小切口基质透镜取出术后干眼症发病机制的研究进展
Research Progress on the Mechanism of Dry Eyes after SMILE
摘要: 近视在全球发病率逐年增加,据估计,到2050年,全球近视人数将接近50亿。随着屈光手术的发展,小切口基质透镜取出术(Small Incision Lenticule Extraction, SMILE)由于其有效性和安全性,在临床上广泛应用,现已成为不少年轻人矫正屈光不正的首选。尽管它在医患群体中都非常受欢迎,但与其他角膜类屈光手术一样,干眼症是其术后最常见的并发症,也是患者术后满意度下降的主要原因。术后干眼症不仅影响患者的生活质量,还会导致威胁视力的其他并发症。近年来,研究发现SMILE术后干眼症由多因素共同作用,了解SMILE术后干眼症发病机制更有助于临床治疗。
Abstract: The global incidence of myopia is increasing year by year, and it is estimated that by 2050, the number of myopic people worldwide will be close to 5 billion. With the development of refractive surgery, small incision lenticule extraction (SMILE) has become the first choice for many young people to correct refractive errors due to its effectiveness and safety. Although it is very popular among doctors and patients, dry eye syndrome, like other corneal refractive surgery, is the most common complication after surgery and the main reason for the decline in postoperative patient satisfaction. Postoperative dry eye not only affects the patient’s quality of life, but can also lead to other sight-threatening complications. In recent years, it has been found that dry eye syndrome after SMILE is multifactorial, and understanding the mechanisms of dry eye syndrome after SMILE is more helpful for clinical treatment.
文章引用:莫雨菡, 徐梅. 小切口基质透镜取出术后干眼症发病机制的研究进展[J]. 临床医学进展, 2025, 15(3): 538-544. https://doi.org/10.12677/acm.2025.153646

1. 引言

角膜屈光手术后干眼症的发病机制并不单一,可能与角膜神经切断、术后炎症反应、结膜杯状细胞受损、泪膜不稳定以及术后用药带来的毒副作用有关,为多种因素共同作用的结果。小切口基质透镜取出术是近年来出现的一种新的角膜屈光手术,它通过飞秒激光在角膜层间制作一个基质透镜,并通过微小切口将透镜取出,以达到矫正近视的目的[1]。与其他角膜屈光手术相比,它不产生角膜瓣,对角膜的侵入性小,术后角膜生物力学更加稳定[2] [3]。但有研究[4]-[9]仍然观察到SMILE术后患者会产生干眼症,更甚者会在相当长的一段时间内持续存在干眼症。本文就SMILE术后干眼症可能的发病机制进行综述。

2. 角膜神经损伤

角膜神经的切断在屈光手术后干眼症的发生中有着不可忽视的作用。角膜神经以放射状的方式从外周向中心进入,在前弹力层下形成上皮下神经丛,穿透前弹力层形成基底下神经丛,最终产生角膜终末神经[10] [11]。SMILE手术以飞秒激光进行两次扫描制作角膜基质透镜,在侧方做一小切口,用特殊的镊子将透镜从此切口取出,在这一过程中,角膜切口处的周围神经纤维依然会被切断。此外,在基质透镜区域内穿过前弹力层的神经纤维也会被切除,即使与其他角膜屈光手术方式相比,SMILE术后角膜神经影响较小[12]

2.1. SMILE手术对角膜神经的影响

SMILE手术对角膜神经形态、密度、分布和角膜敏感性均存在一定的影响[12]-[14]。2014年,研究人员对兔子眼睛实施了SMILE手术,用免疫染色观察兔角膜切片以及提取的角膜基质透镜,发现术后治疗区域的中心、上、下、鼻和颞的角膜神经长度和密度均减少[15]。Yang [16]等人用共聚焦显微镜观察到SMILE术后1周的角膜基底下神经密度显著降低。有趣的是不同帽的厚度对角膜神经的破坏无显著差异,但是只比较了100 μm和120 μm的帽厚度,且观察时间点仅为术后1周。在另一项相似的研究中,Song [17]等人对3组角膜帽厚度(110 μm、120 μm、130 μm)进行了为期6个月的观察,110 μm组角膜基质下神经定量值显著低于120 μm和130 μm组,尤其是在术后1周。有学者还发现,高度近视的患者SMILE术后对角膜神经的影响更大,且矫正的等效球镜度数与角膜神经纤维密度、角膜神经分支密度、角膜神经纤维长度、角膜神经纤维面积和神经纤维分布均呈显著负相关[18]。可以理解的是,在高度近视矫正中,基质消融范围大,因而受到影响的角膜神经更多。与之相反的事实是,Denoyer [19]报告说,SMILE手术组的角膜神经变化不显著。这可以解释为,整个基底下神经丛是一个相互连接的网络,有几个较大的神经干通过基质神经将冲动传递到角膜缘传入神经及更远的地方。SMILE手术虽然切断了一些基质神经,但某些仍然存在的神经可以传递来自整个基底下神经丛的信息,从而保持功能完整性,这也解释了为何有的研究表明SMILE术后干眼指标并无恶化[20],但角膜神经纤维数量与干眼指标的相关性还需要进一步研究。

2.2. 角膜神经切断引发干眼症的机制

2.2.1. 损伤眼表–泪腺神经通路

角膜神经具有感觉功能,感觉输入参与保护性的眨眼反射,同时也是驱动泪腺分泌泪液的传入成分[21]。角膜神经被切断会破坏眼表–泪腺神经环,通过影响角膜敏感性、泪腺分泌、眨眼反射导致干眼[11] [21]。SMILE手术除了激光消融基质内神经外,在取出透镜的切口处也切断了部分神经,角膜部分失去神经支配从而降低了角膜敏感性。Lee等人[22]在其构建的小鼠模型中发现,单侧角膜神经切断能够减少泪腺泪液的分泌,有趣的是,这种减少发生在小鼠的双侧泪腺,这种现象可能与神经通路的逆向传导有关。目前最新的一项研究进一步揭示了微观层面的发生机制,这种单侧角膜神经切断通过VIP/Hif1a/TfR1通路诱导双侧泪腺细胞铁死亡从而导致泪腺分泌减少,为角膜屈光手术诱导的干眼症带来了有前途的新治疗靶点[23]。同时,角膜去神经支配导致眨眼反射减少,眨眼率下降,泪液蒸发过强,泪膜不稳定从而引发干眼[24]

2.2.2. 诱发眼表炎症反应

与伤口愈合相关的炎症反应在SMILE术后干眼的发病中也有所参与[25]。这是一种神经源性的炎症反应,即由神经介质介导的炎症。角膜神经可以释放各种神经递质以及神经肽、神经营养因子,包括P物质(SP)、降钙素基因相关肽(CGRP)、血管活性肠肽(VIP)等[26]。SMILE手术切断部分角膜神经,诱发角膜伤口的愈合,启动一系列免疫级联反应。在此过程中,泪液神经介质的释放会改变泪液成分,破坏泪膜稳态,引发干眼症,导致患者的不适[25] [27]。一项观察性研究中,研究人员发现在用环钻切断小鼠角膜神经后的2周,双侧角膜和结膜中的免疫细胞增加。基于此,他们假设单侧角膜神经损伤可能会破坏双侧眼表免疫稳态并导致干眼症的发生发展[22]。Gao等人[28]报道了SMILE术后早期患者泪液中白介素-6 (IL-6)和神经生长因子(NGF)升高,不同的是IL-6在术后1个月即恢复到术前水平,而NGF在术后3月才恢复。NGF是一种主要由角膜上皮和基质表达的神经营养物质,在角膜伤口愈合过程中触发其释放。Liu [29]曾提出假设,尽管飞秒激光精确地只消融角膜基质制作屈光透镜,但在此过程中可能会逸出少部分能量,造成轻微的上皮损伤并触发炎症反应。SMILE手术涉及两次飞秒激光扫描,因此SMILE手术上皮受影响更大,可以解释NGF在术后3月才恢复到基线水平。尽管如此,这只是一种假设,未来需要更多研究证据来支持。值得注意的是,研究表明,在高度近视的SMILE术后人群中,表现出SP和CGRP的显著升高[27]。这一点与SMILE术后观察到的高度近视对角膜神经影响更大相符。

2.2.3. 去神经支配导致上皮屏障功能受损

上皮屏障功能受损可以看作是干眼症的严重表现。角膜神经除了感觉功能以外,还具有营养功能,它能释放大量神经介质从而保证上皮细胞的健康[21]。这些神经介质对上皮–神经相互作用至关重要。神经和细胞之间存在相互支持和依赖的循环,上皮细胞和角膜神经相辅相成,不仅角膜神经能够分泌神经营养因子营养上皮,上皮细胞反过来也会分泌细胞因子维持神经的健康和再生。角膜感觉传入神经切断导致上皮营养障碍,上皮细胞对神经的营养作用丢失,在此过程中亦可诱发眼表炎症反应,导致角膜上皮的屏障功能受损,由此所致的恶性循环,其最终结果为眼表环境的失衡,从而产生干眼症。

2.3. SMILE术后角膜神经变化与干眼症的关系

角膜神经、神经介质和干眼症之间的相互关系需要进一步阐述。一项最新的屈光术后观察研究发现,单侧SMILE术后患者表现出双侧角膜的改变,其中包括神经退行性改变、角膜敏感性降低、干眼症状恶化和泪液神经介质的变化。在SMILE组中,角膜敏感性与角膜神经纤维长度呈正相关,与干眼症严重程度呈负相关,SP和NGF在泪液中的水平与角膜敏感性呈负相关,但与干眼症严重程度呈正相关[30]。Liu等人的实验证实,SMILE术后随着角膜神经纤维面积以及角膜神经纤维分布的显著减少,泪液分泌量(Schirmer试验值)也显著减少[18]。既往也有研究证实过,SMILE术后IL-6水平与眼表疾病指数量表分数(OSDI)呈正相关,NGF水平与角膜敏感性呈负相关[28]。另一项研究发现,NGF水平与OSDI高度正相关,与泪膜破裂时间(BUT)负相关,转化生长因子-β1 (TGF-β1)与BUT负相关[31]。在人类中,泪液中的CGRP与角膜神经密度和敏感性之间的关系已得到证实[32],然而,并未观察到SP、CGRP、肿瘤坏死因子-α (TNF-α)、细胞间粘附因子-1 (ICAM-1)等其他神经介质在SMILE术后的变化以及其与角膜神经之间的关系,猜测可能与SMILE手术对角膜神经的影响不足以引起足够量的这些炎症介质释放有关,矫正屈光度越大,角膜神经及神经介质变化越显著可以用来解释这一点,但这其中的具体机制需要研究进一步阐明[27] [31]。SMILE术后的角膜神经参数、泪液神经介质与干眼症的临床体征显著相关,这也间接揭示了SMILE术后干眼的潜在机制。

3. 损伤结膜杯状细胞

结膜杯状细胞分泌黏蛋白,是参与构成泪膜的重要组成成分[33]。在飞秒激光抽吸过程中,吸引环产生的负压很容易损伤角膜缘周围的结膜杯状细胞,其分泌的黏蛋白减少,导致泪膜不稳定,引发干眼症。一项关于激光原位角膜磨镶术(LASIK)的前瞻性研究观察到LASIK术后结膜杯状细胞密度的减少[34],另一项研究证实了是LASIK手术中负压吸引对结膜杯状细胞的损伤导致了密度的减少[35]。有报道称,与使用微型角膜刀相比,使用飞秒激光对结膜杯状细胞的减少影响更大,并且结膜杯状细胞的减少与抽吸时间存在高度相关性[36]。SMILE手术中同样使用飞秒激光,然而,目前并未报道关于SMILE手术对结膜杯状细胞影响,还需要更多的证据支持。

4. 泪膜分布异常及不稳定

飞秒激光消融后导致角膜形状的改变将影响眼表和眼睑之间的关系,导致泪膜分布异常,蒸发增加[37]。研究发现SMILE手术与飞秒激光辅助原位角膜磨镶术(FS-Lasik手术)相比,导致角膜前表面更不规则,推测是因为其取出一中间厚、两边薄的角膜基质透镜,导致角膜更趋于扁平[38]。Zhang等人[6]的研究表明SMILE后角膜表面不规则性会影响泪膜稳定性,BUT值降低,并且,泪膜稳定性下降会改变角膜曲率,造成恶性循环。既往有学者发现屈光手术后会导致功能性睑板腺的减少,从而引发慢性泪膜功能障碍[37]。脂质层位于泪膜的最外层,由睑板腺细胞分泌,泪膜脂质层厚度(LLT)是评价泪膜稳定性的重要指标[39]。不完全眨眼会导致脂质分布不均以及增加蒸发,引发眼表不稳定的恶性循环,这会进一步加剧干眼症[40]-[43]。Li等人[44]的研究发现SMILE术后1周、1月的LLT显著下降,而不完全眨眼率上升,这些变化均表明泪膜稳定性下降,可能参与了SMILE术后干眼的发生。

5. 药物对角膜及结膜的毒性作用

局部药物的毒副作用会对角膜和结膜造成一定程度的损害[45]。SMILE术前、术中、术后都会局部应用一些含有防腐剂的药物,例如抗生素滴眼液、表面麻醉剂、激素滴眼液等。苯扎氯胺是局部眼用制剂中应用最广的防腐剂,在多种动物模型以及人体外试验中已证实,苯扎氯胺对眼表的毒性作用[46] [47]。有学者成功建立了苯扎氯铵局部给药诱导的小鼠干眼模型,并深入探讨了苯扎氯胺可能通过诱发眼表炎症反应从而导致干眼的机制[48] [49]。除了药物中防腐剂的毒副作用外,某些药物本身也会造成干眼症反应,这可能是由于长期应用局部药物导致的上皮屏障功能受损[50]。SMILE术后会使用0.2%酒石酸溴莫尼定或噻吗洛尔等局部制剂降眼压以及改善夜视环境下眩光等不适,它们作为α受体激动剂以及β受体阻滞剂已被证实会引起干眼[51] [52]。药物使用与SMILE术后干眼之间的关系还需大量临床研究证实。

6. 总结

干眼被定义为“一种多因素的眼表疾病,其特征是泪膜稳态破坏,并伴有眼部症状,其中泪膜不稳定和高渗性、眼表炎症和损伤以及神经感觉异常起着病因作用”[53]。归根到底,SMILE术后干眼症的发生并不是由单一因素引起的,就以上探讨的可能机制之间,也有许多相互作用,例如角膜去神经支配、角膜伤口愈合可启动一系列免疫级联反应,诱发眼表炎症,眼表炎症又可破坏泪膜稳态,局部药物的毒副作用损伤眼表,诱导炎症,从而导致泪膜不稳定,表现为干眼,眼部干燥反过来将延迟角膜伤口愈合,导致更严重的后果。今后的研究方向可以从泪液基因组学、蛋白质组学、代谢组学深入,确认具体的分子靶点以及标志物,从而优化SMILE术后干眼的治疗。了解SMILE术后干眼的发生机制有助于确定新的治疗靶点,因此,临床上对待屈光术后干眼的管理策略得以进一步更新。

NOTES

*通讯作者。

参考文献

[1] Sharma, N., Asif, M., Bafna, R., Mehta, J., Reddy, J., Titiyal, J., et al. (2020) Complications of Small Incision Lenticule Extraction. Indian Journal of Ophthalmology, 68, 2711-2722.
https://doi.org/10.4103/ijo.ijo_3258_20
[2] Xia, L., Zhang, J., Wu, J. and Yu, K. (2016) Comparison of Corneal Biological Healing after Femtosecond LASIK and Small Incision Lenticule Extraction Procedure. Current Eye Research, 41, 1202-1208.
https://doi.org/10.3109/02713683.2015.1107590
[3] Hou, X., Chen, P., Yu, N., Luo, Y., Wei, H., Zhuang, J., et al. (2024) A Comparative and Prospective Study of Corneal Consumption and Corneal Biomechanics after SMILE and FS-LASIK Performed on the Contralateral Eyes with High Myopic Astigmatism. Translational Vision Science & Technology, 13, 29.
https://doi.org/10.1167/tvst.13.11.29
[4] Palme, C., Mulrine, F., McNeely, R.N., Steger, B., Naroo, S.A. and Moore, J.E. (2021) Assessment of the Correlation of the Tear Breakup Time with Quality of Vision and Dry Eye Symptoms after SMILE Surgery. International Ophthalmology, 42, 1013-1020.
https://doi.org/10.1007/s10792-021-02086-4
[5] Cui, G., Wang, T., Di, Y., Yang, S., Li, Y. and Chen, D. (2024) Changes of Dry Eye Parameters after Small Incision Lenticule Extraction Surgery in Patients with Different Ocular Surface Disease Index Scores. Scientific Reports, 14, Article No. 863.
https://doi.org/10.1038/s41598-023-49645-6
[6] Zhang, H. and Wang, Y. (2017) Dry Eye Evaluation and Correlation Analysis between Tear Film Stability and Corneal Surface Regularity after Small Incision Lenticule Extraction. International Ophthalmology, 38, 2283-2288.
https://doi.org/10.1007/s10792-017-0717-x
[7] Qiu, P.J. and Yang, Y.B. (2016) Early Changes to Dry Eye and Ocular Surface after Small-Incision Lenticule Extraction for Myopia. International Journal of Ophthalmology, 9, 575-579.
[8] Moshirfar, M., Murri, M.S., Shah, T.J., Linn, S.H., Ronquillo, Y., Birdsong, O.C., et al. (2018) Initial Single-Site Surgical Experience with SMILE: A Comparison of Results to FDA SMILE, and the Earliest and Latest Generation of Lasik. Ophthalmology and Therapy, 7, 347-360.
https://doi.org/10.1007/s40123-018-0137-7
[9] Vestergaard, A.H., Grønbech, K.T., Grauslund, J., Ivarsen, A.R. and Hjortdal, J.Ø. (2013) Subbasal Nerve Morphology, Corneal Sensation, and Tear Film Evaluation after Refractive Femtosecond Laser Lenticule Extraction. Graefes Archive for Clinical and Experimental Ophthalmology, 251, 2591-2600.
https://doi.org/10.1007/s00417-013-2400-x
[10] Al-Aqaba, M.A., Fares, U., Suleman, H., Lowe, J. and Dua, H.S. (2009) Architecture and Distribution of Human Corneal Nerves. British Journal of Ophthalmology, 94, 784-789.
https://doi.org/10.1136/bjo.2009.173799
[11] Medeiros, C.S. and Santhiago, M.R. (2020) Corneal Nerves Anatomy, Function, Injury and Regeneration. Experimental Eye Research, 200, Article 108243.
https://doi.org/10.1016/j.exer.2020.108243
[12] Ma, K.K. and Manche, E.E. (2022) Corneal Sensitivity and Patient-Reported Dry Eye Symptoms in a Prospective Randomized Contralateral-Eye Trial Comparing Laser in Situ Keratomileusis and Small Incision Lenticule Extraction. American Journal of Ophthalmology, 241, 248-253.
https://doi.org/10.1016/j.ajo.2022.05.010
[13] Recchioni, A., Sisó-Fuertes, I., Hartwig, A., Hamid, A., Shortt, A.J., Morris, R., et al. (2020) Short-Term Impact of FS-LASIK and SMILE on Dry Eye Metrics and Corneal Nerve Morphology. Cornea, 39, 851-857.
https://doi.org/10.1097/ico.0000000000002312
[14] Li, M., Zhou, Z., Shen, Y., Knorz, M.C., Gong, L. and Zhou, X. (2014) Comparison of Corneal Sensation between Small Incision Lenticule Extraction (SMILE) and Femtosecond Laser-Assisted LASIK for Myopia. Journal of Refractive Surgery, 30, 94-100.
https://doi.org/10.3928/1081597x-20140120-04
[15] Mohamed-Noriega, K., Riau, A.K., Lwin, N.C., Chaurasia, S.S., Tan, D.T. and Mehta, J.S. (2014) Early Corneal Nerve Damage and Recovery Following Small Incision Lenticule Extraction (SMILE) and Laser in Situ Keratomileusis (LASIK). Investigative Opthalmology & Visual Science, 55, 1823-1834.
https://doi.org/10.1167/iovs.13-13324
[16] Yang, W., Li, M., Fu, D., Wei, R., Cui, C. and Zhou, X. (2020) A Comparison of the Effects of Different Cap Thicknesses on Corneal Nerve Destruction after Small Incision Lenticule Extraction. International Ophthalmology, 40, 1905-1911.
https://doi.org/10.1007/s10792-020-01362-z
[17] Song, Y., Deng, S., Lyv, X., Xu, Y., Zhang, F. and Guo, N. (2024) Corneal Subbasal Nerve Plexus Reinnervation and Stromal Cell Morphology with Different Cap Thicknesses in Small Incision Lenticule Extraction. Eye and Vision, 11, Article No. 15.
https://doi.org/10.1186/s40662-024-00381-6
[18] Liu, C., Lin, M.T., Lee, I.X.Y., Mehta, J.S. and Liu, Y. (2023) Impact of Corrected Refractive Power on the Corneal Denervation and Ocular Surface in Small-Incision Lenticule Extraction and LASIK. Journal of Cataract and Refractive Surgery, 49, 1106-1113.
https://doi.org/10.1097/j.jcrs.0000000000001278
[19] Denoyer, A., Landman, E., Trinh, L., Faure, J., Auclin, F. and Baudouin, C. (2015) Dry Eye Disease after Refractive Surgery. Ophthalmology, 122, 669-676.
https://doi.org/10.1016/j.ophtha.2014.10.004
[20] Moshirfar, M., Zhang, S., Pandya, S., Murri, M., Hura, A., Zhu, D., et al. (2023) Central Corneal Distortion after Small-Incision Lenticule Extraction. Journal of Cataract and Refractive Surgery, 49, 1183-1186.
https://doi.org/10.1097/j.jcrs.0000000000001311
[21] Al-Aqaba, M.A., Dhillon, V.K., Mohammed, I., Said, D.G. and Dua, H.S. (2019) Corneal Nerves in Health and Disease. Progress in Retinal and Eye Research, 73, Article 100762.
https://doi.org/10.1016/j.preteyeres.2019.05.003
[22] Lee, H.K., Kim, K.W., Ryu, J.S., Jeong, H.J., Lee, S. and Kim, M.K. (2019) Bilateral Effect of the Unilateral Corneal Nerve Cut on Both Ocular Surface and Lacrimal Gland. Investigative Opthalmology & Visual Science, 60, 430-441.
https://doi.org/10.1167/iovs.18-26051
[23] Liu, X., Cui, Z., Chen, X., Li, Y., Qiu, J., Huang, Y., et al. (2023) Ferroptosis in the Lacrimal Gland Is Involved in Dry Eye Syndrome Induced by Corneal Nerve Severing. Investigative Opthalmology & Visual Science, 64, 27.
https://doi.org/10.1167/iovs.64.7.27
[24] Johnston, P., Rodriguez, J., Lane, K., Ousler, and Abelson, M. (2013) The Interblink Interval in Normal and Dry Eye Subjects. Clinical Ophthalmology, 7, 253-259.
https://doi.org/10.2147/opth.s39104
[25] Ang, M., Gatinel, D., Reinstein, D.Z., Mertens, E., Alió del Barrio, J.L. and Alió, J.L. (2020) Refractive Surgery beyond 2020. Eye, 35, 362-382.
https://doi.org/10.1038/s41433-020-1096-5
[26] Liu, Y., Yang, L.Y. and Mehta, J. (2021) Corneal Neuromediator Profiles Following Laser Refractive Surgery. Neural Regeneration Research, 16, 2177-2183.
https://doi.org/10.4103/1673-5374.308666
[27] Chin, J.Y., Lin, M.T., Lee, I.X.Y., Mehta, J.S. and Liu, Y. (2021) Tear Neuromediator and Corneal Denervation Following Smile. Journal of Refractive Surgery, 37, 516-523.
https://doi.org/10.3928/1081597x-20210423-01
[28] Gao, S., Li, S., Liu, L., Wang, Y., Ding, H., Li, L., et al. (2014) Early Changes in Ocular Surface and Tear Inflammatory Mediators after Small-Incision Lenticule Extraction and Femtosecond Laser-Assisted Laser in Situ Keratomileusis. PLOS ONE, 9, e107370.
https://doi.org/10.1371/journal.pone.0107370
[29] Liu, L., Cheng, W., Wu, D., Chen, L., Yu, S., Zuo, T., et al. (2020) The Differential Expression of Cytokines and Growth Factors after SMILE Compared with FS-LASIK in Rabbits. Investigative Opthalmology & Visual Science, 61, 55.
https://doi.org/10.1167/iovs.61.5.55
[30] Gong, Q., Huang, K., Li, K., Tong, Y., Zhao, J., Wang, H., et al. (2024) Structural and Functional Changes of Binocular Corneal Innervation and Ocular Surface Function after Unilateral SMILE and TPRK. British Journal of Ophthalmology, 108, 1492-1499.
https://doi.org/10.1136/bjo-2023-324358
[31] Zhang, C., Ding, H., He, M., Liu, L., Liu, L., Li, G., et al. (2016) Comparison of Early Changes in Ocular Surface and Inflammatory Mediators between Femtosecond Lenticule Extraction and Small-Incision Lenticule Extraction. PLOS ONE, 11, e0149503.
https://doi.org/10.1371/journal.pone.0149503
[32] Golebiowski, B., Chao, C., Stapleton, F. and Jalbert, I. (2017) Corneal Nerve Morphology, Sensitivity, and Tear Neuropeptides in Contact Lens Wear. Optometry and Vision Science, 94, 534-542.
https://doi.org/10.1097/opx.0000000000001063
[33] Ablamowicz, A.F. and Nichols, J.J. (2016) Ocular Surface Membrane-Associated Mucins. The Ocular Surface, 14, 331-341.
https://doi.org/10.1016/j.jtos.2016.03.003
[34] Ryan, D.S., Bower, K.S., Sia, R.K., Shatos, M.A., Howard, R.S., Mines, M.J., et al. (2016) Goblet Cell Response after Photorefractive Keratectomy and Laser in Situ Keratomileusis. Journal of Cataract and Refractive Surgery, 42, 1181-1189.
https://doi.org/10.1016/j.jcrs.2016.05.008
[35] Rodriguez-Prats, J.L., Hamdi, I.M., Rodriguez, A.E., Galal, A. and Alio, J.L. (2007) Effect of Suction Ring Application during LASIK on Goblet Cell Density. Journal of Refractive Surgery, 23, 559-562.
https://doi.org/10.3928/1081-597x-20070601-04
[36] Rodriguez, A.E., Rodriguez-Prats, J.L., Hamdi, I.M., Galal, A., Awadalla, M. and Alio, J.L. (2007) Comparison of Goblet Cell Density after Femtosecond Laser and Mechanical Microkeratome in Lasik. Investigative Opthalmology & Visual Science, 48, 2570-2575.
https://doi.org/10.1167/iovs.06-1259
[37] Jung, J.W., Kim, J.Y., Chin, H.S., Suh, Y.J., Kim, T. and Seo, K.Y. (2017) Assessment of Meibomian Glands and Tear Film in Post-Refractive Surgery Patients. Clinical & Experimental Ophthalmology, 45, 857-866.
https://doi.org/10.1111/ceo.12993
[38] 张历浊, 李忠政, 金蕊, 等. 全飞秒激光小切口角膜基质透镜取出术对角膜表面规则指数的影响[J]. 国际眼科杂志, 2021, 21(5): 881-884.
[39] Jung, J.W., Park, S.Y., Kim, J.S., Kim, E.K., Seo, K.Y. and Kim, T. (2016) Analysis of Factors Associated with the Tear Film Lipid Layer Thickness in Normal Eyes and Patients with Dry Eye Syndrome. Investigative Opthalmology & Visual Science, 57, 4076-4083.
https://doi.org/10.1167/iovs.16-19251
[40] Kawashima, M. and Tsubota, K. (2013) Tear Lipid Layer Deficiency Associated with Incomplete Blinking: A Case Report. BMC Ophthalmology, 13, Article No. 34.
https://doi.org/10.1186/1471-2415-13-34
[41] Wang, M.T.M., Tien, L., Han, A., Lee, J.M., Kim, D., Markoulli, M., et al. (2018) Impact of Blinking on Ocular Surface and Tear Film Parameters. The Ocular Surface, 16, 424-429.
https://doi.org/10.1016/j.jtos.2018.06.001
[42] McMonnies, C.W. (2007) Incomplete Blinking: Exposure Keratopathy, Lid Wiper Epitheliopathy, Dry Eye, Refractive Surgery, and Dry Contact Lenses. Contact Lens and Anterior Eye, 30, 37-51.
https://doi.org/10.1016/j.clae.2006.12.002
[43] Chen, Q., Li, M., Yuan, Y., Me, R., Yu, Y., Shi, G., et al. (2017) Effects of Tear Film Lipid Layer Thickness and Blinking Pattern on Tear Film Instability after Corneal Refractive Surgery. Cornea, 36, 810-815.
https://doi.org/10.1097/ico.0000000000001207
[44] Li, Y., Li, S., Zhou, J., Liu, C. and Xu, M. (2020) Relationship between Lipid Layer Thickness, Incomplete Blinking Rate and Tear Film Instability in Patients with Different Myopia Degrees after Small-Incision Lenticule Extraction. PLOS ONE, 15, e0230119.
https://doi.org/10.1371/journal.pone.0230119
[45] Baudouin, C., Labbé, A., Liang, H., Pauly, A. and Brignole-Baudouin, F. (2010) Preservatives in Eyedrops: The Good, the Bad and the Ugly. Progress in Retinal and Eye Research, 29, 312-334.
https://doi.org/10.1016/j.preteyeres.2010.03.001
[46] Lee, H.J., Jun, R.M., Cho, M.S. and Choi, K. (2014) Comparison of the Ocular Surface Changes Following the Use of Two Different Prostaglandin F2αanalogues Containing Benzalkonium Chloride or Polyquad in Rabbit Eyes. Cutaneous and Ocular Toxicology, 34, 195-202.
https://doi.org/10.3109/15569527.2014.944650
[47] Vitoux, M., Kessal, K., Melik Parsadaniantz, S., Claret, M., Guerin, C., Baudouin, C., et al. (2020) Benzalkonium Chloride-Induced Direct and Indirect Toxicity on Corneal Epithelial and Trigeminal Neuronal Cells: Proinflammatory and Apoptotic Responses in Vitro. Toxicology Letters, 319, 74-84.
https://doi.org/10.1016/j.toxlet.2019.10.014
[48] Lin, Z., Liu, X., Zhou, T., Wang, Y., Bai, L., He, H. and Liu, Z. (2011) A Mouse Dry Eye Model Induced by Topical AD-Ministration of Benzalkonium Chloride. Molecular VIsion, 17, 257-264.
[49] Zhang, R., Park, M., Richardson, A., Tedla, N., Pandzic, E., de Paiva, C.S., et al. (2020) Dose-Dependent Benzalkonium Chloride Toxicity Imparts Ocular Surface Epithelial Changes with Features of Dry Eye Disease. The Ocular Surface, 18, 158-169.
https://doi.org/10.1016/j.jtos.2019.11.006
[50] Mantelli, F., Tranchina, L., Lambiase, A. and Bonini, S. (2011) Ocular Surface Damage by Ophthalmic Compounds. Current Opinion in Allergy & Clinical Immunology, 11, 464-470.
https://doi.org/10.1097/aci.0b013e32834a95c9
[51] Zimmerman, T.J. and Boger, W.P. (1979) The Beta-Adrenergic Blocking Agents and the Treatment of Glaucoma. Survey of Ophthalmology, 23, 347-362.
https://doi.org/10.1016/0039-6257(79)90228-5
[52] Ishibashi, T., Yokoi, N. and Kinoshita, S. (2003) Comparison of the Short-Term Effects on the Human Corneal Surface of Topical Timolol Maleate with and without Benzalkonium Chloride. Journal of Glaucoma, 12, 486-490.
https://doi.org/10.1097/00061198-200312000-00008
[53] Craig, J.P., Nichols, K.K., Akpek, E.K., Caffery, B., Dua, H.S., Joo, C., et al. (2017) TFOS DEWS II Definition and Classification Report. The Ocular Surface, 15, 276-283.
https://doi.org/10.1016/j.jtos.2017.05.008