Levels Are Associated with NASH in Obese Subjects with Type 2 Diabetes. Diabetes & Metabolism, 47, Article ID: 101183. [Google Scholar] [CrossRef] [PubMed]
|
|
[98]
|
Shi, C., Pei, M., Wang, Y., Chen, Q., Cao, P., Zhang, L., et al. (2022) Changes of Flavin-Containing Monooxygenases and Trimethylamine-N-Oxide May Be Involved in the Promotion of Non-Alcoholic Fatty Liver Disease by Intestinal Microbiota Metabolite Trimethylamine. Biochemical and Biophysical Research Communications, 594, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[99]
|
Theofilis, P., Vordoni, A. and Kalaitzidis, R.G. (2022) Trimethylamine N-Oxide Levels in Non-Alcoholic Fatty Liver Disease: A Systematic Review and Meta-Analysis. Metabolites, 12, Article 1243. [Google Scholar] [CrossRef] [PubMed]
|
|
[100]
|
Flores‐Guerrero, J.L., Post, A., van Dijk, P.R., Connelly, M.A., Garcia, E., Navis, G., et al. (2021) Circulating Trimethylamine‐N‐Oxide Is Associated with All‐Cause Mortality in Subjects with Nonalcoholic Fatty Liver Disease. Liver International, 41, 2371-2382. [Google Scholar] [CrossRef] [PubMed]
|
|
[101]
|
Jang, J.W., Capaldi, E., Smith, T., Verma, P., Varga, J. and Ho, K.J. (2024) Trimethylamine N-Oxide: A Meta-Organismal Axis Linking the Gut and Fibrosis. Molecular Medicine, 30, Article No. 128. [Google Scholar] [CrossRef] [PubMed]
|
|
[102]
|
Soares, J., Pimentel-Nunes, P., Roncon-Albuquerque, R. and Leite-Moreira, A. (2010) The Role of Lipopolysaccharide/toll-Like Receptor 4 Signaling in Chronic Liver Diseases. Hepatology International, 4, 659-672. [Google Scholar] [CrossRef] [PubMed]
|
|
[103]
|
毕占阳, 李高, 陈果, 杨柱, 龙奉玺, 罗莉, 等. 基于中医正邪理论探讨肠道菌群失调与肝癌的相关性[J]. 现代中西医结合杂志, 2022, 31(9): 1229-1234, 1262.
|
|
[104]
|
Sharpton, S.R., Maraj, B., Harding-Theobald, E., Vittinghoff, E. and Terrault, N.A. (2019) Gut Microbiome-Targeted Therapies in Nonalcoholic Fatty Liver Disease: A Systematic Review, Meta-Analysis, and Meta-Regression. The American Journal of Clinical Nutrition, 110, 139-149. [Google Scholar] [CrossRef] [PubMed]
|
|
[105]
|
Liu, L., Li, P., Liu, Y. and Zhang, Y. (2019) Efficacy of Probiotics and Synbiotics in Patients with Nonalcoholic Fatty Liver Disease: A Meta-Analysis. Digestive Diseases and Sciences, 64, 3402-3412. [Google Scholar] [CrossRef] [PubMed]
|
|
[106]
|
Wu, H. and Chiou, J. (2021) Potential Benefits of Probiotics and Prebiotics for Coronary Heart Disease and Stroke. Nutrients, 13, Article 2878. [Google Scholar] [CrossRef] [PubMed]
|
|
[107]
|
Xie, H., Lu, Q., Wang, H., Zhu, X. and Guan, Z. (2018) Effects of Probiotics Combined with Enteral Nutrition on Immune Function and Inflammatory Response in Postoperative Patients with Gastric Cancer. JBUON, 23, 678-683.
|
|
[108]
|
Suk, K.T. and Kim, D.J. (2019) Gut Microbiota: Novel Therapeutic Target for Nonalcoholic Fatty Liver Disease. Expert Review of Gastroenterology & Hepatology, 13, 193-204. [Google Scholar] [CrossRef] [PubMed]
|
|
[109]
|
Loguercio, C., Federico, A., Tuccillo, C., Terracciano, F., D’Auria, M.V., De Simone, C., et al. (2005) Beneficial Effects of a Probiotic VSL#3 on Parameters of Liver Dysfunction in Chronic Liver Diseases. Journal of Clinical Gastroenterology, 39, 540-543. [Google Scholar] [CrossRef] [PubMed]
|
|
[110]
|
Wiest, R., Albillos, A., Trauner, M., Bajaj, J.S. and Jalan, R. (2017) Targeting the Gut-Liver Axis in Liver Disease. Journal of Hepatology, 67, 1084-1103. [Google Scholar] [CrossRef] [PubMed]
|
|
[111]
|
Shu, Y.Y., Hu, L.L., Ye, J., Yang, L. and Jin, Y. (2024) Rifaximin Alleviates MCD Diet-Induced NASH in Mice by Restoring the Gut Microbiota and Intestinal Barrier. Life Sciences, 357, Article ID: 123095. [Google Scholar] [CrossRef] [PubMed]
|
|
[112]
|
Kuraji, R., Ye, C., Zhao, C., Gao, L., Martinez, A., Miyashita, Y., et al. (2024) Nisin Lantibiotic Prevents NAFLD Liver Steatosis and Mitochondrial Oxidative Stress Following Periodontal Disease by Abrogating Oral, Gut and Liver Dysbiosis. npj Biofilms and Microbiomes, 10, Article No. 3. [Google Scholar] [CrossRef] [PubMed]
|
|
[113]
|
Sumida, Y. and Yoneda, M. (2017) Current and Future Pharmacological Therapies for NAFLD/NASH. Journal of Gastroenterology, 53, 362-376. [Google Scholar] [CrossRef] [PubMed]
|
|
[114]
|
Rotman, Y. and Sanyal, A.J. (2016) Current and Upcoming Pharmacotherapy for Non-Alcoholic Fatty Liver Disease. Gut, 66, 180-190. [Google Scholar] [CrossRef] [PubMed]
|
|
[115]
|
Brandt, A., Jin, C., Nolte, K., Sellmann, C., Engstler, A. and Bergheim, I. (2017) Short-Term Intake of a Fructose-, Fat-and Cholesterol-Rich Diet Causes Hepatic Steatosis in Mice: Effect of Antibiotic Treatment. Nutrients, 9, Article 1013. [Google Scholar] [CrossRef] [PubMed]
|
|
[116]
|
Duan, Y., Llorente, C., Lang, S., Brandl, K., Chu, H., Jiang, L., et al. (2019) Bacteriophage Targeting of Gut Bacterium Attenuates Alcoholic Liver Disease. Nature, 575, 505-511. [Google Scholar] [CrossRef] [PubMed]
|
|
[117]
|
Zhou, D., Pan, Q., Shen, F., Cao, H., Ding, W., Chen, Y., et al. (2017) Total Fecal Microbiota Transplantation Alleviates High-Fat Diet-Induced Steatohepatitis in Mice via Beneficial Regulation of Gut Microbiota. Scientific Reports, 7, Article No. 1529. [Google Scholar] [CrossRef] [PubMed]
|
|
[118]
|
Xue, L., Deng, Z., Luo, W., He, X. and Chen, Y. (2022) Effect of Fecal Microbiota Transplantation on Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Frontiers in Cellular and Infection Microbiology, 12, Article 759306. [Google Scholar] [CrossRef] [PubMed]
|
|
[119]
|
Stols-Gonçalves, D., Mak, A.L., Madsen, M.S., van der Vossen, E.W.J., Bruinstroop, E., Henneman, P., et al. (2023) Faecal Microbiota Transplantation Affects Liver DNA Methylation in Non-Alcoholic Fatty Liver Disease: A Multi-Omics Approach. Gut Microbes, 15, Article ID: 2223330. [Google Scholar] [CrossRef] [PubMed]
|
|
[120]
|
Moreira, G., Azevedo, F., Ribeiro, L., Santos, A., Guadagnini, D., Gama, P., et al. (2018) Liraglutide Modulates Gut Microbiota and Reduces NAFLD in Obese Mice. The Journal of Nutritional Biochemistry, 62, 143-154. [Google Scholar] [CrossRef] [PubMed]
|
|
[121]
|
He, Z., Li, X., Yang, H., Wu, P., Wang, S., Cao, D., et al. (2021) Effects of Oral Vitamin C Supplementation on Liver Health and Associated Parameters in Patients with Non-Alcoholic Fatty Liver Disease: A Randomized Clinical Trial. Frontiers in Nutrition, 8, Article 745609. [Google Scholar] [CrossRef] [PubMed]
|
|
[122]
|
Koperska, A., Wesołek, A., Moszak, M. and Szulińska, M. (2022) Berberine in Non-Alcoholic Fatty Liver Disease—A Review. Nutrients, 14, Article 3459. [Google Scholar] [CrossRef] [PubMed]
|
|
[123]
|
Li, D., Zheng, J., Hu, Y., Hou, H., Hao, S., Liu, N., et al. (2017) Amelioration of Intestinal Barrier Dysfunction by Berberine in the Treatment of Nonalcoholic Fatty Liver Disease in Rats. Pharmacognosy Magazine, 13, 677-682. [Google Scholar] [CrossRef] [PubMed]
|
|
[124]
|
Zhang, X., Zhao, Y., Xu, J., Xue, Z., Zhang, M., Pang, X., et al. (2015) Modulation of Gut Microbiota by Berberine and Metformin during the Treatment of High-Fat Diet-Induced Obesity in Rats. Scientific Reports, 5, Article No. 14405. [Google Scholar] [CrossRef] [PubMed]
|
|
[125]
|
Cui, H., Hu, Y., Li, J. and Yuan, K. (2018) Hypoglycemic Mechanism of the Berberine Organic Acid Salt under the Synergistic Effect of Intestinal Flora and Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2018, Article ID: 8930374. [Google Scholar] [CrossRef] [PubMed]
|
|
[126]
|
Li, G., Zhou, F., Chen, Y., Zhang, W. and Wang, N. (2017) Kukoamine a Attenuates Insulin Resistance and Fatty Liver through Downregulation of SREBP-1C. Biomedicine & Pharmacotherapy, 89, 536-543. [Google Scholar] [CrossRef] [PubMed]
|
|
[127]
|
Porras, D., Nistal, E., Martínez-Flórez, S., Pisonero-Vaquero, S., Olcoz, J.L., Jover, R., et al. (2017) Protective Effect of Quercetin on High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Mice Is Mediated by Modulating Intestinal Microbiota Imbalance and Related Gut-Liver Axis Activation. Free Radical Biology and Medicine, 102, 188-202. [Google Scholar] [CrossRef] [PubMed]
|
|
[128]
|
Han, R., Qiu, H., Zhong, J., Zheng, N., Li, B., Hong, Y., et al. (2021) Si Miao Formula Attenuates Non-Alcoholic Fatty Liver Disease by Modulating Hepatic Lipid Metabolism and Gut Microbiota. Phytomedicine, 85, Article ID: 153544. [Google Scholar] [CrossRef] [PubMed]
|