转甲状腺素蛋白淀粉样变性一例
A Case of Transthyretin Amyloid (ATTR)
DOI: 10.12677/acm.2025.153650, PDF, HTML, XML,    科研立项经费支持
作者: 雷 庆, 夏瑞祥*, 刘沁华:安徽医科大学第一附属医院血液内科,安徽 合肥
关键词: 淀粉样变性转甲状腺素蛋白99mTc-PYP氯苯唑酸Amyloidosis Transthyretin 99mTc PYP Chlorpromazine
摘要: 目的:探讨转甲状腺素蛋白淀粉样变性(ATTR)的临床诊断、治疗及预后。方法:回顾性分析安徽医科大学第一附属医院2022年收治的1例ATTR患者的临床资料,并进行相关文献复习。结果:患者,男性,43岁,初期表现为间断腹泻,随后因双下肢麻木乏力行神经活检提示神经淀粉样变性,现因双下肢浮肿及尿失禁就诊,经综合检查考虑淀粉样变性多系统累及,完善心脏磁共振、99mTc-PYP核素显像及基因检测,确诊ATTR,现予以氯苯唑酸治疗,随访截至2024年12月,患者病情稳定。结论:ATTR为淀粉样变性中的罕见类型,病例少,病情进展快,临床表现缺乏特异性,虽有针对性的治疗药物,但需做到早期诊断及治疗,总体预后不佳。
Abstract: Abstract: To explore the clinical diagnosis, treatment, and prognosis of transthyretin amyloidosis (ATTR). Method: A retrospective analysis was conducted on the clinical data of a patient with ATTR admitted to the First Affiliated Hospital of Anhui Medical University in 2022, and relevant literature was reviewed. Result: The patient, a 43-year-old male, initially presented with intermittent diarrhea. Subsequently, nerve biopsy was performed due to numbness and weakness in both lower limbs, indicating neuroamyloidosis. The patient is now seeking medical attention due to edema and urinary incontinence in both lower limbs. After comprehensive examination, it was considered that amyloidosis involves multiple systems. After completing cardiac magnetic resonance imaging, 99mTc PYP nuclear imaging, and genetic testing, the patient was diagnosed with ATTR and is now receiving treatment with chlorpromazine. Follow-up until December 2024 shows that the patient’s condition is stable. Conclusion: ATTR is a rare type of amyloidosis with few cases, rapid disease progression, and lack of specificity in clinical manifestations. Although there are targeted therapeutic drugs, early diagnosis and treatment are necessary, and the overall prognosis is poor.
文章引用:雷庆, 夏瑞祥, 刘沁华. 转甲状腺素蛋白淀粉样变性一例[J]. 临床医学进展, 2025, 15(3): 573-580. https://doi.org/10.12677/acm.2025.153650

1. 引言

淀粉样变性是淀粉样蛋白错误折叠并聚集成有害的纤维丝,在组织中及细胞外积聚所形成的疾病[1],而转甲状腺素蛋白淀粉样变性(transthyretin amyloidosis, ATTR)是其中的一种罕见类型,因其病例数少、易与其他疾病混淆而鲜少被临床发现。本文报道一例Leu75Pro突变的ATTR患者,探讨其临床表现及新型诊断方法,并进行相关文献复习。

2. 患者信息

2.1. 现病史

患者,男性,43岁,因“间断腹泻9年,双下肢乏力,麻木3年,双下肢浮肿1月余”于2022年7月26日入住我科。患者9年前出现间断腹泻,2019年开始出现双下肢乏力伴麻木,2019年12月就诊于外院神经内科,诊断为多发性周围神经病,肠易激综合征,未予以特殊处理。后患者麻木症状加重,麻木部位延伸至膝关节处,于2021年7月就诊于上海医院,考虑为淀粉样病变,神经活检示神经内膜可见刚果红阳性物质沉积,诊断为神经淀粉样变性,未予以特殊治疗。一年来时有腹泻,下肢麻木伴浮肿,3月前出现尿失禁,1月前出现双下肢浮肿加重,就诊于当地医院予以置入导尿管,并纠正低蛋白血症处理。20天前就诊于我院泌尿外科,考虑膀胱起搏器置入效果欠佳,暂不考虑植入,给予对症治疗后患者排尿改善,当地医院拔除导尿管。现患者下肢浮肿明显,当地医院检查肌酐、脑钠肽增高,超声检查双肾弥漫性病变,为进一步治疗就诊我科,门诊考虑“淀粉样变性多系统累及”收住。病程中,患者神清、精神一般,饮食睡眠一般,小便正常,有腹泻,活动后有胸闷,体力下降,可平卧,无咳喘,近期体重未见明显变化。

2.2. 体格检查

慢性病容,贫血貌,全身皮肤及粘膜见明显散在紫癜,右侧眼眶明显眶周紫癜,浅表淋巴结未及肿大,呼吸平稳,口唇不绀,舌体肥大,双肺呼吸音稍粗,未闻及啰音,心率92次/分,心律齐,腹软,剑突下上腹部有深压痛,无反跳痛,Murphy征(一),肝脾肋下未触及,移动性浊音阴性,双下肢轻度浮肿。

2.3. 既往病史

否认高血压、糖尿病、肝炎、结核、风湿免疫系统疾病,否认家族性肿瘤史及遗传病史,否认长期口服药物史及过敏史,12年前有精索静脉曲张手术史。

2.4. 检验及检查

患者入院后完善相关检查,部分结果如下:血常规:WBC 6.11 × 109/L,Hb 67 g/L,Plt 240 × 109/L,β-微球蛋白 > 10.00 mg/L,叶酸3.96 ng/ml,维生素B12 931 pg/m1,铁蛋白448 ug/L,白蛋白34.0 g/L,ALT 52 U/L,肌酐296.0 umo1/L,估算的肾小球滤过率23 ml/(min∙73m2),BNP 543.6 pg/ml,免疫固定电泳:阴性,心电图:1) 窦性心律,2) 提示房室传导延缓,3) T波改变,4) 肢导联低电压,5) QTc间期延长。超声心动图:左房右房增大,左室壁肥厚(IVSD 1.56 cm, LVPWD 1.39 cm),提示心肌淀粉样变。卵圆孔未闭,肺动脉高压(中度),少量心包积液。心脏磁共振:心室室壁增厚,全心内膜呈“粉尘样变化”强化,心房壁可见强化,可见少量心包积液,考虑心肌淀粉样变性(图1(a)图1(b))。骨髓形态学:增生性贫血骨髓象。骨髓活检:增生性贫血,浆细胞偏多。骨髓IgH重排检测:阴性。

(a) (b)

Figure 1. CMR of the patient: (a) Sagittal position; (b) Coronary position

1. 该患者的心脏磁共振图像:(a) 矢状位;(b) 冠状位

2.5. 诊疗经过

患者因“间断腹泻9年,双下肢乏力,麻木3年,双下肢浮肿1月余”入院,辅助检查提示心脏、肾脏、神经系统累及,结合外院病理考虑淀粉样变性,且骨髓未有单克隆浆细胞累及,外周血亦无克隆性免疫球蛋白,故不考虑系统性轻链型淀粉样变,如需明确淀粉样物质最直接的办法就是对活检物进行质谱分析。因此,我们于2022年8月8日经患者同意后行皮肤脂肪活检和唇腺活检(图2)。

(a) (b)

(c) (d)

Figure 2. Skin fat biopsy and lip gland biopsy of the patient: ((a) (b)) Abdominal fat biopsy; ((c) (d)) Labial gland and tongue body biopsy, both stained by HE, ×200

2. 患者皮肤脂肪活检和唇腺活检:((a) (b)) 腹部脂肪活检;((c) (d)) 唇腺舌体活检,均使用HE染色,×200

病理提示:(右侧下唇腺)唾液腺内可见粉染无定型物质沉积;(舌体)横纹肌内可见极少量粉染无定型物质沉积;(腹部脂肪)脂肪组织内夹杂一些粉染无定型物质,后患者因费用原因未行刚果红染色及质谱分析;患者心脏磁共振和彩超均考虑有心脏淀粉样变累及,我们结合新技术:99mTc-PYP核素显像进行诊断(图3)。

(a)

(b)

Figure 3. 99mTc-PYP radionuclide imaging of the patient: ((a) (b)) Visible cardiac radionuclide increase

3. 患者99mTc-PYP核素显像:((a) (b)) 可见心脏放射性核素增高灶

该患者99mTc-PYP核素心肌显象H/CL > 1.5,支持诊断转甲状腺素蛋白淀粉样心脏病(ATTR-CA)。后患者基因检测报告显示基因靶点突变阳性:Leu75Pro,进一步支持诊断。质谱分析一般认为是诊断ATTR-CA的金标准,ATTR-CA分为遗传性和野生型,该患者虽未行质谱分析,但有遗传学改变结合99mTc-PYP核素显象技术亦可明确诊断,患者99mTc-PYP核素心肌显象H/CL > 1.5,99mTc-PYP核素对转甲状腺素蛋白亲和性强,因此该示踪剂显象技术对诊断ATTR-CA有特异性,根据最新指南,该显像技术如阳性,结合心脏磁共振和临床表现,即使无心肌活检病理证据亦可诊断ATTR-CA,且患者基因检测阳性,故患者考虑诊断为转甲状腺素蛋白多系统淀粉样变(神经、心脏、肾脏、肠道)。患者自诉活动后有胸闷气喘表现,且脑钠肽升高,根据NYHA分级心功能为III级;患者双肾弥漫性病变,肾功能提示肌酐升高,估算的肾小球滤过率23 ml/(min∙73m2),故患者肾功能处于CKD 4期。针对患者病情我科予以及时使用氯苯唑酸,稳定转甲状腺素蛋白(transthyretin, TTR),且患者相关检查提示叶酸低下,考虑与患者常有腹泻、吸收不良有关,同时给予叶酸治疗。患者经治疗后双下肢水肿好转,右侧眼眶紫癜逐渐消退,嘱患者长期口服氯苯唑酸并门诊规律就诊,随访至截稿前患者心、肾、神经症状较前改善。

3. 讨论

淀粉样变性是一种罕见的疾病,它可以影响不同的器官,最常见的是心脏、肾脏、肝脏、脾脏、周围神经和胃肠道[1] [2]。根据错误折叠蛋白质的性质,有不同类型的淀粉样变性。目前已知的淀粉样变的前体物质有30余种[3],其中主要的类型是单克隆免疫球蛋白轻链型(AL),约占淀粉样变性的90%,除去轻链型外,仍有其他不同类型的沉积物可致淀粉样变性,例如AA型淀粉样变、转甲状腺素蛋白淀粉样变等,本例患者因血、尿轻链正常,血免疫固定电泳阴性,无单克隆蛋白及轻链,骨髓检查仅见浆细胞偏多,亦非克隆性浆细胞,故AL型淀粉样变可能性极小。此时,需考虑罕见类型淀粉样变性可能。

转甲状腺素蛋白淀粉样变性(ATTR)是由转甲状腺素蛋白(TTR)错误折叠导致其在组织中异常沉积引起的疾病[4],TTR是转运血清和脑脊液中甲状腺素(T4)和视黄醇结合蛋白(RBP)的蛋白质[5],其90%由肝脏产生,剩余10%则由脉络丛和视网膜上皮产生,正常情况下作为可溶性的同源四聚体在体内循环[6]。TTR的蛋白四聚体结构不稳定时,单体会在外周组织中形成不溶性淀粉样沉积,最终致病。其致病因素包括编码TTR的基因突变以及年龄的增长,故分为遗传型ATTR (ATTRv)及野生型ATTR (ATTRwt)。TTR基因位于18q12.1,横跨4个外显子[7]。迄今为止,已报道了130多种与遗传性ATTR相关的TTR致病变异[8],在美国,最常见的TTR突变是Val122Ile、Thr60Ala和Val30Met,而全球最常见的TTR突变是Val30Met、Val122Ile和Glu89Gln,Val30Met被认为是全球公认的突变,据目前统计结果,这种突变具有最高的患病率,主要分布在葡萄牙、西班牙、法国、日本、瑞典、南美洲和非洲的一些非流行地区[9]。该患者的基因突变阳性,突变类型为Leu75Pro,多篇文献累计报道在至少15名患者中检测到该变异,且其中至少13位患者在病理活检中发现淀粉样沉积[10]-[14],综合考虑该患者突变具有致病性,且患者年龄不大,故最终诊断为ATTRv。

该疾病表现存在异质性,主要由淀粉样物质沉积的部位决定。其中以转甲状腺素蛋白淀粉样神经病(ATTR-PN)、ATTR-CA以及混合表型为主要表型[15]。神经系统表现分为周围神经病、自主神经病和中枢神经病,约73%的ATTR-PN患者会出现自主神经功能障碍,常见症状包括阳痿、胃肠道紊乱(体重减轻、早饱以及便秘和腹泻交替)、尿失禁和直立性失调[16] [17]。ATTR-CA由于不溶性淀粉样原纤维沉积于细胞外基质而引发浸润性心肌病,因此临床表现主要为心力衰竭(HF)、传导异常和心律失常,一项回顾性研究提示淀粉样心脏病(CA)在某些心力衰竭、心脏传导障碍、腕管综合征、肥厚性心肌病、重度主动脉狭窄中较为常见[18],故临床上需重点筛查此类患者是否存在CA,以期做到早期诊断及治疗。

不同的基因型可能会导致临床表现的侧重点不同,Leu75Pro型突变已被发现存在睾丸、肾脏及肝脏等部位的累及。该患者主要累及心脏、肾脏及神经系统,目前NYHA分级心功能为III级,LVEF 57%,肾功能处于CKD 4期,且该患者以腹泻起病,后出现膀胱感觉缺失,符合淀粉样变性引起的自主神经病变,后逐渐出现的双下肢乏力麻木,则符合外周神经系统病变,故该患者考虑是以神经系统病变为首发表现的多系统累及ATTR。

患者病程迁延近10年,表明该疾病的诊断是较为困难的,其中原因不仅仅是该疾病属于罕见病中的罕见类型,更是该疾病的临床表现多变且易与其他疾病相混淆,故早期诊断便显得尤为重要。质谱技术是对淀粉样变的纤维前体蛋白分型的金标准,然而,目前其他具有更高诊断能力的无创技术,例如使用超声、心脏磁共振(CMR)和放射性核素成像技术,可能足以诊断ATTR,从而减少了活检的需要[19]

超声心动图是心脏淀粉样变性的主要诊断工具[20],可检测到具有颗粒状质地的心肌淀粉样变。CMR增强了识别心脏淀粉样变性的能力[21],具有更高的诊断准确性、敏感性及特异性[22],同时,CMR可能能够区分ATTR-CA及AL-CA [23]。使用放射性示踪剂,通过骨显像可以无创地诊断心脏淀粉样变性,具有非常高的诊断准确性(92%的敏感性和95%的特异性) [24] [25]。骨示踪剂与ATTR中淀粉样蛋白沉积相关的微钙化结合,具有高亲和力[26],故心肌摄取骨示踪剂已成为早期发现ATTR的一种实用诊断工具。现99mTC-PYP、99mTC-DPD和99mTC-HDP因对ATTR淀粉样蛋白沉积具有特异亲和力,已被作为心脏示踪剂用于ARRTv及ARRTwt的诊断[27] [28]。有研究显示,心肌放射性核素成像的敏感性 > 99%,对ATTR-CA的特异性 > 86%,假阳性几乎完全来自AL-CA的摄取,因此,核素成像有助于准确识别ATTR-CA,并与轻链型淀粉样变性或其他引起LVH或HFpEF的疾病相鉴别[29] [30]

ATTR-CA被认为是一种罕见病,主要是因为在真实世界中其异质性较高,患者合并高血压、糖尿病等其他慢性疾病概率较小,可能因胃肠道症状、肾功能不全、呼吸道症状等首诊于除心内科以外的其他科室而导致漏诊误诊,例如此患者临床首发症状为腹泻,随后出现神经系统病变。对于ARRT-CA的检查,需要结合心电图、心脏超声、CMR及放射性核素成像的结果。心肌淀粉样变性的典型心电图特征是肢体导联QRS波低电压,与左心室肥厚不一致,而最常见的心电图是传导阻滞、心房颤动、假性梗死性Q波等[31]。而ARRT-CA的心脏超声可有心室壁增厚、双心房增大、射血分数保留、限制性舒张功能障碍、GLS降低和应变相对心尖保留等表现[32]。在临床工作如果出现不明原因传导阻滞合并心室壁增厚或双心房增大且射血分数保留的患者可考虑进一步完善CMR、血清游离轻链、血清/尿蛋白免疫固定电泳等进一步排除是否为ATTR-CA。

诊断ATTR后,仅以对症处理是远远不够的,氯苯唑酸,通过与TTR四聚体的两个甲状腺激素结合位点之一结合,来稳定正确折叠的四聚体形式,防止四聚体解离和淀粉样蛋白的形成。该患者目前使用氯苯唑酸症状得到明显改善,考虑治疗有效,随访至今患者紫癜有所消退,双下肢水肿好转,心功能及肢端麻木症状较治疗前改善。

综上所述,ATTR是一种罕见病,临床表型异质性强,主要表现为神经系统病变及心脏病变,易与其他疾病混淆而造成漏诊,患者病程9年,历经三甲医院明确诊断,提示我们在遇到常见症状也要进行鉴别诊断,避免漏诊。活检后质谱分析是诊断的金标准,但因有创及费用高昂,应用局限,结合心脏彩超、磁共振及心脏放射性核素成像的应用提高了ATTR的检出率,可以做到早期无创诊断ATTR-CA,提高患者的生存率及生存时间。

声 明

该病例报道已获得病人的知情同意。

基金项目

安徽省转化医学研究院科研基金(2021zhyx-c39)。

NOTES

*通讯作者。

参考文献

[1] Gillmore, J.D. and Hawkins, P.N. (2013) Pathophysiology and Treatment of Systemic Amyloidosis. Nature Reviews Nephrology, 9, 574-586.
https://doi.org/10.1038/nrneph.2013.171
[2] Donnelly, J.P. and Hanna, M. (2017) Cardiac Amyloidosis: An Update on Diagnosis and Treatment. Cleveland Clinic Journal of Medicine, 84, 12-26.
https://doi.org/10.3949/ccjm.84.s3.02
[3] Sipe, J.D., Benson, M.D., Buxbaum, J.N., Ikeda, S., Merlini, G., Saraiva, M.J.M., et al. (2016) Amyloid Fibril Proteins and Amyloidosis: Chemical Identification and Clinical Classification International Society of Amyloidosis 2016 Nomenclature Guidelines. Amyloid, 23, 209-213.
https://doi.org/10.1080/13506129.2016.1257986
[4] Sekijima, Y., Kelly, J. and Ikeda, S. (2008) Pathogenesis of and Therapeutic Strategies to Ameliorate the Transthyretin Amyloidoses. Current Pharmaceutical Design, 14, 3219-3230.
https://doi.org/10.2174/138161208786404155
[5] Liz, M.A., Mar, F.M., Franquinho, F. and Sousa, M.M. (2010) Aboard Transthyretin: From Transport to Cleavage. IUBMB Life, 62, 429-435.
https://doi.org/10.1002/iub.340
[6] Merlini, G. and Bellotti, V. (2003) Molecular Mechanisms of Amyloidosis. New England Journal of Medicine, 349, 583-596.
https://doi.org/10.1056/nejmra023144
[7] Ruberg, F.L. and Berk, J.L. (2012) Transthyretin (TTR) Cardiac Amyloidosis. Circulation, 126, 1286-1300.
https://doi.org/10.1161/circulationaha.111.078915
[8] Conceição, I., Damy, T., Romero, M., Galán, L., Attarian, S., Luigetti, M., et al. (2019) Early Diagnosis of ATTR Amyloidosis through Targeted Follow-Up of Identified Carriers of TTR Gene Mutations. Amyloid, 26, 3-9.
https://doi.org/10.1080/13506129.2018.1556156
[9] Coelho, T., Maurer, M.S. and Suhr, O.B. (2012) THAOS—The Transthyretin Amyloidosis Outcomes Survey: Initial Report on Clinical Manifestations in Patients with Hereditary and Wild-Type Transthyretin Amyloidosis. Current Medical Research and Opinion, 29, 63-76.
https://doi.org/10.1185/03007995.2012.754348
[10] Jacobson, D., McFarlin, D., Kane, I. and Buxbaum, J. (1992) Transthyretin Pro55, a Variant Associated with Early-Onset, Aggressive, Diffuse Amyloidosis with Cardiac and Neurologic Involvement. Human Genetics, 89, 353-356.
https://doi.org/10.1007/bf00220559
[11] Kon, T., Misumi, Y., Nishijima, H., Honda, M., Suzuki, C., Baba, M., et al. (2015) Effects of Liver Transplantation and Tafamidis in Hereditary Transthyretin Amyloidosis Caused by Transthyretin Leu55pro Mutation: A Case Report. Amyloid, 22, 203-204.
https://doi.org/10.3109/13506129.2015.1031373
[12] Xu, J., Yang, M., Pan, X., Yu, X., Xie, J., Ren, H., et al. (2017) Transthyretin-Related Hereditary Amyloidosis with Recurrent Vomiting and Renal Insufficiency as the Initial Presentation: A Case Report. Medicine, 96, e5737.
https://doi.org/10.1097/md.0000000000005737
[13] Lee, Y.J., Oh, J., Hwang, S., Lee, E.J., Yang, D.H., Kim, Y., et al. (2019) Extremely Early Onset Transthyretin Familial Amyloid Polyneuropathy with a Leu55pro Mutation: A Pediatric Case Report and Literature Review. Neuropediatrics, 50, 322-326.
https://doi.org/10.1055/s-0039-1693145
[14] Castro-Rodrigues, A.F., Gales, L., Saraiva, M.J. and Damas, A.M. (2011) Structural Insights into a Zinc-Dependent Pathway Leading to Leu55pro Transthyretin Amyloid Fibrils. Acta Crystallographica Section D Biological Crystallography, 67, 1035-1044.
https://doi.org/10.1107/s090744491104491x
[15] Manolis, A.S., Manolis, A.A., Manolis, T.A. and Melita, H. (2019) Cardiac Amyloidosis: An Underdiagnosed/Underappreciated Disease. European Journal of Internal Medicine, 67, 1-13.
https://doi.org/10.1016/j.ejim.2019.07.022
[16] Dohrn, M.F., Röcken, C., Bleecker, J.L., Martin, J., Vorgerd, M., Bergh, P.Y., et al. (2013) Diagnostic Hallmarks and Pitfalls in Late-Onset Progressive Transthyretin-Related Amyloid-Neuropathy. Journal of Neurology, 260, 3093-3108.
https://doi.org/10.1007/s00415-013-7124-7
[17] Wixner, J., Mundayat, R., Karayal, O.N., Anan, I., Karling, P. and Suhr, O.B. (2014) THAOS: Gastrointestinal Manifestations of Transthyretin Amyloidosis-Common Complications of a Rare Disease. Orphanet Journal of Rare Diseases, 9, Article No. 61.
https://doi.org/10.1186/1750-1172-9-61
[18] Aimo, A., Merlo, M., Porcari, A., Georgiopoulos, G., Pagura, L., Vergaro, G., et al. (2022) Redefining the Epidemiology of Cardiac Amyloidosis. A Systematic Review and Meta‐Analysis of Screening Studies. European Journal of Heart Failure, 24, 2342-2351.
https://doi.org/10.1002/ejhf.2532
[19] Di Bella, G., Pizzino, F., Minutoli, F., Zito, C., Donato, R., Dattilo, G., et al. (2014) The Mosaic of the Cardiac Amyloidosis Diagnosis: Role of Imaging in Subtypes and Stages of the Disease. European Heart JournalCardiovascular Imaging, 15, 1307-1315.
https://doi.org/10.1093/ehjci/jeu158
[20] Falk, R.H. and Quarta, C.C. (2015) Echocardiography in Cardiac Amyloidosis. Heart Failure Reviews, 20, 125-131.
https://doi.org/10.1007/s10741-014-9466-3
[21] Martinez-Naharro, A., Treibel, T.A., Abdel-Gadir, A., Bulluck, H., Zumbo, G., Knight, D.S., et al. (2017) Magnetic Resonance in Transthyretin Cardiac Amyloidosis. Journal of the American College of Cardiology, 70, 466-477.
https://doi.org/10.1016/j.jacc.2017.05.053
[22] Zhao, L., Tian, Z. and Fang, Q. (2016) Diagnostic Accuracy of Cardiovascular Magnetic Resonance for Patients with Suspected Cardiac Amyloidosis: A Systematic Review and Meta-Analysis. BMC Cardiovascular Disorders, 16, Article No. 129.
https://doi.org/10.1186/s12872-016-0311-6
[23] Dungu, J.N., Valencia, O., Pinney, J.H., Gibbs, S.D.J., Rowczenio, D., Gilbertson, J.A., et al. (2014) CMR-Based Differentiation of AL and ATTR Cardiac Amyloidosis. JACC: Cardiovascular Imaging, 7, 133-142.
https://doi.org/10.1016/j.jcmg.2013.08.015
[24] Treglia, G., Glaudemans, A.W.J.M., Bertagna, F., Hazenberg, B.P.C., Erba, P.A., Giubbini, R., et al. (2018) Diagnostic Accuracy of Bone Scintigraphy in the Assessment of Cardiac Transthyretin-Related Amyloidosis: A Bivariate Meta-Analysis. European Journal of Nuclear Medicine and Molecular Imaging, 45, 1945-1955.
https://doi.org/10.1007/s00259-018-4013-4
[25] Masri, A., Bukhari, S., Eisele, Y.S. and Soman, P. (2020) Molecular Imaging of Cardiac Amyloidosis. Journal of Nuclear Medicine, 61, 965-970.
https://doi.org/10.2967/jnumed.120.245381
[26] Stats, M.A. and Stone, J.R. (2016) Varying Levels of Small Microcalcifications and Macrophages in ATTR and AL Cardiac Amyloidosis: Implications for Utilizing Nuclear Medicine Studies to Subtype Amyloidosis. Cardiovascular Pathology, 25, 413-417.
https://doi.org/10.1016/j.carpath.2016.07.001
[27] Rapezzi, C., Quarta, C.C., Guidalotti, P.L., Pettinato, C., Fanti, S., Leone, O., et al. (2011) Role of 99mtc-Dpd Scintigraphy in Diagnosis and Prognosis of Hereditary Transthyretin-Related Cardiac Amyloidosis. JACC: Cardiovascular Imaging, 4, 659-670.
https://doi.org/10.1016/j.jcmg.2011.03.016
[28] Glaudemans, A.W.J.M., van Rheenen, R.W.J., van den Berg, M.P., Noordzij, W., Koole, M., Blokzijl, H., et al. (2014) Bone Scintigraphy with 99mtechnetium-Hydroxymethylene Diphosphonate Allows Early Diagnosis of Cardiac Involvement in Patients with Transthyretin-Derived Systemic Amyloidosis. Amyloid, 21, 35-44.
https://doi.org/10.3109/13506129.2013.871250
[29] Gillmore, J.D., Maurer, M.S., Falk, R.H., Merlini, G., Damy, T., Dispenzieri, A., et al. (2016) Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis. Circulation, 133, 2404-2412.
https://doi.org/10.1161/circulationaha.116.021612
[30] Castano, A., Haq, M., Narotsky, D.L., Goldsmith, J., Weinberg, R.L., Morgenstern, R., et al. (2016) Multicenter Study of Planar Technetium 99m Pyrophosphate Cardiac Imaging: Predicting Survival for Patients with ATTR Cardiac Amyloidosis. JAMA Cardiology, 1, 880-889.
https://doi.org/10.1001/jamacardio.2016.2839
[31] Martini, N., Sinigiani, G., De Michieli, L., Mussinelli, R., Perazzolo Marra, M., Iliceto, S., et al. (2024) Electrocardiographic Features and Rhythm Disorders in Cardiac Amyloidosis. Trends in Cardiovascular Medicine, 34, 257-264.
https://doi.org/10.1016/j.tcm.2023.02.006
[32] Brito, D., Albrecht, F.C., de Arenaza, D.P., Bart, N., Better, N., Carvajal-Juarez, I., et al. (2023) World Heart Federation Consensus on Transthyretin Amyloidosis Cardiomyopathy (ATTR-CM). Global Heart, 18, Article No. 59.
https://doi.org/10.5334/gh.1262