[1]
|
Kauke-Navarro, M., Knoedler, L., Knoedler, S., Deniz, C., Stucki, L. and Safi, A.-F. (2024) Balancing Beauty and Science: A Review of Facial Implant Materials in Craniofacial Surgery. Frontiers in Surgery, 11, Article 1348140. https://doi.org/10.3389/fsurg.2024.1348140
|
[2]
|
吕迪, 陈美玲. 聚醚醚酮在口腔种植领域的应用与表面功能化研究进展[J]. 临床口腔医学杂志, 2024, 40(4): 251-254.
|
[3]
|
Zheng, Z., Liu, P.J., Zhang, X.M., et al. (2022) Strategies to Improve Bioactive and Antibacterial Properties of Polyetheretherketone (PEEK) for Use as Orthopedic Implants. Materials Today Bio, 16, Article ID: 100402. https://doi.org/10.1016/j.mtbio.2022.100402
|
[4]
|
Zhang, W., Wang, N., Yang, M., et al. (2022) Periosteum and Development of the Tissue-Engineered Periosteum for Guided Bone Regeneration. Journal of Orthopaedic Translation, 33, 41-54. https://doi.org/10.1016/j.jot.2022.01.002
|
[5]
|
Pidhatika, B., Widyaya, V.T., Nalam, P.C., Swasono, Y.A. and Ardhani, R. (2022) Surface Modifications of High-Performance Polymer Polyetheretherketone (PEEK) to Improve Its Biological Performance in Dentistry. Polymers, 14, Article 5526. https://doi.org/10.3390/polym14245526
|
[6]
|
Zhang, D., Xu, X., Long, X., Cheng, K. and Li, J.S. (2019) Advances in Biomolecule Inspired Polymeric Material Decorated Interfaces for Biological Applications. Biomaterials Science, 7, 3984-3999. https://doi.org/10.1039/C9BM00746F
|
[7]
|
Lai, M., Cai, K., Zhao, L., Chen, X.Y., Hou, Y.H. and Yang, Z.X. (2011) Surface Functionalization of TiO2 Nanotubes with Bone Morphogenetic Protein 2 and Its Synergistic Effect on the Differentiation of Mesenchymal Stem Cells. Biomacromolecules, 12, 1097-105. https://doi.org/10.1021/bm1014365
|
[8]
|
Gonzaga, M.G., Dos Santos Kotake, B.G., de Figueiredo, F.A.T., et al. (2019) Effectiveness of rhBMP-2 Association to Autogenous, Allogeneic, and Heterologous Bone Grafts. Microscopy Research and Technique, 82, 689-695. https://doi.org/10.1002/jemt.23215
|
[9]
|
Schmidt-Bleek, K., Willie, B.M., Schwabe, P., Seemann, P. and Duda, G.N. (2016) BMPs in Bone Regeneration: Less Is More Effective, a Paradigm-Shift. Cytokine & Growth Factor Reviews, 27, 141-148. https://doi.org/10.1016/j.cytogfr.2015.11.006
|
[10]
|
Senatov, F., Maksimkin, A., Chubrik, A., et al. (2021) Osseointegration Evaluation of UHMWPE and PEEK-Based Scaffolds with BMP-2 Using Model of Critical-Size Cranial Defect in Mice and Push-Out Test. Journal of the Mechanical Behavior of Biomedical Materials, 119, Article ID: 104477. https://doi.org/10.1016/j.jmbbm.2021.104477
|
[11]
|
Buck, E., Li, H. and Cerruti, M. (2020) Surface Modification Strategies to Improve the Osseointegration of Poly(etheretherketone) and Its Composites. Macromolecular Bioscience, 20, e1900271. https://doi.org/10.1002/mabi.201900271
|
[12]
|
Zhang, R., Jo, J.I., Kanda, R., Nishiura, A., Hashimoto, Y. and Matsumoto, N. (2023) Bioactive Polyetheretherketone with Gelatin Hydrogel Leads to Sustained Release of Bone Morphogenetic Protein-2 and Promotes Osteogenic Differentiation. International Journal of Molecular Sciences, 24, Article 12741. https://doi.org/10.3390/ijms241612741
|
[13]
|
Wan, T., Li, L., Guo, M., et al. (2019) Immobilization via Polydopamine of Dual Growth Factors on Polyetheretherketone: Improvement of Cell Adhesion, Proliferation, and Osteo-Differentiation. Journal of Materials Science, 54, 11179-11196. https://doi.org/10.1007/s10853-018-03264-z
|
[14]
|
Safari, B., Davaran, S. and Aghanejad, A. (2021) Osteogenic Potential of the Growth Factors and Bioactive Molecules in Bone Regeneration. International Journal of Biological Macromolecules, 175, 544-557. https://doi.org/10.1016/j.ijbiomac.2021.02.052
|
[15]
|
Chubrik, A., Senatov, F., Kolesnikov, E., et al. (2020) Highly Porous PEEK and PEEK/HA Scaffolds with Escherichia Coli-Derived Recombinant BMP-2 and Erythropoietin for Enhanced Osteogenesis and Angiogenesis. Polymer Testing, 87, Article 106518. https://doi.org/10.1016/j.polymertesting.2020.106518
|
[16]
|
Goh, M., Min, K., Kim, Y.H., et al. (2024) Chemically Heparinized PEEK via a Green Method to Immobilize Bone Morphogenetic Protein-2 (BMP-2) for Enhanced Osteogenic Activity. RSC Advances, 14, 1866-1874. https://doi.org/10.1039/D3RA07660A
|
[17]
|
Zhan, Z., Li, R., Wu, Y., et al. (2025) Biomimetic Periosteum-Bone Scaffolds with Codelivery of BMP-2 and PDGF-BB for Skull Repair. Bone, 190, Article ID: 117315. https://doi.org/10.1016/j.bone.2024.117315
|
[18]
|
Yuan, Z., Lyu, Z., Zhang, W., Zhang, J. and Wang, Y. (2022) Porous Bioactive Prosthesis with Chitosan/Mesoporous Silica Nanoparticles Microspheres Sequentially and Sustainedly Releasing Platelet-Derived Growth Factor-BB and Kartogenin: A New Treatment Strategy for Osteoarticular Lesions. Frontiers in Bioengineering and Biotechnology, 10, Article 839120. https://doi.org/10.3389/fbioe.2022.839120
|
[19]
|
Koushik, T.M., Miller, C.M. and Antunes, E. (2023) Bone Tissue Engineering Scaffolds: Function of Multi-Material Hierarchically Structured Scaffolds. Advanced Healthcare Materials, 12, e2202766. https://doi.org/10.1002/adhm.202202766
|
[20]
|
Patrawalla, N.Y., Kajave, N.S., Albanna, M.Z., et al. (2023) Collagen and Beyond: A Comprehensive Comparison of Human ECM Properties Derived from Various Tissue Sources for Regenerative Medicine Applications. Journal of Functional Biomaterials, 14, Article 363. https://doi.org/10.3390/jfb14070363
|
[21]
|
Kim, H., Lee, Y.H., Kim, N.K. and Kang, I.K. (2022) Immobilization of Collagen on the Surface of a PEEK Implant with Monolayer Nanopores. Polymers, 14, Article 1633. https://doi.org/10.3390/polym14091633
|
[22]
|
Arisaka, Y., Masuda, H., Yoda, T. and Yui, N. (2022) Phototethering of Collagen onto Polyetheretherketone Surfaces to Enhance Osteoblastic and Endothelial Performance. Macromolecular Bioscience, 22, e2200115. https://doi.org/10.1002/mabi.202200115
|
[23]
|
Förster, Y., Bernhardt, R., Hintze, V., et al. (2017) Collagen/Glycosaminoglycan Coatings Enhance New Bone Formation in a Critical Size Bone Defect—A Pilot Study in Rats. Materials Science and Engineering: C, 71, 84-92. https://doi.org/10.1016/j.msec.2016.09.071
|
[24]
|
Sodhi, H. and Panitch, A. (2021) Glycosaminoglycans in Tissue Engineering: A Review. Biomolecules, 11, Article 29. https://doi.org/10.3390/biom11010029
|
[25]
|
Li, M., Liu, J., Li, Y., et al. (2024) Enhanced Osteogenesis and Antibacterial Activity of Dual-Functional PEEK Implants via Biomimetic Polydopamine Modification with Chondroitin Sulfate and Levofloxacin. Journal of Biomaterials Science, Polymer Edition, 35, 2790-2806. https://doi.org/10.1080/09205063.2024.2390745
|
[26]
|
Xu, L., Li, M., Ma, F., et al. (2024) Surface Bioactivation of Polyetheretherketone (PEEK) by Magnesium Chondroitin Sulfate (MgCS) as Orthopedic Implants for Reconstruction of Skeletal Defects. International Journal of Biological Macromolecules, 274, Article 133435. https://doi.org/10.1016/j.ijbiomac.2024.133435
|
[27]
|
Luo, Y., Tan, J., Zhou, Y., et al. (2023) From Crosslinking Strategies to Biomedical Applications of Hyaluronic Acid-Based Hydrogels: A Review. International Journal of Biological Macromolecules, 231, Article ID: 123308. https://doi.org/10.1016/j.ijbiomac.2023.123308
|
[28]
|
Aso Abdulghafor, M. and Mustafa Amin, Z. (2024) The Impact of Hyaluronic Acid Coating on Polyether Ether Ketone Dental Implant Surface: An in Vitro Analysis. The Saudi Dental Journal, 36, 1326-1332. https://doi.org/10.1016/j.sdentj.2024.07.012
|
[29]
|
An, J., Shi, X., Zhang, J., et al. (2023) Dual Aldehyde Cross-Linked Hyaluronic Acid Hydrogels Loaded with PRP and NGF Biofunctionalized PEEK Interfaces to Enhance Osteogenesis and Vascularization. Materials Today Bio, 24, Article ID: 100928. https://doi.org/10.1016/j.mtbio.2023.100928
|
[30]
|
Al Musaimi, O., Lombardi, L., Williams, D.R. and Albericio, F. (2022) Strategies for Improving Peptide Stability and Delivery. Pharmaceuticals, 15, Article 1283. https://doi.org/10.3390/ph15101283
|
[31]
|
Liu, F., Wang, Y., Qu, X.F., Lin, L. and Guang, H. (2022) Repair of Alveolar Bone Defects with Osteogenic Polypeptide Modified HA_CF_PEEK Dental Implants. Science of Advanced Materials, 14, 1539-1549. https://doi.org/10.1166/sam.2022.4353
|
[32]
|
Cassari, L., Zamuner, A., Messina, G.M.L., et al. (2023) Bioactive PEEK: Surface Enrichment of Vitronectin-Derived Adhesive Peptides. Biomolecules, 13, Article 246. https://doi.org/10.3390/biom13020246
|
[33]
|
Cassari, L., Zamuner, A., Messina, G.M.L., et al. (2023) Strategies for the Covalent Anchoring of a BMP-2-Mimetic Peptide to PEEK Surface for Bone Tissue Engineering. Materials, 16, Article 3869. https://doi.org/10.3390/ma16103869
|
[34]
|
Yang, H., Ding, H., Tian, Y., et al. (2024) Metal Element-Fusion Peptide Heterostructured Nanocoatings Endow Polyetheretherketone Implants with Robust Anti-Bacterial Activities and in Vivo Osseointegration. Nanoscale, 16, 12934-12946. https://doi.org/10.1039/D4NR01453G
|
[35]
|
Ahmad, F., Nimonkar, S., Belkhode, V. and Nimonkar, P. (2024) Role of Polyetheretherketone in Prosthodontics: A Literature Review. Cureus, 16, e60552. https://doi.org/10.7759/cureus.60552
|
[36]
|
Chen, J., Zhu, D., Zhao, M., et al. (2024) Three-Dimensional Finite Element Analysis of the Optimal Mechanical Design for Maximum Inward Movement of the Anterior Teeth with Clear Aligners. Scientific Reports, 14, Article No. 13203. https://doi.org/10.1038/s41598-024-63907-x
|