[1]
|
Hassanalieragh, M., Page, A., Soyata, T., Sharma, G., Aktas, M., Mateos, G., et al. (2015) Health Monitoring and Management Using Internet-of-Things (IoT) Sensing with Cloud-Based Processing: Opportunities and Challenges. 2015 IEEE International Conference on Services Computing, New York, 27 June-2 July 2015, 285-292. https://doi.org/10.1109/scc.2015.47
|
[2]
|
DeFranco, J.F. and Voas, J. (2024) Internet of Things-Flavored Chips. Computer, 57, 156-158. https://doi.org/10.1109/mc.2024.3363259
|
[3]
|
Alrammouz, R., Podlecki, J., Abboud, P., Sorli, B. and Habchi, R. (2018) A Review on Flexible Gas Sensors: From Materials to Devices. Sensors and Actuators A: Physical, 284, 209-231. https://doi.org/10.1016/j.sna.2018.10.036
|
[4]
|
Ou, L., Liu, M., Zhu, L., Zhang, D.W. and Lu, H. (2022) Recent Progress on Flexible Room-Temperature Gas Sensors Based on Metal Oxide Semiconductor. Nano-Micro Letters, 14, Article No. 206. https://doi.org/10.1007/s40820-022-00956-9
|
[5]
|
Han, S., Peng, H., Sun, Q., Venkatesh, S., Chung, K., Lau, S.C., et al. (2017) An Overview of the Development of Flexible Sensors. Advanced Materials, 29, Article 1700375. https://doi.org/10.1002/adma.201700375
|
[6]
|
Dudareva, N., Klempien, A., Muhlemann, J.K. and Kaplan, I. (2013) Biosynthesis, Function and Metabolic Engineering of Plant Volatile Organic Compounds. New Phytologist, 198, 16-32. https://doi.org/10.1111/nph.12145
|
[7]
|
Ehn, M., Thornton, J.A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., et al. (2014) A Large Source of Low-Volatility Secondary Organic Aerosol. Nature, 506, 476-479. https://doi.org/10.1038/nature13032
|
[8]
|
Hu, Z. and Zhang, X. (2019) Study on Laminar Combustion Characteristic of Low Calorific Value Gas Blended with Hydrogen in a Constant Volume Combustion Bomb. International Journal of Hydrogen Energy, 44, 487-493. https://doi.org/10.1016/j.ijhydene.2018.02.055
|
[9]
|
Wang, X., Li, B., Han, B., Jin, X., Zhang, D. and Bi, M. (2023) Explosion of High Pressure Hydrogen Tank in Fire: Mechanism, Criterion, and Consequence Assessment. Journal of Energy Storage, 72, Article 108455. https://doi.org/10.1016/j.est.2023.108455
|
[10]
|
Cho, B., Yoon, J., Hahm, M.G., Kim, D., Kim, A.R., Kahng, Y.H., et al. (2014) Graphene-Based Gas Sensor: Metal Decoration Effect and Application to a Flexible Device. Journal of Materials Chemistry C, 2, 5280-5285. https://doi.org/10.1039/c4tc00510d
|
[11]
|
Singh, E., Meyyappan, M. and Nalwa, H.S. (2017) Flexible Graphene-Based Wearable Gas and Chemical Sensors. ACS Applied Materials & Interfaces, 9, 34544-34586. https://doi.org/10.1021/acsami.7b07063
|
[12]
|
Chiou, J. and Wu, C. (2017) A Wearable and Wireless Gas-Sensing System Using Flexible Polymer/Multi-Walled Carbon Nanotube Composite Films. Polymers, 9, Article 457. https://doi.org/10.3390/polym9090457
|
[13]
|
Yu, P., Wang, J., Du, H., Yao, P., Hao, Y. and Li, X. (2013) Y-Doped ZnO Nanorods by Hydrothermal Method and Their Acetone Gas Sensitivity. Journal of Nanomaterials, 2013, 1-6. https://doi.org/10.1155/2013/751826
|
[14]
|
Hui, G., Zhu, M., Yang, X., Liu, J., Pan, G. and Wang, Z. (2020) Highly Sensitive Ethanol Gas Sensor Based on CeO2/ZnO Binary Heterojunction Composite. Materials Letters, 278, Article 128453. https://doi.org/10.1016/j.matlet.2020.128453
|
[15]
|
Li, S., Zhang, Y., Han, L., Li, X. and Xu, Y. (2022) Highly Sensitive and Selective Triethylamine Gas Sensor Based on Hierarchical Radial CeO2/Zno N-N Heterojunction. Sensors and Actuators B: Chemical, 367, Article 132031. https://doi.org/10.1016/j.snb.2022.132031
|
[16]
|
Li, X., Tan, T., Ji, W., Zhou, W., Bao, Y., Xia, X., et al. (2023) Remarkably Enhanced Methane Sensing Performance at Room Temperature via Constructing a Self-Assembled Mulberry-Like ZnO/SnO2 Hierarchical Structure. Energy & Environmental Materials, 7, e12624. https://doi.org/10.1002/eem2.12624
|
[17]
|
Bian, H., Ma, S., Sun, A., Xu, X., Yang, G., Yan, S., et al. (2016) Improvement of Acetone Gas Sensing Performance of ZnO Nanoparticles. Journal of Alloys and Compounds, 658, 629-635. https://doi.org/10.1016/j.jallcom.2015.09.217
|
[18]
|
Wang, S., Hu, H., Tan, T., Li, X., Zhou, W., Tian, Z., et al. (2025) Enhancing NO2 Sensing Performance through Interface Engineering in Cs2AgBiBr6/SnO2/ZnO-NrS Sensor. Sensors and Actuators B: Chemical, 422, Article 136654. https://doi.org/10.1016/j.snb.2024.136654
|
[19]
|
Kumar, S., Lawaniya, S.D., Agarwal, S., Yu, Y., Nelamarri, S.R., Kumar, M., et al. (2023) Optimization of Pt Nanoparticles Loading in ZnO for Highly Selective and Stable Hydrogen Gas Sensor at Reduced Working Temperature. Sensors and Actuators B: Chemical, 375, Article 132943. https://doi.org/10.1016/j.snb.2022.132943
|
[20]
|
Zhu, L. and Zeng, W. (2017) Room-Temperature Gas Sensing of ZnO-Based Gas Sensor: A Review. Sensors and Actuators A: Physical, 267, 242-261. https://doi.org/10.1016/j.sna.2017.10.021
|
[21]
|
Cheng, I., Lin, C. and Pan, F. (2021) Gas Sensing Behavior of ZnO toward H2 at Temperatures Below 300°C and Its Dependence on Humidity and Pt-decoration. Applied Surface Science, 541, Article 148551. https://doi.org/10.1016/j.apsusc.2020.148551
|
[22]
|
Li, X., He, H., Tan, T., Zou, Z., Tian, Z., Zhou, W., et al. (2023) Annealing Effect on the Methane Sensing Performance of Pt-SnO2/ZnO Double Layer Sensor. Applied Surface Science, 640, Article 158428. https://doi.org/10.1016/j.apsusc.2023.158428
|
[23]
|
Xie, S., Wang, Z., Cheng, F., Zhang, P., Mai, W. and Tong, Y. (2017) Ceria and Ceria-Based Nanostructured Materials for Photoenergy Applications. Nano Energy, 34, 313-337. https://doi.org/10.1016/j.nanoen.2017.02.029
|
[24]
|
Huang, X., Zhang, K., Peng, B., Wang, G., Muhler, M. and Wang, F. (2021) Ceria-Based Materials for Thermocatalytic and Photocatalytic Organic Synthesis. ACS Catalysis, 11, 9618-9678. https://doi.org/10.1021/acscatal.1c02443
|
[25]
|
Sun, C., Li, H. and Chen, L. (2012) Nanostructured Ceria-Based Materials: Synthesis, Properties, and Applications. Energy & Environmental Science, 5, 8475-8505. https://doi.org/10.1039/c2ee22310d
|
[26]
|
Mandić, V., Bafti, A., Pavić, L., Panžić, I., Kurajica, S., Pavelić, J., et al. (2022) Humidity Sensing Ceria Thin-Films. Nanomaterials, 12, Article 521. https://doi.org/10.3390/nano12030521
|
[27]
|
Serpone, N., Maruthamuthu, P., Pichat, P., Pelizzetti, E. and Hidaka, H. (1995) Exploiting the Interparticle Electron Transfer Process in the Photocatalysed Oxidation of Phenol, 2-Chlorophenol and Pentachlorophenol: Chemical Evidence for Electron and Hole Transfer between Coupled Semiconductors. Journal of Photochemistry and Photobiology A: Chemistry, 85, 247-255. https://doi.org/10.1016/1010-6030(94)03906-b
|
[28]
|
Divya, T., Nikhila, M.P., Anju, M., Arsha Kusumam, T.V., Akhila, A.K., Ravikiran, Y.T., et al. (2017) Nanoceria Based Thin Films as Efficient Humidity Sensors. Sensors and Actuators A: Physical, 261, 85-93. https://doi.org/10.1016/j.sna.2017.05.008
|
[29]
|
Wang, C., Yin, L., Zhang, L., Xiang, D. and Gao, R. (2010) Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors, 10, 2088-2106. https://doi.org/10.3390/s100302088
|
[30]
|
Rashid, T., Phan, D. and Chung, G. (2013) A Flexible Hydrogen Sensor Based on Pd Nanoparticles Decorated ZnO Nanorods Grown on Polyimide Tape. Sensors and Actuators B: Chemical, 185, 777-784. https://doi.org/10.1016/j.snb.2013.01.015
|
[31]
|
Wang, D., Yin, Y., Xu, P., Wang, F., Wang, P., Xu, J., et al. (2020) The Catalytic-Induced Sensing Effect of Triangular CeO2 Nanoflakes for Enhanced BTEX Vapor Detection with Conventional ZnO Gas Sensors. Journal of Materials Chemistry A, 8, 11188-11194. https://doi.org/10.1039/d0ta01708f
|
[32]
|
Ong, W.L., Zhang, C. and Ho, G.W. (2011) Ammonia Plasma Modification Towards a Rapid and Low Temperature Approach for Tuning Electrical Conductivity of ZnO Nanowires on Flexible Substrates. Nanoscale, 3, 4206-4214. https://doi.org/10.1039/c1nr10527b
|
[33]
|
Mohammad, S.M., Hassan, Z., Talib, R.A., Ahmed, N.M., Al-Azawi, M.A., Abd-Alghafour, N.M., et al. (2016) Fabrication of a Highly Flexible Low-Cost H2 Gas Sensor Using ZnO Nanorods Grown on an Ultra-Thin Nylon Substrate. Journal of Materials Science: Materials in Electronics, 27, 9461-9469. https://doi.org/10.1007/s10854-016-4993-4
|
[34]
|
Chung, M.G., Kim, D., Seo, D.K., Kim, T., Im, H.U., Lee, H.M., et al. (2012) Flexible Hydrogen Sensors Using Graphene with Palladium Nanoparticle Decoration. Sensors and Actuators B: Chemical, 169, 387-392. https://doi.org/10.1016/j.snb.2012.05.031
|
[35]
|
Punetha, D., Kar, M. and Pandey, S.K. (2020) A New Type Low-Cost, Flexible and Wearable Tertiary Nanocomposite Sensor for Room Temperature Hydrogen Gas Sensing. Scientific Reports, 10, Article No. 2151. https://doi.org/10.1038/s41598-020-58965-w
|
[36]
|
Su, P. and Chuang, Y. (2010) Flexible H2 Sensors Fabricated by Layer-by-Layer Self-Assembly Thin Film of Multi-Walled Carbon Nanotubes and Modified in Situ with Pd Nanoparticles. Sensors and Actuators B: Chemical, 145, 521-526. https://doi.org/10.1016/j.snb.2009.12.068
|
[37]
|
Vidiš, M., Shpetnyi, I.O., Roch, T., Satrapinskyy, L., Patrnčiak, M., Plecenik, A., et al. (2021) Flexible Hydrogen Gas Sensor Based on a Capacitor-Like Pt/TiO2/Pt Structure on Polyimide Foil. International Journal of Hydrogen Energy, 46, 19217-19228. https://doi.org/10.1016/j.ijhydene.2021.03.052
|
[38]
|
Kumar, S., Lawaniya, S.D., Nelamarri, S.R., Kumar, M., Dwivedi, P.K., Mishra, Y.K., et al. (2023) ZnO Nanosheets Decorated with Ag-Pt Nanoparticles for Selective Detection of Ethanol. ACS Applied Nano Materials, 6, 15479-15489. https://doi.org/10.1021/acsanm.3c02035
|
[39]
|
Kumar, S., Lawaniya, S.D., Nelamarri, S.R., Kumar, M., Dwivedi, P.K., Yu, Y., et al. (2023) Bimetallic Ag-Pd Nanoparticles Decorated ZnO Nanorods for Efficient Hydrogen Sensing. Sensors and Actuators B: Chemical, 394, Article 134394. https://doi.org/10.1016/j.snb.2023.134394
|
[40]
|
Liu, X., Zhou, K., Wang, L., Wang, B. and Li, Y. (2009) Oxygen Vacancy Clusters Promoting Reducibility and Activity of Ceria Nanorods. Journal of the American Chemical Society, 131, 3140-3141. https://doi.org/10.1021/ja808433d
|