肥胖与颅内动脉粥样硬化性狭窄相关研究进展
Research Progress on the Association between Obesity and Intracranial Atherosclerotic Stenosis
摘要: 肥胖作为全球日益严重的公共卫生问题,与多种慢性疾病的发生密切相关,特别是与颅内动脉粥样硬化性狭窄(ICAS)的关系受到广泛关注。然而,不同肥胖评估指标与颅内动脉粥样硬化性狭窄风险的关系需进一步探讨,以及肥胖在颅内动脉粥样硬化性狭窄的具体作用机制及其干预策略仍需深入研究。文章通过系统检索并查阅国内外相关文献,从肥胖评估指标与颅内动脉粥样硬化性狭窄的关系、肥胖影响颅内动脉粥样硬化性狭窄发生与发展的潜在机制,以及颅内动脉粥样硬化性狭窄防治中肥胖相关的管理策略三个方面进行综述。
Abstract: Obesity, as an increasingly serious global public health issue, is closely associated with the onset of various chronic diseases, particularly intracranial atherosclerotic stenosis (ICAS), which has garnered significant attention. However, the relationship between different obesity assessment indices and the risk of ICAS warrants further investigation, as does the specific role of obesity in the pathogenesis and progression of ICAS, along with potential intervention strategies. This review systematically examines domestic and international literature to explore three key aspects: the relationship between obesity assessment indices and ICAS, the underlying mechanisms by which obesity influences the development and progression of ICAS, and the management strategies for obesity in the prevention and treatment of ICAS.
文章引用:孔祥龙, 王巧. 肥胖与颅内动脉粥样硬化性狭窄相关研究进展[J]. 临床医学进展, 2025, 15(3): 520-529. https://doi.org/10.12677/acm.2025.153644

1. 引言

在全球范围内,肥胖的患病率正以惊人的速度攀升,已然成为一个严峻的公共卫生问题[1]。肥胖背后隐藏着复杂的生物学机制,与多种慢性疾病的发生发展密切相关。近年来,肥胖对脑血管系统的影响逐渐引起广泛关注,特别是与颅内动脉粥样硬化性狭窄(Intracranial Atherosclerotic Stenosis, ICAS)的关系。作为全球范围内最常见的中风原因之一,颅内动脉粥样硬化性狭窄不仅是导致缺血性中风的主要病因,而且与中风复发风险的增加密切相关[2]-[4]。准确评估肥胖程度与类型,探究其与颅内动脉粥样硬化性狭窄之间的关联,对于早期识别高危人群、制定精准有效的防治策略具有重要意义。

然而,肥胖的定义和评估指标因不同研究背景而有所差异,众多肥胖相关评估指标在临床和流行病学研究中具有各自独特的意义和应用。这些指标与颅内动脉粥样硬化性狭窄的风险存在不同程度的关联。本文综述了不同肥胖评估指标与颅内动脉粥样硬化性狭窄之间的关系,分析了肥胖影响颅内动脉粥样硬化性狭窄发生发展的潜在机制,并讨论了在颅内动脉粥样硬化性狭窄防治中肥胖相关的临床管理策略,为未来的研究和临床实践提供参考。

2. 肥胖相关指标

肥胖是一种由生物学、社会经济、环境等多种因素共同作用的复杂疾病[5]-[8],已被证明与2型糖尿病、心血管疾病及缺血性卒中等多种健康问题存在密切联系[1] [9] [10]。为深入研究肥胖对健康的影响并实现对肥胖程度和类型的准确评估,国内外学者相继提出了多种肥胖评估指标和肥胖亚型。体重指数(Body Mass Index, BMI)作为最常用的肥胖评估指标,由于其计算简单、易于测量且成本低廉,被广泛应用于临床实践与流行病学研究,但其在评估代谢风险方面存在一定局限性[11] [12]。近年来,随着对肥胖代谢影响的深入研究,基于脂肪分布和代谢功能的新型评估指标逐渐涌现,成为现代肥胖研究中的重要工具。2005年,Kahn等学者结合解剖学参数腰围(Waist Circumference, WC)和代谢指标甘油三酯(Triglyceride, TG)提出了脂质蓄积指数(Lipid Accumulation Product, LAP) [13],旨在更好地评估内脏脂肪的蓄积程度。2010年,Amato等学者进一步提出内脏脂肪指数(Visceral Adipose Index, VAI) [14],该指标结合了BMI、WC、TG和高密度脂蛋白胆固醇(High-Density Lipoprotein Cholesterol, HDL-C),成为内脏脂肪相关疾病评估的重要工具。2012年,Krakauer等学者提出了身体形态指数(A Body Shape Index, ABSI) [15],该指标在WC的基础上引入了身高和体重,以量化腹部脂肪的分布特征。为更好地适应中国人群的特点,2016年国内学者在VAI的基础上,运用二元线性逻辑回归模型构建了专门用于评估中国人群内脏脂肪蓄积程度及代谢风险的肥胖评估指标——中国内脏脂肪指数(Chinese Visceral Adipose Index, CVAI) [16]。综上所述,传统指标与新型指标各具特点,已成为评估肥胖及其相关代谢风险的重要工具。然而,这些指标在预测颅内动脉粥样硬化性狭窄风险中的表现存在差异。为更全面地探讨其在颅内动脉粥样硬化性狭窄风险评估中的应用,以下将对各类肥胖指标与颅内动脉粥样硬化性狭窄的关系进行综述,分析其临床价值及适用性。

3. 不同肥胖指标和颅内动脉粥样硬化性狭窄关系的研究现状

3.1. BMI与颅内动脉粥样硬化性狭窄

BMI作为最常用的肥胖评估指标,其与颅内动脉粥样硬化性狭窄(ICAS)风险的关系存在一定争议。一项Meta分析表明,BMI的增加与颅内动脉狭窄之间并未呈现出显著的正相关性[11]。然而,也有研究提出,较高的BMI可能与颅内动脉狭窄的发生风险呈负相关,在BMI较高的患者群体中,颅内动脉狭窄的发生率反而较低,特别是在BMI处于中高范围时,这一现象更为显著[17]。需要注意的是,这并不意味着肥胖对健康有益,而是指出在特定样本中,BMI较高的患者似乎表现出较低的颅内动脉狭窄风险。该现象的背后可能涉及多种复杂因素,因此仍需进一步的研究加以深入探讨。这可能是由于BMI作为整体肥胖的指标,未能有效评估中心性脂肪分布[18],因此难以捕捉腹部脂肪积累对颅内动脉粥样硬化性狭窄风险的贡献。

3.2. LAP与颅内动脉粥样硬化性狭窄

LAP作为一种新的肥胖评估指标,与颅内动脉粥样硬化性狭窄之间存在一定的相关性。一项针对中国中老年人群的研究发现,LAP与女性群体中的颅内动脉狭窄显著相关,在调整了潜在风险因素后,LAP的增高与ICAS的发生风险呈正相关[19]。此外,一项在巴西进行的横断面研究也发现,LAP与颈动脉内膜中层厚度显著相关[20]。颈动脉内膜中层厚度作为成人亚临床动脉粥样硬化的重要标志物之一[21],与颅内动脉粥样硬化性狭窄的发生密切相关。然而,另一项社区基础的研究表明,尽管LAP与冠状动脉粥样硬化负担密切相关,但在颅内动脉粥样硬化方面,LAP未显示出显著的统计学关系[22]。这表明,尽管LAP作为评估全身性动脉硬化的指标在部分动脉系统中显示出较好的预测能力,但其与颅内动脉狭窄的关联性仍需进一步研究,以确定其在预测ICAS中的独立价值。

3.3. VAI与颅内动脉粥样硬化性狭窄

有研究表明,VAI与颅内动脉粥样硬化性狭窄之间存在显著关联。一项研究发现,在中老年群体中,VAI的升高使颅内动脉狭窄的风险显著增加,尤其是在女性中[19]。此外,另一项研究也支持这一发现,在中国农村地区,VAI的增高与无症状颅内动脉狭窄的风险呈显著正相关。特别是在BMI正常或偏瘦(BMI ≤ 23.9 kg/m2)的参与者中,VAI较高的群体其无症状颅内动脉狭窄的发生风险显著增加[23]。这些研究表明,VAI作为评估内脏脂肪积累的指标,可能是颅内动脉狭窄的独立危险因素。

3.4. ABSI与颅内动脉粥样硬化性狭窄

现阶段,针对ABSI与颅内动脉粥样硬化性狭窄之间直接关联的研究相对匮乏,尚未有大规模、具有权威性结论的研究对二者的直接关系进行明确阐释。不过,我们能够从现有相关研究成果中梳理并提炼出具有潜在价值的线索。一项聚焦于中国人群的横断面研究显示,ABSI与亚临床颈动脉粥样硬化密切相关,且这一关联在没有高血压、糖尿病和高脂血症等传统危险因素的人群中依然存在,随着ABSI水平的升高,颈动脉斑块的检出率呈显著线性增加趋势[24]。另一项研究分析了ABSI与脑卒中之间的关系,结果表明,ABSI与脑卒中的发生率显著正相关,尤其在男性群体中尤为明显[25]。尽管上述研究未涉及颅内动脉狭窄,但由于颈动脉和颅内动脉在动脉粥样硬化的形成过程和机制上具有一定的相似性,ABSI与颈动脉硬化和脑卒中发生的关系可能为探讨其对颅内动脉狭窄的潜在影响提供了间接证据。

3.5. CVAI与颅内动脉粥样硬化性狭窄

CVAI作为反映内脏脂肪积累和相关代谢紊乱的重要指标,目前在探究其与颅内动脉粥样硬化性狭窄直接关联方面,尚缺乏大规模、高质量的研究成果作为支撑。尽管如此,现有研究已证实CVAI与中年人群的心血管和脑血管疾病的风险密切相关,尤其是在内脏脂肪积累较多的个体中,脑血管事件的发生率显著增加[26]。与此同时,亦有相关研究表明,CVAI与颈动脉粥样硬化的患病率呈正相关[27]。尽管该研究主要关注颈动脉粥样硬化,但考虑到颈动脉与颅内动脉在病理机制上的相似性,推测CVAI可能同样与颅内动脉粥样硬化性狭窄密切相关。未来迫切需要开展更多高质量、大样本的研究,直接探讨CVAI与颅内动脉粥样硬化性狭窄的关系,明确其在预测ICAS中的独立价值和临床应用前景。

4. 肥胖影响颅内动脉狭窄发生发展的相关机制

4.1. 炎症

肥胖通常伴随过度的脂肪积累,尤其是内脏脂肪的堆积,进而引发代谢紊乱,使机体处于低水平慢性炎症和氧化应激状态[28]。这一慢性炎症状态会导致多种促炎因子的分泌增加,特别是肿瘤坏死因子-α (TNF-α)和白介素-6 (IL-6)等,这些因子不仅加剧脂肪组织内的炎症反应,还会通过血液循环影响其他器官[29]。在脑血管系统中,炎症因子的增加破坏了血脑屏障的紧密连接,使炎症介质容易渗透至大脑的细胞外间隙[30] [31]。这种渗透作用加剧了脑血管内皮细胞的炎症反应,导致一氧化氮(NO)生成减少和黏附分子(如VCAM-1、ICAM-1)表达增加,从而促进单核细胞等免疫细胞的募集和迁移,最终引发内皮功能障碍,进而加速动脉粥样硬化斑块的形成[32]-[34]

此外,慢性低度炎症还可能促使血管新生,即微血管的异常生长。在颅内动脉狭窄的背景下,虽然血管新生在一定程度上可为缺血区域提供额外的血液供应,但异常的血管生成也可能促进斑块的进一步生长,增加动脉的狭窄程度,甚至加剧血管壁的破裂和血栓形成,从而使颅内动脉狭窄的风险加大[31]

4.2. 肠道微生物群

肠道菌群是指寄居在肠道微生物群落,包括细菌、真菌、病毒等,包含数万亿种微生物细胞[35]。这些微生物在维持机体内环境的平衡、促进消化、调节免疫功能以及保障整体健康方面起着至关重要的作用[36]。肥胖常伴随肠道菌群的失调[37],这种紊乱会影响营养物质的代谢和吸收过程,破坏机体的代谢稳态,并显著增加免疫性疾病、神经系统疾病等多种健康问题的风险[38]。研究发现,肥胖患者的肠道菌群多样性显著降低,且肠道内厚壁菌门/拟杆菌门的比值明显升高,同时厚壁菌门、梭杆菌门、变形杆菌门和乳酸杆菌属等微生物的数量增加,而拟杆菌门、植物乳杆菌、甲烷短杆菌和副干酪乳杆菌等的数量显著减少[39]

此外,肠道菌群的失调被认为是颅内动脉粥样硬化狭窄的潜在高危因素。研究发现,颅内动脉狭窄患者的肠道菌群构成发生了显著变化。与健康对照组相比,颅内动脉狭窄患者组的肠道菌群在多种菌属的丰度上表现出明显差异。例如,拟杆菌属的丰度较高,而大拟单胞菌属丰度则较低[40]。此外,一项孟德尔随机化研究进一步揭示了肠道菌群的某些种类与不同类型的动脉粥样硬化(包括颅内动脉粥样硬化)之间存在显著的因果关系。具体而言,瘤胃球菌属被发现对颅内动脉粥样硬化具有保护作用,而链球菌属等则与颅内动脉粥样硬化呈现致病作用[41]

4.3. 氧化应激

氧化应激是肥胖引起代谢紊乱的重要病理特征之一,且与颅内动脉狭窄的发生发展密切相关。肥胖患者由于营养过剩,线粒体的数量和形态发生异常变化,导致活性氧(Reactive Oxygen Species, ROS)的过度生成[42] [43]。在生理条件下,ROS参与多个重要的生物学过程,包括脂质过氧化、细胞凋亡、受损细胞的自噬、基因调控、葡萄糖转运和血清素摄取等[44]。此外,ROS还能影响内皮源性舒张因子的合成、释放和失活,通过调节血管扩张或收缩来调节血管张力[45]。但在病理状态下,ROS的过量生成会导致细胞内的脂质、蛋白质和DNA受到氧化损伤[42] [46],加重氧化应激,影响内皮功能,进而促进动脉粥样硬化的发生。持续增强的氧化应激不仅引发线粒体功能障碍,还可能通过激活线粒体通透性转换孔[42],进一步破坏细胞代谢稳态,从而加速血管壁的损伤。

综上所述,炎症、肠道微生物群失调和氧化应激等机制相互交织,共同介导了肥胖对颅内动脉粥样硬化性狭窄的影响。炎症反应打破了脑血管系统的稳态,促进了动脉粥样硬化斑块的形成;肠道微生物群的改变通过影响代谢和免疫功能,增加了颅内动脉粥样硬化的风险;氧化应激则直接损伤血管内皮细胞,加速了血管壁的病变进程。这些机制的深入研究为理解肥胖与颅内动脉粥样硬化性狭窄的关系提供了理论基础。明确肥胖影响颅内动脉粥样硬化性狭窄的内在机制后,如何基于这些机制制定有效的临床管理策略,以降低颅内动脉粥样硬化性狭窄的发生风险,改善患者预后,成为了临床实践中亟待解决的问题。接下来,本文将围绕在颅内动脉粥样硬化性狭窄防治中肥胖相关的临床管理策略展开探讨。

5. 颅内动脉粥样硬化性狭窄防治中肥胖相关的临床管理策略

5.1. 体重管理

体重管理作为肥胖干预的重要措施,对于改善代谢紊乱和降低心血管疾病风险具有重要意义。有研究表明,在超重或肥胖的2型糖尿病患者中,通过在一年内减少至少10%的体重,可以显著降低21%的主要心血管事件风险(包括非致命性脑卒中),以及24%的次要心血管事件风险[47]。此外,在症状性颅内动脉狭窄患者中,体重管理同样发挥了关键作用。有研究表明,体重管理作为一种综合风险因素控制策略,结合饮食、运动和行为疗法,能够显著降低患者症状性颅内动脉狭窄的风险[48]

5.2. 生活方式干预

5.2.1. 饮食调整

合理的饮食调整不仅有助于体重控制,还能通过多种机制降低颅内动脉粥样硬化性狭窄的风险。肥胖可通过慢性炎症和氧化应激等机制增加颅内动脉粥样硬化性狭窄的发生,而抗氧化剂在降低这种风险方面具有显著作用。有研究表明,维生素C通过中和自由基、减少脂质过氧化及调控促炎因子的表达,发挥了显著的抗氧化和抗炎效果[49]。减少饮食中果糖和盐分的摄入对预防代谢综合征和高血压具有重要作用[50],同时还可以间接降低颅内动脉粥样硬化性狭窄的风险。控制高血压的膳食方法通过增加水果、蔬菜、全谷物及低脂乳制品的摄入,同时限制盐、饱和脂肪和糖的摄入,不仅能够显著降低血压,还对心血管健康起到保护作用[51]。地中海饮食同样因强调健康脂肪和多样化营养摄入而被证实能够显著改善心血管健康[52],有助于颅内动脉粥样硬化性狭窄的预防。综合来看,合理的饮食调整作为肥胖管理的关键策略,可通过多途径降低颅内动脉粥样硬化性狭窄的发生风险。

5.2.2. 运动干预

体力活动在肥胖患者的管理中起着关键作用。定期的有氧运动(如快走、游泳、骑车等)能帮助消耗卡路里、改善心肺功能。大量研究表明,体育活动不仅有助于降低2型糖尿病的风险,还能预防高血压[53] [54]。由于糖尿病和高血压是颅内动脉粥样硬化性狭窄的重要危险因素[55],通过改善这些代谢性疾病,运动能够间接减少颅内动脉粥样硬化性狭窄的发生。在一项针对无卒中史人群的研究中,发现规律的休闲时间体力活动(LTPA)与严重的颅内动脉狭窄呈负相关。具体来说,该研究发现,进行更多体力活动的个体,患有≥ 70%颅内动脉狭窄的风险显著较低[56]。运动的减重效果与运动强度、频率和持续时间密切相关,根据美国心脏协会的建议,成年人每周至少应完成150分钟的中等强度有氧运动,或选择75分钟的高强度有氧运动[57]

5.3. 药物治疗

当生活方式的干预无法有效控制肥胖,或在极度肥胖患者中,药物治疗成为重要的干预手段[58]。其中,奥利司他是一种广泛应用的减肥药物,其作用机制是抑制肠道脂肪酶活性,从而减少膳食脂肪的吸收[58]。近期研究表明,低剂量的奥利司他不仅具有减重作用,还在脑缺血再灌注损伤中展现出神经保护作用,可能通过减少氧化应激和改善能量代谢失衡实现[59]。此外,还有研究表明补充益生菌可以缓解脑缺血再灌注损伤引起的氧化应激和凋亡反应,进而改善了神经功能缺损[60]。为颅内动脉粥样硬化性狭窄的防治提供了新的研究方向和潜在治疗策略。通过合理使用抗生素等方法调节肠道菌群,也可能对颅内动脉粥样硬化性狭窄的治疗产生积极作用,这有助于减少脑梗死面积、减轻脑水肿和神经功能损伤,从而改善颅内动脉粥样硬化性狭窄患者的预后[61]

5.4. 手术治疗

对于病态性肥胖(BMI ≥ 40 kg/m2或BMI ≥ 35 kg/m2且合并严重代谢紊乱)的患者,减重手术(如胃旁路手术和袖状胃切除术)也是一种有效的选择[58] [62]。手术不仅能显著降低体重,还能通过改善代谢综合征因素减少颅内动脉粥样硬化性狭窄的风险。瑞典的一项前瞻性对照研究显示,与接受常规护理的对照组相比,减重手术组的心血管死亡风险显著降低,首次心血管事件(包括心肌梗死和脑卒中)的发生率也明显减少[63]。这一结果表明,减重手术可能通过长期改善体重和代谢紊乱,间接降低颅内动脉粥样硬化性狭窄的发生风险。然而,手术治疗需经过多学科团队的全面评估,并强调术后长期随访以确保其疗效和安全性。

6. 小结

近年来,肥胖已成为全球范围内一个日益严重的健康问题。肥胖与颅内动脉粥样硬化性狭窄的关系受到了越来越多的关注。本文综述了肥胖评估指标(如BMI、LAP、VAI等)在预测颅内动脉粥样硬化性狭窄风险中的应用价值。并探讨了肥胖通过多种病理生理机制,如炎症反应、肠道菌群失调和氧化应激等,如何影响颅内动脉粥样硬化性狭窄的发生和发展。同时,本文总结了体重管理、生活方式干预以及药物和手术治疗等肥胖管理策略在颅内动脉粥样硬化性狭窄预防和治疗中的应用现状。

尽管已有研究为肥胖与颅内动脉粥样硬化性狭窄的关系提供了丰富的证据,但目前仍存在诸多亟待解决的关键问题。在肥胖评估指标方面,部分指标(如ABSI和CVAI)与颅内动脉粥样硬化性狭窄的直接关联缺乏大规模、高质量的研究数据支持,不同肥胖评估指标在诊断颅内动脉粥样硬化性狭窄的临床适用性有待进一步明确,未来需要开展大量多中心、大样本的前瞻性研究,挖掘能够更全面反映肥胖状态及与颅内动脉粥样硬化性狭窄关系的生物标志物,并建立一套适用于不同人群的精准评估体系。关于肥胖影响颅内动脉粥样硬化性狭窄的机制,虽然已经揭示了炎症、肠道微生物群失调和氧化应激等重要机制,但这些机制之间的相互作用以及它们与其他潜在机制的协同关系尚不清楚。未来研究应深入探讨这些机制的内在联系,利用基因编辑、细胞模型和动物模型等技术,明确关键信号通路和调控靶点。还应借助先进的技术手段,如多组学技术、单细胞测序等,从分子、细胞和整体水平全面解析肥胖影响颅内动脉粥样硬化性狭窄的机制,为开发新的治疗靶点和干预策略提供坚实的理论基础。在肥胖管理策略的应用上,尽管体重管理、生活方式干预、药物治疗和手术治疗等方法已被广泛应用,但这些策略的长期效果和安全性仍需进一步验证,肥胖管理在颅内动脉粥样硬化性狭窄防治中的具体作用也需通过大规模、多中心的前瞻性研究加以验证。同时,如何根据患者的个体特征,如年龄、性别、遗传背景、合并症等,制定个性化的肥胖管理方案,实现精准防治,也是未来研究的重点方向。此外,还应加强对肥胖与颅内动脉粥样硬化性狭窄关系的科普宣传,提高公众的健康意识,促进早期预防和干预。

未来的研究应围绕上述关键问题展开,加强基础研究与临床实践的结合,致力于开发更精准的肥胖评估工具和干预措施,为颅内动脉粥样硬化性狭窄的个体化防治提供更为科学的指导,以期更有效地降低颅内动脉粥样硬化性狭窄的发生率和危害,改善患者的健康状况。

NOTES

*通讯作者。

参考文献

[1] Powell-Wiley, T.M., Poirier, P., Burke, L.E., Després, J., Gordon-Larsen, P., Lavie, C.J., et al. (2021) Obesity and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation, 143, e984-e1010.
https://doi.org/10.1161/cir.0000000000000973
[2] Derdeyn, C.P., Chimowitz, M.I., Lynn, M.J., Fiorella, D., Turan, T.N., Janis, L.S., et al. (2014) Aggressive Medical Treatment with or without Stenting in High-Risk Patients with Intracranial Artery Stenosis (SAMMPRIS): The Final Results of a Randomised Trial. The Lancet, 383, 333-341.
https://doi.org/10.1016/s0140-6736(13)62038-3
[3] Sangha, R.S., Naidech, A.M., Corado, C., Ansari, S.A. and Prabhakaran, S. (2017) Challenges in the Medical Management of Symptomatic Intracranial Stenosis in an Urban Setting. Stroke, 48, 2158-2163.
https://doi.org/10.1161/strokeaha.116.016254
[4] Gutierrez, J., Turan, T.N., Hoh, B.L. and Chimowitz, M.I. (2022) Intracranial Atherosclerotic Stenosis: Risk Factors, Diagnosis, and Treatment. The Lancet Neurology, 21, 355-368.
https://doi.org/10.1016/s1474-4422(21)00376-8
[5] Loos, R.J.F. (2012) Genetic Determinants of Common Obesity and Their Value in Prediction. Best Practice & Research Clinical Endocrinology & Metabolism, 26, 211-226.
https://doi.org/10.1016/j.beem.2011.11.003
[6] Sallis, J.F. and Glanz, K. (2009) Physical Activity and Food Environments: Solutions to the Obesity Epidemic. The Milbank Quarterly, 87, 123-154.
https://doi.org/10.1111/j.1468-0009.2009.00550.x
[7] Sommer, I., Griebler, U., Mahlknecht, P., Thaler, K., Bouskill, K., Gartlehner, G., et al. (2015) Socioeconomic Inequalities in Non-Communicable Diseases and Their Risk Factors: An Overview of Systematic Reviews. BMC Public Health, 15, Article No. 914.
https://doi.org/10.1186/s12889-015-2227-y
[8] Gebreab, S.Z., Vandeleur, C.L., Rudaz, D., Strippoli, M.F., Gholam-Rezaee, M., Castelao, E., et al. (2018) Psychosocial Stress over the Lifespan, Psychological Factors, and Cardiometabolic Risk in the Community. Psychosomatic Medicine, 80, 628-639.
https://doi.org/10.1097/psy.0000000000000621
[9] Kahn, S.E., Hull, R.L. and Utzschneider, K.M. (2006) Mechanisms Linking Obesity to Insulin Resistance and Type 2 Diabetes. Nature, 444, 840-846.
https://doi.org/10.1038/nature05482
[10] Marini, S., Merino, J., Montgomery, B.E., Malik, R., Sudlow, C.L., Dichgans, M., et al. (2020) Mendelian Randomization Study of Obesity and Cerebrovascular Disease. Annals of Neurology, 87, 516-524.
https://doi.org/10.1002/ana.25686
[11] Ma, Y., Leng, X., Dong, Y., Xu, W., Cao, X., Ji, X., et al. (2019) Risk Factors for Intracranial Atherosclerosis: A Systematic Review and Meta-Analysis. Atherosclerosis, 281, 71-77.
https://doi.org/10.1016/j.atherosclerosis.2018.12.015
[12] Bouchi, R., Takeuchi, T., Akihisa, M., Ohara, N., Nakano, Y., Nishitani, R., et al. (2015) High Visceral Fat with Low Subcutaneous Fat Accumulation as a Determinant of Atherosclerosis in Patients with Type 2 Diabetes. Cardiovascular Diabetology, 14, Article No. 136.
https://doi.org/10.1186/s12933-015-0302-4
[13] Kahn, H.S. (2005) The “Lipid Accumulation Product” Performs Better than the Body Mass Index for Recognizing Cardiovascular Risk: A Population-Based Comparison. BMC Cardiovascular Disorders, 5, Article No. 26.
https://doi.org/10.1186/1471-2261-5-26
[14] Amato, M.C., Giordano, C., Galia, M., Criscimanna, A., Vitabile, S., Midiri, M., et al. (2010) Visceral Adiposity Index: A Reliable Indicator of Visceral Fat Function Associated with Cardiometabolic Risk. Diabetes Care, 33, 920-922.
https://doi.org/10.2337/dc09-1825
[15] Krakauer, N.Y. and Krakauer, J.C. (2012) A New Body Shape Index Predicts Mortality Hazard Independently of Body Mass Index. PLOS ONE, 7, e39504.
https://doi.org/10.1371/journal.pone.0039504
[16] Xia, M., Chen, Y., Lin, H., Ma, H., Li, X., Aleteng, Q., et al. (2016) A Indicator of Visceral Adipose Dysfunction to Evaluate Metabolic Health in Adult Chinese. Scientific Reports, 6, Article No. 38214.
https://doi.org/10.1038/srep38214
[17] Wong, K.S., Ng, P.W., Tang, A., Liu, R., Yeung, V. and Tomlinson, B. (2007) Prevalence of Asymptomatic Intracranial Atherosclerosis in High-Risk Patients. Neurology, 68, 2035-2038.
https://doi.org/10.1212/01.wnl.0000264427.09191.89
[18] Okorodudu, D.O., Jumean, M.F., Montori, V.M., Romero-Corral, A., Somers, V.K., Erwin, P.J., et al. (2010) Diagnostic Performance of Body Mass Index to Identify Obesity as Defined by Body Adiposity: A Systematic Review and Meta-Analysis. International Journal of Obesity, 34, 791-799.
https://doi.org/10.1038/ijo.2010.5
[19] Li, R., Li, Q., Cui, M., Ying, Z., Li, L., Zhong, T., et al. (2017) Visceral Adiposity Index, Lipid Accumulation Product and Intracranial Atherosclerotic Stenosis in Middle-Aged and Elderly Chinese. Scientific Reports, 7, Article No. 7951.
https://doi.org/10.1038/s41598-017-07811-7
[20] Eickemberg, M., Amorim, L.D.A.F., de Almeida, M.C.C., de Aquino, E.M.L., de Fonseca, M.J.M., de Souza Santos, I., et al. (2018) Indicators of Abdominal Adiposity and Carotid Intima-Media Thickness: Results from the Longitudinal Study of Adult Health (ELSA-Brazil). Arquivos Brasileiros de Cardiologia, 112, 220-227.
https://doi.org/10.5935/abc.20180273
[21] Lorenz, M.W., Markus, H.S., Bots, M.L., Rosvall, M. and Sitzer, M. (2007) Prediction of Clinical Cardiovascular Events with Carotid Intima-Media Thickness: A Systematic Review and Meta-Analysis. Circulation, 115, 459-467.
https://doi.org/10.1161/circulationaha.106.628875
[22] Sun, J., Meng, X., Huang, H., Jing, J., Pan, Y., Mei, L., et al. (2023) Higher Visceral Adiposity Index and Lipid Accumulation Product in Relation to Increased Risk of Atherosclerotic Burden in Community-Dwelling Older Adults. Experimental Gerontology, 174, Article 112115.
https://doi.org/10.1016/j.exger.2023.112115
[23] Zhao, W., Ma, X., Ju, J., Zhao, Y., Wang, X., Li, S., et al. (2023) Association of Visceral Adiposity Index with Asymptomatic Intracranial Arterial Stenosis: A Population-Based Study in Shandong, China. Lipids in Health and Disease, 22, Article No. 64.
https://doi.org/10.1186/s12944-023-01831-1
[24] Ma, X., Chen, L., Hu, W. and He, L. (2022) Association between a Body Shape Index and Subclinical Carotid Atherosclerosis in Population Free of Cardiovascular and Cerebrovascular Diseases. Journal of Atherosclerosis and Thrombosis, 29, 1140-1152.
https://doi.org/10.5551/jat.62988
[25] Abete, I., Arriola, L., Etxezarreta, N., Mozo, I., Moreno-Iribas, C., Amiano, P., et al. (2014) Association between Different Obesity Measures and the Risk of Stroke in the EPIC Spanish Cohort. European Journal of Nutrition, 54, 365-375.
https://doi.org/10.1007/s00394-014-0716-x
[26] Lv, Z., Ji, Y., Xu, S., Li, C. and Cai, W. (2024) Chinese Visceral Adiposity Index and Its Transition Patterns: Impact on Cardiovascular and Cerebrovascular Diseases in a National Cohort Study. Lipids in Health and Disease, 23, Article No. 124.
https://doi.org/10.1186/s12944-024-02105-0
[27] Li, B., Lai, X., Yan, C., Jia, X. and Li, Y. (2020) The Associations between Neutrophil-to-Lymphocyte Ratio and the Chinese Visceral Adiposity Index, and Carotid Atherosclerosis and Atherosclerotic Cardiovascular Disease Risk. Experimental Gerontology, 139, Article 111019.
https://doi.org/10.1016/j.exger.2020.111019
[28] Vilahur, G., Ben-Aicha, S. and Badimon, L. (2017) New Insights into the Role of Adipose Tissue in Thrombosis. Cardiovascular Research, 113, 1046-1054.
https://doi.org/10.1093/cvr/cvx086
[29] Ellulu, M.S., Patimah, I., Khaza’ai, H., Rahmat, A. and Abed, Y. (2017) Obesity and Inflammation: The Linking Mechanism and the Complications. Archives of Medical Science, 4, 851-863.
https://doi.org/10.5114/aoms.2016.58928
[30] Yang, J., Ran, M., Li, H., Lin, Y., Ma, K., Yang, Y., et al. (2022) New Insight into Neurological Degeneration: Inflammatory Cytokines and Blood-Brain Barrier. Frontiers in Molecular Neuroscience, 15, Article 1013933.
https://doi.org/10.3389/fnmol.2022.1013933
[31] Prakash, R. and Carmichael, S.T. (2015) Blood-Brain Barrier Breakdown and Neovascularization Processes after Stroke and Traumatic Brain Injury. Current Opinion in Neurology, 28, 556-564.
https://doi.org/10.1097/wco.0000000000000248
[32] O’Carroll, S.J., Kho, D.T., Wiltshire, R., Nelson, V., Rotimi, O., Johnson, R., et al. (2015) Pro-Inflammatory TNFα and IL-1β Differentially Regulate the Inflammatory Phenotype of Brain Microvascular Endothelial Cells. Journal of Neuroinflammation, 12, Article No. 131.
https://doi.org/10.1186/s12974-015-0346-0
[33] Stancu, C.S., Toma, L. and Sima, A.V. (2012) Dual Role of Lipoproteins in Endothelial Cell Dysfunction in Atherosclerosis. Cell and Tissue Research, 349, 433-446.
https://doi.org/10.1007/s00441-012-1437-1
[34] Jickling, G.C., Liu, D., Ander, B.P., Stamova, B., Zhan, X. and Sharp, F.R. (2015) Targeting Neutrophils in Ischemic Stroke: Translational Insights from Experimental Studies. Journal of Cerebral Blood Flow & Metabolism, 35, 888-901.
https://doi.org/10.1038/jcbfm.2015.45
[35] Liu, R., Hong, J., Xu, X., Feng, Q., Zhang, D., Gu, Y., et al. (2017) Gut Microbiome and Serum Metabolome Alterations in Obesity and after Weight-Loss Intervention. Nature Medicine, 23, 859-868.
https://doi.org/10.1038/nm.4358
[36] Valdes, A.M., Walter, J., Segal, E. and Spector, T.D. (2018) Role of the Gut Microbiota in Nutrition and Health. BMJ, 361, k2179.
https://doi.org/10.1136/bmj.k2179
[37] Koeth, R.A., Wang, Z., Levison, B.S., Buffa, J.A., Org, E., Sheehy, B.T., et al. (2013) Intestinal Microbiota Metabolism of L-Carnitine, a Nutrient in Red Meat, Promotes Atherosclerosis. Nature Medicine, 19, 576-585.
https://doi.org/10.1038/nm.3145
[38] Gao, R., Zhu, C., Li, H., Yin, M., Pan, C., Huang, L., et al. (2017) Dysbiosis Signatures of Gut Microbiota along the Sequence from Healthy, Young Patients to Those with Overweight and Obesity. Obesity, 26, 351-361.
https://doi.org/10.1002/oby.22088
[39] Crovesy, L., Masterson, D. and Rosado, E.L. (2020) Profile of the Gut Microbiota of Adults with Obesity: A Systematic Review. European Journal of Clinical Nutrition, 74, 1251-1262.
https://doi.org/10.1038/s41430-020-0607-6
[40] Zhang, G., Zhong, X., Chen, J., Yang, C., Liu, Y., LI, R., et al. (2024) The Gut Microbiome and Serum Metabolome Are Altered and Interrelated in Patients with Intracranial Atherosclerotic Stenosis. Journal of Stroke and Cerebrovascular Diseases, 33, Article 107887.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2024.107887
[41] Jiang, S., Yu, C., Lv, B., He, S., Zheng, Y., Yang, W., et al. (2024) Two-Sample Mendelian Randomization to Study the Causal Association between Gut Microbiota and Atherosclerosis. Frontiers in Immunology, 14, Article 1282072.
https://doi.org/10.3389/fimmu.2023.1282072
[42] Peoples, J.N., Saraf, A., Ghazal, N., Pham, T.T. and Kwong, J.Q. (2019) Mitochondrial Dysfunction and Oxidative Stress in Heart Disease. Experimental & Molecular Medicine, 51, 1-13.
https://doi.org/10.1038/s12276-019-0355-7
[43] Qiu, H. and Schlegel, V. (2018) Impact of Nutrient Overload on Metabolic Homeostasis. Nutrition Reviews, 76, 693-707.
https://doi.org/10.1093/nutrit/nuy023
[44] Rauf, A., Khalil, A.A., Awadallah, S., Khan, S.A., Abu‐Izneid, T., Kamran, M., et al. (2023) Reactive Oxygen Species in Biological Systems: Pathways, Associated Diseases, and Potential Inhibitors—A Review. Food Science & Nutrition, 12, 675-693.
https://doi.org/10.1002/fsn3.3784
[45] Krüger-Genge, A., Blocki, A., Franke, R. and Jung, F. (2019) Vascular Endothelial Cell Biology: An Update. International Journal of Molecular Sciences, 20, Article 4411.
https://doi.org/10.3390/ijms20184411
[46] Obeagu, E.I., Igwe, M.C. and Obeagu, G.U. (2024) Oxidative Stress’s Impact on Red Blood Cells: Unveiling Implications for Health and Disease. Medicine, 103, e37360.
https://doi.org/10.1097/md.0000000000037360
[47] Look AHEAD Research Group (2016) Association of the Magnitude of Weight Loss and Changes in Physical Fitness with Long-Term Cardiovascular Disease Outcomes in Overweight or Obese People with Type 2 Diabetes: A Post-Hoc Analysis of the Look AHEAD Randomised Clinical Trial. The Lancet Diabetes & Endocrinology, 4, 913-921.
https://doi.org/10.1016/S2213-8587(16)30162-0
[48] Hoak, D.A. and Lutsep, H.L. (2016) Management of Symptomatic Intracranial Stenosis. Current Cardiology Reports, 18, Article No. 83.
https://doi.org/10.1007/s11886-016-0762-5
[49] Ellulu, M.S. (2017) Obesity, Cardiovascular Disease, and Role of Vitamin C on Inflammation: A Review of Facts and Underlying Mechanisms. Inflammopharmacology, 25, 313-328.
https://doi.org/10.1007/s10787-017-0314-7
[50] Soleimani, M., Barone, S., Luo, H. and Zahedi, K. (2023) Pathogenesis of Hypertension in Metabolic Syndrome: The Role of Fructose and Salt. International Journal of Molecular Sciences, 24, Article 4294.
https://doi.org/10.3390/ijms24054294
[51] Filippou, C.D., Tsioufis, C.P., Thomopoulos, C.G., Mihas, C.C., Dimitriadis, K.S., Sotiropoulou, L.I., et al. (2020) Dietary Approaches to Stop Hypertension (DASH) Diet and Blood Pressure Reduction in Adults with and without Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Advances in Nutrition, 11, 1150-1160.
https://doi.org/10.1093/advances/nmaa041
[52] Chen, W., Zhang, S., Hu, X., Chen, F. and Li, D. (2023) A Review of Healthy Dietary Choices for Cardiovascular Disease: From Individual Nutrients and Foods to Dietary Patterns. Nutrients, 15, Article 4898.
https://doi.org/10.3390/nu15234898
[53] Aune, D., Norat, T., Leitzmann, M., Tonstad, S. and Vatten, L.J. (2015) Physical Activity and the Risk of Type 2 Diabetes: A Systematic Review and Dose-Response Meta-Analysis. European Journal of Epidemiology, 30, 529-542.
https://doi.org/10.1007/s10654-015-0056-z
[54] Diaz, K.M. and Shimbo, D. (2013) Physical Activity and the Prevention of Hypertension. Current Hypertension Reports, 15, 659-668.
https://doi.org/10.1007/s11906-013-0386-8
[55] Mouradian, M.S., Majumdar, S.R., Senthilselvan, A., Khan, K. and Shuaib, A. (2002) How Well Are Hypertension, Hyperlipidemia, Diabetes, and Smoking Managed after a Stroke or Transient Ischemic Attack? Stroke, 33, 1656-1659.
https://doi.org/10.1161/01.str.0000017877.62543.14
[56] Yang, D., Liu, M., Willey, J.Z., Khasiyev, F., Tom, S.E., Rundek, T., et al. (2023) Physical Activity Is Inversely Associated with Severe Intracranial Stenosis in Stroke-Free Participants of Nomas. Stroke, 54, 159-166.
https://doi.org/10.1161/strokeaha.122.039660
[57] Piercy, K.L., Troiano, R.P., Ballard, R.M., Carlson, S.A., Fulton, J.E., Galuska, D.A., et al. (2018) The Physical Activity Guidelines for Americans. JAMA, 320, 2020-2028.
https://doi.org/10.1001/jama.2018.14854
[58] Bray, G.A., Frühbeck, G., Ryan, D.H. and Wilding, J.P.H. (2016) Management of Obesity. The Lancet, 387, 1947-1956.
https://doi.org/10.1016/s0140-6736(16)00271-3
[59] Kadri, S., El Ayed, M., Kadri, A., Limam, F., Aouani, E. and Mokni, M. (2021) Protective Effect of Grape Seed Extract and Orlistat Co-Treatment against Stroke: Effect on Oxidative Stress and Energy Failure. Biomedicine & Pharmacotherapy, 136, Article 111282.
https://doi.org/10.1016/j.biopha.2021.111282
[60] Sun, J., Ling, Z., Wang, F., Chen, W., Li, H., Jin, J., et al. (2016) Clostridium Butyricum Pretreatment Attenuates Cerebral Ischemia/Reperfusion Injury in Mice via Anti-Oxidation and Anti-Apoptosis. Neuroscience Letters, 613, 30-35.
https://doi.org/10.1016/j.neulet.2015.12.047
[61] Benakis, C., Brea, D., Caballero, S., Faraco, G., Moore, J., Murphy, M., et al. (2016) Commensal Microbiota Affects Ischemic Stroke Outcome by Regulating Intestinal γδ T Cells. Nature Medicine, 22, 516-523.
https://doi.org/10.1038/nm.4068
[62] Hubbard, V.S. and Hall, W.H. (1991) Gastrointestinal Surgery for Severe Obesity. Obesity Surgery, 1, 257-265.
[63] Sjöström, L., Peltonen, M., Jacobson, P., Sjöström, C.D., Karason, K., Wedel, H., et al. (2012) Bariatric Surgery and Long-Term Cardiovascular Events. JAMA, 307, 56-65.
https://doi.org/10.1001/jama.2011.1914