[1]
|
Trefts, E., Gannon, M. and Wasserman, D.H. (2017) The Liver. Current Biology, 27, R1147-R1151. https://doi.org/10.1016/j.cub.2017.09.019
|
[2]
|
Matsubara, Y., Kiyohara, H., Teratani, T., Mikami, Y. and Kanai, T. (2022) Organ and Brain Crosstalk: The Liver-Brain Axis in Gastrointestinal, Liver, and Pancreatic Diseases. Neuropharmacology, 205, Article 108915. https://doi.org/10.1016/j.neuropharm.2021.108915
|
[3]
|
Harrell, C.R., Pavlovic, D., Djonov, V. and Volarevic, V. (2022) Therapeutic Potential of Mesenchymal Stem Cells in the Treatment of Acute Liver Failure. World Journal of Gastroenterology, 28, 3627-3636. https://doi.org/10.3748/wjg.v28.i28.3627
|
[4]
|
夏浩杰. 加味茵陈蒿汤调控巨噬细胞减轻急慢性肝损伤作用研究[D]: [硕士学位论文]. 开封: 河南大学, 2024.
|
[5]
|
Xiao, J., Wang, F., Wong, N., He, J., Zhang, R., Sun, R., et al. (2019) Global Liver Disease Burdens and Research Trends: Analysis from a Chinese Perspective. Journal of Hepatology, 71, 212-221. https://doi.org/10.1016/j.jhep.2019.03.004
|
[6]
|
Li, M., Wang, Z.Q., Zhang, L., et al. (2020) Burden of Cirrhosis and Other Chronic Liver Diseases Caused by Specific Etiologies in China, 1990-2016: Findings from the Global Burden of Disease Study 2016. Biomedical and Environmental Sciences, 33, 1-10.
|
[7]
|
Park, W., Wei, S., Kim, B., Kim, B., Bae, S., Chae, Y.C., et al. (2023) Diversity and Complexity of Cell Death: A Historical Review. Experimental & Molecular Medicine, 55, 1573-1594. https://doi.org/10.1038/s12276-023-01078-x
|
[8]
|
Shu, Y., He, D., Li, W., Wang, M., Zhao, S., Liu, L., et al. (2020) Hepatoprotective Effect of Citrus aurantium L. against APAP-Induced Liver Injury by Regulating Liver Lipid Metabolism and Apoptosis. International Journal of Biological Sciences, 16, 752-765. https://doi.org/10.7150/ijbs.40612
|
[9]
|
Guicciardi, M.E., Malhi, H., Mott, J.L., et al. (2013) Apoptosis and Necrosis in the Liver. Comprehensive Physiology, 3, 977-1010.
|
[10]
|
Jaeschke, H. and Ramachandran, A. (2024) Acetaminophen Hepatotoxicity: Paradigm for Understanding Mechanisms of Drug-Induced Liver Injury. Annual Review of Pathology: Mechanisms of Disease, 19, 453-478. https://doi.org/10.1146/annurev-pathmechdis-051122-094016
|
[11]
|
Wang, J., Sun, Z., Xie, J., Ji, W., Cui, Y., Ai, Z., et al. (2023) Inflammasome and Pyroptosis in Autoimmune Liver Diseases. Frontiers in Immunology, 14, Article 1150879. https://doi.org/10.3389/fimmu.2023.1150879
|
[12]
|
Liu, Z., Wang, M., Wang, X., Bu, Q., Wang, Q., Su, W., et al. (2022) XBP1 Deficiency Promotes Hepatocyte Pyroptosis by Impairing Mitophagy to Activate mtDNA-cGAS-STING Signaling in Macrophages during Acute Liver Injury. Redox Biology, 52, Article 102305. https://doi.org/10.1016/j.redox.2022.102305
|
[13]
|
Yao, H., Hu, C., Yin, L., Tao, X., Xu, L., Qi, Y., et al. (2019) Corrigendum to “Dioscin Reduces Lipopolysaccharide-Induced Inflammatory Liver Injury via Regulating TLR4/MyD88 Signal Pathway” [Int. Immunopharmacol. 36 (2016) 132-141]. International Immunopharmacology, 74, Article 105786. https://doi.org/10.1016/j.intimp.2019.105786
|
[14]
|
Xie, Z., Jiang, J., Yang, F., Han, J., Ma, Z., Wen, T., et al. (2025) The C3/C3aR Pathway Exacerbates Acetaminophen-Induced Mouse Liver Injury via Upregulating Podoplanin on the Macrophage. The FASEB Journal, 39, e70272. https://doi.org/10.1096/fj.202402278rr
|
[15]
|
薛瑾, 陈应强. Nrf2/HO-1信号通路在肝脏相关疾病中的研究进展[J]. 南昌大学学报(医学版), 2022, 62(3): 88-92.
|
[16]
|
Yuan, R., Tao, X., Liang, S., Pan, Y., He, L., Sun, J., et al. (2018) Protective Effect of Acidic Polysaccharide from Schisandra Chinensis on Acute Ethanol-Induced Liver Injury through Reducing Cyp2e1-Dependent Oxidative Stress. Biomedicine & Pharmacotherapy, 99, 537-542. https://doi.org/10.1016/j.biopha.2018.01.079
|
[17]
|
Kim, H., Noh, J., Moon, S., Choi, D., Kim, Y., Kim, K., et al. (2018) Sicyos angulatus Ameliorates Acute Liver Injury by Inhibiting Oxidative Stress via Upregulation of Anti-Oxidant Enzymes. Redox Report, 23, 206-212. https://doi.org/10.1080/13510002.2018.1546986
|
[18]
|
Quirino, A., Marascio, N., Branda, F., Ciccozzi, A., Romano, C., Locci, C., et al. (2024) Viral Hepatitis: Host Immune Interaction, Pathogenesis and New Therapeutic Strategies. Pathogens, 13, Article 766. https://doi.org/10.3390/pathogens13090766
|
[19]
|
Schuppan, D. and Afdhal, N.H. (2008) Liver Cirrhosis. The Lancet, 371, 838-851. https://doi.org/10.1016/s0140-6736(08)60383-9
|
[20]
|
Ji, C. (2008) Dissection of Endoplasmic Reticulum Stress Signaling in Alcoholic and Non-Alcoholic Liver Injury. Journal of Gastroenterology and Hepatology, 23, S16-S24. https://doi.org/10.1111/j.1440-1746.2007.05276.x
|
[21]
|
Ding, W., Li, M., Chen, X., Ni, H., Lin, C., Gao, W., et al. (2010) Autophagy Reduces Acute Ethanol-Induced Hepatotoxicity and Steatosis in Mice. Gastroenterology, 139, 1740-1752. https://doi.org/10.1053/j.gastro.2010.07.041
|
[22]
|
Mackowiak, B., Fu, Y., Maccioni, L. and Gao, B. (2024) Alcohol-Associated Liver Disease. Journal of Clinical Investigation, 134, e176345. https://doi.org/10.1172/jci176345
|
[23]
|
Hao, L., Li, S., Li, C., Zhang, Z., Hu, X. and Yan, H. (2025) A Review of the Therapeutic Potential of Ginseng and Its Bioactive Components in Nonalcoholic Fatty Liver Disease. Drug Design, Development and Therapy, 19, 83-96. https://doi.org/10.2147/dddt.s500719
|
[24]
|
Wei, S., Wang, L., Evans, P.C. and Xu, S. (2024) NAFLD and NASH: Etiology, Targets and Emerging Therapies. Drug Discovery Today, 29, Article 103910. https://doi.org/10.1016/j.drudis.2024.103910
|
[25]
|
Reuben, A., Koch, D.G. and Lee, W.M. (2010) Drug-Induced Acute Liver Failure: Results of a U.S. Multicenter, Prospective Study. Hepatology, 52, 2065-2076. https://doi.org/10.1002/hep.23937
|
[26]
|
Björnsson, H. and Björnsson, E. (2022) Drug-Induced Liver Injury: Pathogenesis, Epidemiology, Clinical Features, and Practical Management. European Journal of Internal Medicine, 97, 26-31. https://doi.org/10.1016/j.ejim.2021.10.035
|
[27]
|
Sirbe, C., Simu, G., Szabo, I., Grama, A. and Pop, T.L. (2021) Pathogenesis of Autoimmune Hepatitis—Cellular and Molecular Mechanisms. International Journal of Molecular Sciences, 22, Article 13578. https://doi.org/10.3390/ijms222413578
|
[28]
|
Shah, N.D. and Barritt, A.S. (2022) Nutrition as Therapy in Liver Disease. Clinical Therapeutics, 44, 682-696. https://doi.org/10.1016/j.clinthera.2022.04.012
|
[29]
|
Hammad, A., Kaido, T., Aliyev, V., Mandato, C. and Uemoto, S. (2017) Nutritional Therapy in Liver Transplantation. Nutrients, 9, Article 1126. https://doi.org/10.3390/nu9101126
|
[30]
|
Perumpail, B., Li, A., Cholankeril, G., Kumari, R. and Ahmed, A. (2017) Optimizing the Nutritional Support of Adult Patients in the Setting of Cirrhosis. Nutrients, 9, Article 1114. https://doi.org/10.3390/nu9101114
|
[31]
|
Lee, T.H. (2018) Nutritional Assessment and Management for Patients with Chronic Liver Disease. The Korean Journal of Gastroenterology, 71, 185-191. https://doi.org/10.4166/kjg.2018.71.4.185
|
[32]
|
Berná, G. and Romero-Gomez, M. (2020) The Role of Nutrition in Non-Alcoholic Fatty Liver Disease: Pathophysiology and Management. Liver International, 40, 102-108. https://doi.org/10.1111/liv.14360
|
[33]
|
周秀琳, 顾惠芳, 傅亚萍, 等. 肝硬化患者个性化营养干预效果的评价[J]. 职业与健康, 2011, 27(15): 1749-1751.
|
[34]
|
徐晓明, 梁宝玲, 杨洁. 个性化营养支持对老年慢性乙型肝炎患者肝功能指标及能量代谢的影响[J]. 老年医学与保健, 2022, 28(6): 1333-1337.
|
[35]
|
Honda, T., Ishigami, M., Luo, F., Lingyun, M., Ishizu, Y., Kuzuya, T., et al. (2017) Branched-Chain Amino Acids Alleviate Hepatic Steatosis and Liver Injury in Choline-Deficient High-Fat Diet Induced NASH Mice. Metabolism, 69, 177-187. https://doi.org/10.1016/j.metabol.2016.12.013
|
[36]
|
Eguchi, A., Iwasa, M., Tamai, Y., Tempaku, M., Takamatsu, S., Miyoshi, E., et al. (2021) Branched-Chain Amino Acids Protect the Liver from Cirrhotic Injury via Suppression of Activation of Lipopolysaccharide-Binding Protein, Toll-Like Receptor 4, and Signal Transducer and Activator of Transcription 3, as Well as Enterococcus Faecalis Translocation. Nutrition, 86, Article 111194. https://doi.org/10.1016/j.nut.2021.111194
|
[37]
|
Li, Q., Liu, W., Zhang, H., Chen, C., Liu, R., Hou, H., et al. (2023) Α-d-1,3-Glucan from Radix Puerariae thomsonii Improves NAFLD by Regulating the Intestinal Flora and Metabolites. Carbohydrate Polymers, 299, Article 120197. https://doi.org/10.1016/j.carbpol.2022.120197
|
[38]
|
Shen, H., Zhou, L., Zhang, H., Yang, Y., Jiang, L., Wu, D., et al. (2024) Dietary Fiber Alleviates Alcoholic Liver Injury via Bacteroides Acidifaciens and Subsequent Ammonia Detoxification. Cell Host & Microbe, 32, 1331-1346.e6. https://doi.org/10.1016/j.chom.2024.06.008
|
[39]
|
Liang, H., Song, H., Zhang, X., Song, G., Wang, Y., Ding, X., et al. (2022) Metformin Attenuated Sepsis-Related Liver Injury by Modulating Gut Microbiota. Emerging Microbes & Infections, 11, 815-828. https://doi.org/10.1080/22221751.2022.2045876
|
[40]
|
Velasque, M.J.S.G., Branchini, G., Catarina, A.V., Bettoni, L., Fernandes, R.S., Da Silva, A.F., et al. (2023) Fish Oil-Omega-3 Exerts Protective Effect in Oxidative Stress and Liver Dysfunctions Resulting from Experimental Sepsis. Journal of Clinical and Experimental Hepatology, 13, 64-74. https://doi.org/10.1016/j.jceh.2022.07.001
|
[41]
|
Zhang, H., Lu, Y., Zhang, Y., Dong, J., Jiang, S. and Tang, Y. (2024) DHA-Enriched Phosphatidylserine Ameliorates Cyclophosphamide-Induced Liver Injury via Regulating the Gut-Liver Axis. International Immunopharmacology, 140, Article 112895. https://doi.org/10.1016/j.intimp.2024.112895
|