微纳米颗粒物与污染物共迁移的研究进展
Research Progress on Co-Migration of Micro-Nano Particles and Pollutants
DOI: 10.12677/ms.2025.153042, PDF, HTML, XML,    科研立项经费支持
作者: 肖 华*:山西省煤炭规划设计院(集团)有限公司,山西 太原;陆艳星*:广西国宏智鸿环保科技集团股份有限公司,广西 贵港;陶虹秀:广西大学资源环境与材料学院,广西 南宁
关键词: 微纳米颗粒污染物多孔介质共迁移关键因素Micro-Nano Particles Pollutants Porous Media Co-Transport Key Factor
摘要: 人工微纳米颗粒带来巨大效益的背后存在着污染生态环境,甚至威胁人类健康的隐患。微纳米颗粒物与污染物间存在复杂的相互作用,因此两者在土壤环境中共存时,二者的迁移行为受到相互影响。探究微纳米颗粒物与污染物协同迁移的内在机制及作用模式,有助于评估其环境动态、预测地下水污染风险,为环境风险评估及污染控制措施提供坚实的理论基础。针对微纳米颗粒物与污染物共迁移行为的研究,系统性概括并分析关键影响因素包括溶液流速、多孔介质类型、离子强度、pH、有机物和生物膜对共迁移行为的影响,并详细阐述了微纳碳颗粒、微纳金属颗粒以及微纳塑料与污染物共迁移的研究现状。最后,基于现有研究成果,提出了未来值得进一步探索的研究方向。
Abstract: Behind the huge benefits brought by artificial micro-nano particles, there are hidden dangers of polluting the ecological environment and even threatening human health. There is a complex interaction between micro and nano particles and pollutants, so when they coexist in the soil environment, their migration behavior is affected by each other. Exploring the internal mechanism and mode of synergistic migration of micro-nano particles and pollutants is helpful to assess their environmental dynamics, predict groundwater pollution risks, and provide a solid theoretical basis for environmental risk assessment and pollution control measures. In order to study the co-migration behavior of micro-nano particles and pollutants, the influences of key influencing factors including solution flow rate, type of porous media, ionic strength, pH, organic matter and biofilm on the co-migration behavior were systematically summarized and analyzed, and the research status of carbon nanoparticles, metal nanoparticles and micro-nano plastics and pollutants co-migration was elaborated. Finally, based on the existing research results, the future research direction worthy of further exploration is put forward.
文章引用:肖华, 陆艳星, 陶虹秀. 微纳米颗粒物与污染物共迁移的研究进展[J]. 材料科学, 2025, 15(3): 370-379. https://doi.org/10.12677/ms.2025.153042

1. 引言

微纳米颗粒有强大的吸附能力,易聚集,难以自然生物降解,在土壤环境中通过生物积累毒害生物体,影响土壤生态系统的健康与稳定。由于独特的迁移与吸附特性,它能与土壤基质及共存污染物发生复杂的相互作用,进而深刻影响自身及共存污染物的环境归宿、迁移路径及生物有效性[1]。因此,深入研究和理解微纳米颗粒与污染物在多孔介质中的共同迁移机制,对于准确评估土壤环境中污染物的风险等级、制定有效的污染防控策略与土壤修复方案,以及促进纳米材料的环保与可持续发展应用至关重要。迄今为止,国内外学术界在微纳米颗粒与污染物共迁移领域的研究主要涵盖微纳碳颗粒、微纳金属颗粒以及微纳塑料这三大类别,研究内容聚焦于微纳米颗粒与共存污染物在多孔介质环境中共同迁移的行为特征及其影响机制,深入剖析诸如pH值、离子强度、流体流速以及有机物浓度等关键环境因子在这一复杂过程中的作用机理。在实验技术层面,吸附实验与穿透实验成为了揭示这一复杂迁移机制的主要技术手段。

文章旨在全面而系统地回顾上述三种微纳米颗粒与污染物共迁移的研究现状,总结该领域内尚待探索的知识缺口,同时展望该研究方向的未来发展蓝图,以期为相关领域的科研人员提供有益的参考框架和研究方向。

2. 影响迁移的关键因素

一般情况下适度提升溶液流速能够加剧附着于多孔介质表层的微纳米颗粒的动力效应与阻力效应,促使已沉积的微纳米颗粒发生脱落,有效分散微纳米颗粒团聚体,加速微纳米颗粒的迁移进程[2] [3]。然而,流速对物质迁移的促进作用并非呈正相关。当颗粒在土柱的进水端较多沉积时,其下游会形成一个微纳米颗粒浓度很低的阴影区域,流速的增加可能加剧“阴影效应”,导致微纳米颗粒在土壤中的沉积率提升[4]。流速对物质迁移的具体作用受离子强度影响,如10 mM NaCl条件下,不同的流速对氧化石墨烯(graphene oxide, GO)迁移的影响可以忽略,在35 mM NaCl条件下,流速的影响变得显著[5]

壤土砂呈非均质态,含有大量的粘土颗粒和有机质,相较于高纯石英砂,会降低微纳米颗粒的迁移能力[6]。多孔介质的表面粗糙度与能垒强弱、物理捕获能力密切相关,进而对胶体粒子在介质表面的沉积量产生影响[7]-[9]。粗砂能够提供更多的吸附位点,减小石英砂与胶体之间的排斥力,从而削弱物质的迁移能力[10]

Derjaguin-Landau-Verwey-Overbeek (DLVO)理论指出,增加溶液离子强度会减少双电层厚度和表面电荷数量,导致纳米粒子之间的相互作用能出现深部次极小值,从而促进粒子的聚集[11] [12]。例如,增加溶液的离子强度会减少纳米生物炭表面的负电荷数量,并降低生物炭微纳米颗粒之间的静电斥力,进而减小纳米生物炭对Cd(II)的吸附量,促进微纳米颗粒的聚集,导致Cd(II)迁移率降低[13]

土壤pH值显著影响zeta电位、阳离子交换容量及氧化还原电位等,其与等电荷点之间的相对关系决定了微纳米颗粒表面电荷的变化趋势[14]。颗粒表面电位的绝对值与pH值呈正相关,pH值的提升会增大静电斥力,进而阻碍颗粒的团聚[15]。在较低的pH值环境下,Cr(III)的迁移能力相较于高pH值条件更强。这主要是因为酸性土壤中表面配位官能团的数量相对较少,导致其阳离子交换能力降低,静电吸引力也相应减弱。相反,在碱性土壤中,由于水解作用的影响,Cr(III)被更多地吸附在土壤上[14]

附着于微纳米颗粒的表面的有机物能够中和表面电荷,产生空间斥力效应,改变微纳米颗粒在多孔介质体系中的胶体稳定性,影响污染物在微纳米颗粒表面上的吸附容量。天然有机质有吸附并阻塞多孔介质上沉积位点的能力,导致物质沉积量的减少[16] [17]。腐殖酸浓度的提高有利于增强纳米生物炭及其携带污染物的迁移能力[18],铀通过借助腐殖酸增加其在微纳米颗粒上的吸附量而增强了自身的迁移能力[19]

生物膜是在胞外聚合物基质中生成的微生物群落[20] [21]。生物膜的存在通过收窄流动路径并降低DLVO排斥作用,增加了多孔介质的表面粗糙度,能够稳定促进塑料颗粒在多孔介质中的沉积过程。其中,蛋白质、多糖及腐殖质成分发挥了关键作用[10]

3. 微纳米颗粒与污染物共迁移的研究现状

当前,微纳米颗粒与污染物在多孔介质中共迁移的研究成果数量逐年增加,多数研究采用填装饱和多孔介质(如石英砂、玻璃微珠或天然土壤)的柱装置来模拟迁移环境,以探究迁移物质在不同物理、化学条件下的迁移规律和作用机制,前人研究(表1)所集成的微纳米颗粒物与污染物共迁移内在机制可概括如图1所示。

3.1. 微纳碳颗粒与污染物共迁移

GO展现出较强的亲水性和表面负电性,与石英砂存在静电斥力作用,因此GO在石英砂中流动性较强。GO由于有丰富的π电子共轭体系,易与含有苯环结构的有机化合物(如菲、1-萘酚等)形成π-π共轭[22],GO的含氧官能团(如羟基、羧基、羰基、环氧基等)可与金属阳离子(如Pb(II)、Cu(II)、U(VI)、Cd(II)等)形成络合物,故GO对有机污染物及金属阳离子表现出远强于石英砂的强大的吸附能力。GO与金属阳离子共迁移时,GO往往作为吸附载体对金属阳离子迁移起到促进作用,而反作用下阻碍GO的迁移,如在GO与Pb(II)、GO与Cu(II)、GO与U(VI)、GO与Cd(II)在砂柱中的迁移研究中皆表现类似现象[23]-[26]。但当络合物Zeta电位明显下降时,络合物与石英砂粒间的静电斥力有所减弱,结果金属阳离子的出流量反而减少[27]。一项研究显示,在NaCl (10和50 mM)和CaCl2 (1 mM)溶液条件下,GO与微塑料的异质性聚集(可能是疏水力和静电力的作用)有助于微塑料的迁移[28]。GO与污染物共迁移作用还依赖于污染物在溶液条件下所带电性,中性溶液中的分子及负电As因与GO存在静电斥力作用,两种物质都保持原本的高流动性[29]。Zhang等[30]观察到多壁碳纳米管的存在促进了带负电和带正电的土壤纳米颗粒的迁移现象,这归因于非DLVO相互作用(如氢键和路易斯酸碱相互作用)的影响。

在含铁的二元污染物共迁移体系中,Fe(III)水解作用是影响各物质迁移行为的关键因素。在中性溶液条件下,Fe(III)不断水解生成的Fe(OH)3絮体具有较强的吸附和混凝作用,加上GO与Fe之间的静电吸附作用,GO与Fe形成了大颗粒。大颗粒通过吸附和共沉淀作用与As(III)结合,导致共存的GO、Fe(III)、As(III)在石英砂中的滞留量对比单迁移都有所增加[29]。类似地,Fe、Mn与GO在多孔介质中的共迁移时,Mn(Ⅱ)的加入导致Fe几乎全部被拦截于石英砂中,主要原因是Fe(OH)3能够包裹MnO2生成球状絮体[27]。抗生素由于具有多个极性官能团,因此能与金属离子发生络合[31],GO凭借其与金属离子的强亲和力得以阻碍络合物的迁移。GO可通过表面吸附作用显著抑制铜离子与四环素的螯合物(Cu-TC)在GO预填充饱和砂柱中的迁移[32]。在GO显著增强1-萘酚的迁移基础上,加入Cu(II)能够显著促进GO的聚集,增加了污染物解吸滞后的可能性,进一步提高了1-萘酚的迁移能力[22]

3.2. 微纳金属颗粒与污染物共迁移

nTiO2在pH为5时带正电而在pH为7时带负电,可见nTiO2对污染物迁移的影响机制与pH值有密切关系[33]。当nTiO2带正电时,其与带相反电荷的碳质纳米材料形成的大型异质团聚体,以及在砂表面预沉积的带正电nTiO2所提供的额外沉积位点,共同抑制了多种碳质纳米材料在饱和石英砂中的迁移,而高流动性的碳质纳米材料则促进了nTiO2的迁移[33] [34]。当nTiO2带负电时,其对nC60/微塑料迁移的阻滞效应,源于nC60与nTiO2 (其zeta负电位低于石英砂)之间的静电斥力小于与石英砂的排斥力,进而借助沉积于石英砂上的nTiO2增加了nC60/微塑料的沉积量[33] [35]。在不同类型的表面活性剂的作用下,金属微纳米颗粒在石英砂中的迁移行为呈现差异。阴离子表面活性剂增强了nTiO2/nCeO2的负电荷性,使其更难吸附于表面带负电荷的石英砂上,从而提高了nTiO2/nCeO2的稳定性,阳离子表面活性剂的吸附导致nTiO2/nCeO2的表面电荷更正,颗粒更容易沉积在带负电荷的砂表面,而非离子表面活性剂对nTiO2/nCeO2的迁移几乎没有影响[36]。在GO、碳纳米管的共迁移研究中,同样发现阴离子和阳离子表面活性剂可以通过吸附带正电荷的阳离子和带负电荷的阴离子而改变静电和空间排斥作用[37] [38]。nTiO₂在多孔介质中稳定性高,流动性强,对Pd、Cd、Cu等重金属有突出的吸附性能,且此吸附过程具有可逆性[39]-[41],成为金属离子迁移过程中的一个重要载体。Pb2+因附着于迁移能力较强的nTiO2上其土壤柱中的迁移能力得到显著提升[40]。nTiO2与Cu共迁移时,Cu迁移率与土壤pH值呈显著正相关,归因于在高pH值条件下,nTiO2与Cu的亲和力显著增加。而与土壤阳离子交换量和溶解性有机碳呈显著负相关,可解释为金属配合物与溶解性有机碳分子官能团发生特异性结合会增大溶解度,土壤阳离子交换量的增加则使更多的Cu由于阳离子交换作用被土壤吸附[42]

零价纳米铁颗粒(nZVI)洗脱率极低,用瓜尔胶、聚丙烯酰胺、聚苯乙烯磺酸、聚乙烯吡咯烷酮作为nZVI的稳定剂进行修饰,这些聚合物可以覆盖nZVI表面并防止它们聚集,增强nZVI迁移能力[43]。研究显示,由于鼠李糖脂胶束的亲水部分可作为促进nZVI迁移的载体,在临界胶束形成浓度下,表面活性剂产生的胶束能够捕获nZVI,因此,胶束迁移有助于nZVI的迁移[44]。预先沉积于多孔介质上的氧化铁微纳米颗粒通过静电吸引作用诱导其他类型颗粒的聚集,氧化铁微纳米颗粒能够有效抑制塑料及羟基磷灰石微纳米颗粒的迁移过程[45] [46]

3.3. 微纳塑料与污染物共迁移

土壤中的微纳塑料因具有高活性官能团(如甲基、酯基、氨基、磺酸基和碳碳双键等)、高比表面积及表面疏水性,能与一系列环境污染物发生相互作用[47] [48]。聚苯乙烯纳米塑料(PSNP)表面的负电荷远少于石英砂,导致GO和还原氧化石墨烯更倾向于与预沉积的PSNP发生相互作用,并且砂体表面残留的PSNP可能堵塞流动路径,故PSNP显著抑制了GO和还原氧化石墨烯的迁移[49]。迁移能力较弱的PSNP与GO、还原氧化石墨烯共迁移时,其迁移率得到提升,由于还原氧化石墨烯相较于GO具有更低的疏水性和表面负电荷密度,还原氧化石墨烯对PSNP的迁移增强作用更为显著。纳米塑料(nanoplastics, NPs)与富勒烯(C60)的质量浓度比(NPs/C60)不同时,两者对迁移行为的主导作用发生显著改变,当NPs/C60比值为1时,C60利用NPs增加静电斥力并形成稳定的初级异质聚集物,迁移率得到提高;当比值降至1/3时,次生团聚体的形成抑制了NPs的迁移;比值在降低为1/10时,胶体的迁移变为受C60的控制[50]。NPs与金属离子Tl(I)的共迁移行为与溶液的酸碱度密切相关。在溶液呈中性的环境下,NPs可能会与Tl(I)竞争砂土表面的吸附位点,促使Tl(I)的迁移能力得到提升;在酸性条件下,由于质子化作用,NPs与石英砂之间的静电排斥力减弱,导致纳米塑料的沉积倾向增强,Tl(I)也因与纳米塑料表面的含氧官能团相互作用,增加了其在柱体中的沉积量[51]。重金属也极易吸附在微塑料上,微塑料与Pb共迁移由于电负性降低和团块的形成,迁移受到相互抑制,当离子强度增强时,它们的迁移由于吸附竞争效应得到促进[52]

作为非极性化合物的吸附媒介,PSNP对非极性污染物的迁移特性具有显著影响。PSNPs的玻璃态聚合结构能够诱导非极性和弱极性化合物发生物理捕获,在共迁移过程中出现解吸滞后现象,进而增强了污染物的迁移能力[48]。高离子强度(5 mM和50 mM)条件下,PSNP和石英砂的zeta电位负性减弱,有利于PSNP的沉积,进而导致萘也被沉积,吸附于PSNP上的萘可能通过电荷屏蔽作用降低PSNP的迁移率[53]。四环素在水相中形成的氢键能与塑料颗粒的官能团结合,再依靠非特异性范德华相互作用和π-π相互作用,四环素与塑料颗粒在水环境中具有强烈的亲和力,在共迁移过程中发挥着关键作用[54] [55]。一方面,四环素通过竞争沉积位点和减小微塑料的负电荷,促进了微塑料的迁移;另一方面,微塑料在低离子强度下促进了四环素的迁移,而在高离子强度下则抑制了这种促进效应[56]。金霉素在石英砂和微塑料上的吸附性均较强,其吸附行为屏蔽了砂粒和微塑料表面的负电荷,导致微纳塑料和金霉素的沉积量均有所增加[57]

Figure 1. Internal mechanism of action of co-migration of micro-nano particles with pollutants

1. 微纳米颗粒物与污染物共迁移的内在机制

Table 1. Research results on co-migration of micro-nano particles and pollutants

1. 微纳米颗粒物与污染物共迁移研究成果

微纳米颗粒物

共迁移污染物

溶液条件

多孔介质

发现

参考文献

氧化石墨烯:0.92 ± 0.13 nm

Pb(II): 10、50 mg/L

/

石英砂: 0.15~0.20 mm

GO有效促进Pb(II)在砂柱中的迁移,GO迁移受到抑制

[23]

氧化石墨烯:0.3~3 μm

荧光羧酸修饰聚苯乙烯乳胶微球:粒径为 0.2~2 mm

NaCl: 10、50 mM

和 CaCl2: 1、5 mM

石英砂: 0.3~0.425 mm

GO与微塑料的异质性聚集有助于微塑料的迁移,在5 mM CaCl2条件下GO导致微塑料的迁移能力 减弱

[28]

氧化石墨烯: 6 mg/L

As: 0.1 mg/L、 Fe: 3 mg/L

NaCl: 0.1 mM

石英砂: 0.8~0.9 mm

GO与Fe形成了大颗粒,大颗粒通过吸附和共沉淀作用与As(III)结合,共迁移的GO、Fe(III)、As(III)滞留量比单迁移都有所提升

[29]

氧化石墨烯

Fe: 6 mg/L、 Mn: 2 mg/L

NaCl: 1 mM

石英砂: 0.8~0.9 mm

Mn(II)的加入导致Fe几乎全部被拦截于石英砂中,归因于Fe(OH)3与MnO2生成球状絮体

[27]

氧化石墨烯: 10、30 mg/L

铜离子与四环素的螯合物(质量比1:1)

NaCl和CaCl2混合液(Ca2+: Na+ = 1:1)

石英砂: 0.15~0.425 mm

GO显著抑制铜离子与四环素的螯合物在GO预填充饱和砂柱中的 迁移

[32]

氧化石墨烯:0.1~−0.3 μm

菲:10 μg/L、 1-萘酚:10 μg/L

NaCl: 0.1、0.5、2、10 mM

土壤

低浓度氧化石墨烯显著增强1-萘酚在饱和土壤中的运输,但对菲的运输影响程度要小得多

[22]

多壁碳纳米管:10~−15 nm

膨润土纳米颗粒:5~200 nm、针铁矿纳米颗粒:5~120 nm

KCl: 1 mM

石英砂:中位粒径为0.24 mm

多壁碳纳米管促进土壤纳米颗粒的迁移,膨润土纳米颗粒增加多壁碳纳米管的迁移量,针铁矿纳米颗粒抑制多壁碳纳米管的迁移

[30]

nTiO2: 直径 < 25 nm

富勒烯纳米颗粒(nC60):10 mg/L

NaCl: 0.1~10 mM

石英砂:0.417~0.6 mm

pH为7时,nC60的存在增加了nTiO2的迁移速率;nC60的存在导致石英砂表面沉积位点的竞争,导致nTiO2迁移增加

[33]

nTiO2: 直径 < 26 nm

聚苯乙烯微塑料(0.2、1和2 μm)

NaCl: 0.1、1和10 mM

石英砂:0.417~0.6 mm

nTiO2的存在增加了微塑料在石英砂中的沉积,异质聚集体的形成和nTiO2提供的额外沉积位点是导致沉积增加的原因

[35]

nTiO2:100 mg/L、nCeO2:100 mg/L

表面活性剂:0、5、10和20 mg/L

pH值为6的超纯水

石英砂:0.38~0.83 mm

阴离子表面活性剂提高了nTiO2、nCeO2的稳定性,阳离子表面活性剂导致nTiO2、nCeO2颗粒更容易沉积在砂表面

[36]

nTiO2: 60~80 nm

Pb2+:1 mg/L

NaCl: 0、0.5 mM

土壤颗粒(< 1 mm)

nTiO2增强Pb2+在土壤柱中的迁移性,增加溶液离子强度导致nTiO2的迁移率显著降低,从而降低了nTiO2携带的Pb2+迁移

[40]

nTiO2:60~80 nm

Cu:500 mg/kg

NaCl: 0.5 mM

土壤颗粒(< 1 mm)

nTiO2与Cu共迁移时,Cu迁移率与土壤pH值呈显著正相关,而与土壤阳离子交换量和溶解性有机碳呈显著负相关

[42]

续表

nZVI:60~80 nm

鼠李糖脂胶束: 0、10、20、50和100 mg/L

去离子水

斜沸石:平均粒径2.54 mm

由于鼠李糖脂胶束的亲水部分可作为促进nZVI迁移的载体,鼠李糖脂胶束有助于nZVI的迁移

[44]

聚苯乙烯纳米塑料(PSNP):100 nm

氧化石墨烯:20 mg/L、还原氧化石墨烯:20 mg/L

NaCl: 10、30 mM

石英砂:平均粒径0.26 mm

PSNP显著抑制了氧化石墨烯和还原氧化石墨烯的迁移,迁移能力较弱的PSNP的迁移率得到提升,还原氧化石墨烯对PSNP的迁移增强作用更为显著

[49]

聚苯乙烯纳米塑料(NPs):200 nm

富勒烯(C60)

人工海水:盐度为0、3.5和35 PSU

天然海砂: 0.45 ± 0.03 mm

NPs/C60比值为1时,C60利用NPs增加静电斥力并形成异质聚集物,提高迁移率;比值降至1/3时,次生团聚体抑制了NPs的迁移

[50]

聚苯乙烯微纳塑料:50 nm、2.0 µm

Tl(I): 10 mg/L

NaNO3: 1、5和50 mM

石英砂:0.178~0.42 mm

中性环境下,微纳塑料与Tl(I)竞争砂土表面的吸附位点,提升Tl(I)的迁移能力;酸性条件下,由于质子化作用,纳米塑料的沉积倾向增强,Tl(I)也增加沉积量

[51]

聚苯乙烯微塑料:1.0 µm

Pb: 10 mg/L

KCl: 1、10、50和100 mM

球形硼硅玻璃珠:0.707~0.841 mm

微塑料与Pb共迁移由于电负性降低和团块的形成,迁移受到相互抑制,离子强度增强时,迁移量因吸附竞争效应而提高

[52]

羧基聚苯乙烯微纳塑料:2 μm、100 nm

金霉素:20 mg/L

NaCl: 0、1、10、50和100 mM

石英砂:0.35~ 0.600 mm

金霉素的吸附行为屏蔽了砂粒和微塑料表面的负电荷,导致微纳塑料和金霉素的沉积量均有所增加

[57]

4. 展望

目前,针对微纳米颗粒与污染物共迁移,可在以下方面进行进一步研究:首先,突破研究对象的局限性,增加土壤中常见的零价金属微纳米颗粒与其他污染物共迁移的研究,如纳米银颗粒、纳米铜颗粒、纳米钴颗粒等。其次,拓展多元污染物体系的共迁移研究的深度和广度,延伸至两种以上污染物的复合污染共迁移研究,探究物质迁移及转化机制,获取更多详实的数据和信息。最后,增强耦合环境因素对共迁移的具体影响及其作用机制的研究力度,利用实际土壤环境开展进一步研究。

基金项目

广西重点研发计划项目(桂科AB23075157)。

NOTES

*通讯作者。

参考文献

[1] Zhu, Y., Ma, L.Q., Gao, B., Bonzongo, J.C., Harris, W. and Gu, B. (2012) Transport and Interactions of Kaolinite and Mercury in Saturated Sand Media. Journal of Hazardous Materials, 213, 93-99.
https://doi.org/10.1016/j.jhazmat.2012.01.061
[2] Chowdhury, I., Hong, Y., Honda, R.J. and Walker, S.L. (2011) Mechanisms of TiO2 Nanoparticle Transport in Porous Media: Role of Solution Chemistry, Nanoparticle Concentration, and Flowrate. Journal of Colloid and Interface Science, 360, 548-555.
https://doi.org/10.1016/j.jcis.2011.04.111
[3] Prédélus, D., Lassabatere, L., Louis, C., Gehan, H., Brichart, T., Winiarski, T., et al. (2017) Nanoparticle Transport in Water-Unsaturated Porous Media: Effects of Solution Ionic Strength and Flow Rate. Journal of Nanoparticle Research, 19, Article No. 104.
https://doi.org/10.1007/s11051-017-3755-4
[4] Ko, C. and Elimelech, M. (2000) The “Shadow Effect” in Colloid Transport and Deposition Dynamics in Granular Porous Media: Measurements and Mechanisms. Environmental Science & Technology, 34, 3681-3689.
https://doi.org/10.1021/es0009323
[5] Qi, Z., Zhang, L., Wang, F., Hou, L. and Chen, W. (2014) Factors Controlling Transport of Graphene Oxide Nanoparticles in Saturated Sand Columns. Environmental Toxicology and Chemistry, 33, 998-1004.
https://doi.org/10.1002/etc.2525
[6] Quevedo, I.R. and Tufenkji, N. (2012) Mobility of Functionalized Quantum Dots and a Model Polystyrene Nanoparticle in Saturated Quartz Sand and Loamy Sand. Environmental Science & Technology, 46, 4449-4457.
https://doi.org/10.1021/es2045458
[7] Bradford, S.A. and Torkzaban, S. (2013) Colloid Interaction Energies for Physically and Chemically Heterogeneous Porous Media. Langmuir, 29, 3668-3676.
https://doi.org/10.1021/la400229f
[8] Bradford, S.A. and Torkzaban, S. (2015) Determining Parameters and Mechanisms of Colloid Retention and Release in Porous Media. Langmuir, 31, 12096-12105.
https://doi.org/10.1021/acs.langmuir.5b03080
[9] Jin, C., Zhao, W., Normani, S.D., Zhao, P. and Emelko, M.B. (2017) Synergies of Media Surface Roughness and Ionic Strength on Particle Deposition during Filtration. Water Research, 114, 286-295.
https://doi.org/10.1016/j.watres.2017.02.010
[10] He, L., Rong, H., Wu, D., Li, M., Wang, C. and Tong, M. (2020) Influence of Biofilm on the Transport and Deposition Behaviors of Nano-and Micro-Plastic Particles in Quartz Sand. Water Research, 178, Article ID: 115808.
https://doi.org/10.1016/j.watres.2020.115808
[11] Verwey, E.J.W. (1947) Theory of the Stability of Lyophobic Colloids. The Journal of Physical and Colloid Chemistry, 51, 631-636.
https://doi.org/10.1021/j150453a001
[12] Derjaguin, B. and Landau, L. (1993) Theory of the Stability of Strongly Charged Lyophobic Sols and of the Adhesion of Strongly Charged Particles in Solutions of Electrolytes. Progress in Surface Science, 43, 30-59.
https://doi.org/10.1016/0079-6816(93)90013-l
[13] Chen, M., Wang, D., Xu, X., Zhang, Y., Gui, X., Song, B., et al. (2022) Biochar Nanoparticles with Different Pyrolysis Temperatures Mediate Cadmium Transport in Water-Saturated Soils: Effects of Ionic Strength and Humic Acid. Science of the Total Environment, 806, Article ID: 150668.
https://doi.org/10.1016/j.scitotenv.2021.150668
[14] Xu, T., Nan, F., Jiang, X., Tang, Y., Zeng, Y., Zhang, W., et al. (2020) Effect of Soil pH on the Transport, Fractionation, and Oxidation of Chromium (III). Ecotoxicology and Environmental Safety, 195, Article ID: 110459.
https://doi.org/10.1016/j.ecoenv.2020.110459
[15] Duster, T.A. and Fein, J.B. (2014) Comparison of the Aggregation Behavior of TiO2 Nanoparticles Exposed to Fulvic Acid and Bacillus subtilis Exudates. Water, Air, & Soil Pollution, 225, Article No. 2189.
https://doi.org/10.1007/s11270-014-2189-1
[16] Harvey, R.W., Metge, D.W., Mohanram, A., Gao, X. and Chorover, J. (2011) Differential Effects of Dissolved Organic Carbon upon Re-Entrainment and Surface Properties of Groundwater Bacteria and Bacteria-Sized Microspheres during Transport through a Contaminated, Sandy Aquifer. Environmental Science & Technology, 45, 3252-3259.
https://doi.org/10.1021/es102989x
[17] Wang, D., Bradford, S.A., Harvey, R.W., Gao, B., Cang, L. and Zhou, D. (2012) Humic Acid Facilitates the Transport of Ars-Labeled Hydroxyapatite Nanoparticles in Iron Oxyhydroxide-Coated Sand. Environmental Science & Technology, 46, 2738-2745.
https://doi.org/10.1021/es203784u
[18] Chen, M., Wang, D., Yang, F., Xu, X., Xu, N. and Cao, X. (2017) Transport and Retention of Biochar Nanoparticles in a Paddy Soil under Environmentally-Relevant Solution Chemistry Conditions. Environmental Pollution, 230, 540-549.
https://doi.org/10.1016/j.envpol.2017.06.101
[19] Park, C.M., Han, J., Chu, K.H., Al-Hamadani, Y.A.J., Her, N., Heo, J., et al. (2017) Influence of Solution pH, Ionic Strength, and Humic Acid on Cadmium Adsorption onto Activated Biochar: Experiment and Modeling. Journal of Industrial and Engineering Chemistry, 48, 186-193.
https://doi.org/10.1016/j.jiec.2016.12.038
[20] Zhang, C., Brown, P.J.B., Miles, R.J., White, T.A., Grant, D.G., Stalla, D., et al. (2019) Inhibition of Regrowth of Planktonic and Biofilm Bacteria after Peracetic Acid Disinfection. Water Research, 149, 640-649.
https://doi.org/10.1016/j.watres.2018.10.062
[21] Mohammadi, M., Masoumipour, F., Hassanshahian, M. and Jafarinasab, T. (2019) Study the Antibacterial and Antibiofilm Activity of Carum copticum against Antibiotic-Resistant Bacteria in Planktonic and Biofilm Forms. Microbial Pathogenesis, 129, 99-105.
https://doi.org/10.1016/j.micpath.2019.02.002
[22] Qi, Z., Hou, L., Zhu, D., Ji, R. and Chen, W. (2014) Enhanced Transport of Phenanthrene and 1-Naphthol by Colloidal Graphene Oxide Nanoparticles in Saturated Soil. Environmental Science & Technology, 48, 10136-10144.
https://doi.org/10.1021/es500833z
[23] 陈亚妮, 董姝楠, 孙媛媛, 等. 氧化石墨烯对铅在饱和多孔介质中运移的影响[J]. 农业环境科学学报, 2016, 35(7): 1392-1397.
[24] Zhou, D.D., Jiang, X.H., Lu, Y., Fan, W., Huo, M.X. and Crittenden, J.C. (2016) Cotransport of Graphene Oxide and Cu(II) through Saturated Porous Media. Science of the Total Environment, 550, 717-726.
https://doi.org/10.1016/j.scitotenv.2016.01.141
[25] Zhao, K., Chen, C., Cheng, T. and Shang, J. (2019) Graphene Oxide-Facilitated Uranium Transport and Release in Saturated Medium: Effect of Ionic Strength and Medium Structure. Environmental Pollution, 247, 668-677.
https://doi.org/10.1016/j.envpol.2019.01.037
[26] Jiang, Y., Zhang, X., Yin, X., Sun, H. and Wang, N. (2018) Graphene Oxide-Facilitated Transport of Pb2+ and Cd2+ in Saturated Porous Media. Science of the Total Environment, 631, 369-376.
https://doi.org/10.1016/j.scitotenv.2018.03.036
[27] 王淑雅. 铁、锰离子与氧化石墨烯在多孔介质中的共迁移规律[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2019.
[28] Peng, S., Wu, D., Ge, Z., Tong, M. and Kim, H. (2017) Influence of Graphene Oxide on the Transport and Deposition Behaviors of Colloids in Saturated Porous Media. Environmental Pollution, 225, 141-149.
https://doi.org/10.1016/j.envpol.2017.03.064
[29] 江佳玥. 氧化石墨烯对As(Ⅲ)、Fe在多孔介质中共迁移行为的影响[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2020.
[30] Zhang, M., Bradford, S.A., Klumpp, E., Šimůnek, J., Wang, S., Wan, Q., et al. (2022) Significance of Non-DLVO Interactions on the Co-Transport of Functionalized Multiwalled Carbon Nanotubes and Soil Nanoparticles in Porous Media. Environmental Science & Technology, 56, 10668-10680.
https://doi.org/10.1021/acs.est.2c00681
[31] Huang, B., Liu, Y., Li, B., Liu, S., Zeng, G., Zeng, Z., et al. (2017) Effect of Cu(II) Ions on the Enhancement of Tetracycline Adsorption by Fe3O4@SiO2-Chitosan/Graphene Oxide Nanocomposite. Carbohydrate Polymers, 157, 576-585.
https://doi.org/10.1016/j.carbpol.2016.10.025
[32] Zhao, C., Pei, S., Ma, J., Song, Z., Xia, H., Song, X., et al. (2020) Influence of Graphene Oxide Nanosheets on the Cotransport of Cu-Tetracycline Multi-Pollutants in Saturated Porous Media. Environmental Science and Pollution Research, 27, 10846-10856.
https://doi.org/10.1007/s11356-020-07622-w
[33] Cai, L., Tong, M., Ma, H. and Kim, H. (2013) Cotransport of Titanium Dioxide and Fullerene Nanoparticles in Saturated Porous Media. Environmental Science & Technology, 47, 5703-5710.
https://doi.org/10.1021/es400256d
[34] Wang, X., Cai, L., Han, P., Lin, D., Kim, H. and Tong, M. (2014) Cotransport of Multi-Walled Carbon Nanotubes and Titanium Dioxide Nanoparticles in Saturated Porous Media. Environmental Pollution, 195, 31-38.
https://doi.org/10.1016/j.envpol.2014.08.011
[35] Cai, L., He, L., Peng, S., Li, M. and Tong, M. (2019) Influence of Titanium Dioxide Nanoparticles on the Transport and Deposition of Microplastics in Quartz Sand. Environmental Pollution, 253, 351-357.
https://doi.org/10.1016/j.envpol.2019.07.006
[36] Dai, C., Shen, H., Duan, Y., You, X., Lai, X., Liu, S., et al. (2021) Transport of TiO2 and CeO2 Nanoparticles in Saturated Porous Media in the Presence of Surfactants with Environmentally Relevant Concentrations. Environmental Science and Pollution Research, 29, 9306-9317.
https://doi.org/10.1007/s11356-021-16266-3
[37] Lu, Y., Xu, X., Yang, K. and Lin, D. (2013) The Effects of Surfactants and Solution Chemistry on the Transport of Multiwalled Carbon Nanotubes in Quartz Sand-Packed Columns. Environmental Pollution, 182, 269-277.
https://doi.org/10.1016/j.envpol.2013.07.034
[38] Wang, M., Yu, C., Tang, D., Chen, J. and Gao, B. (2019) Effects of Surfactant and Electrolyte Concentrations, Cation Valence, and Temperature on Graphene Oxide Retention and Transport in Saturated Porous Media. Water, Air, & Soil Pollution, 230, Article No. 21.
https://doi.org/10.1007/s11270-018-4076-7
[39] Engates, K.E. and Shipley, H.J. (2010) Adsorption of Pb, Cd, Cu, Zn, and Ni to Titanium Dioxide Nanoparticles: Effect of Particle Size, Solid Concentration, and Exhaustion. Environmental Science and Pollution Research, 18, 386-395.
https://doi.org/10.1007/s11356-010-0382-3
[40] Fang, J., Zhang, K., Sun, P., Lin, D., Shen, B. and Luo, Y. (2016) Co-Transport of Pb2+ and TiO2 Nanoparticles in Repacked Homogeneous Soil Columns under Saturation Condition: Effect of Ionic Strength and Fulvic Acid. Science of the Total Environment, 571, 471-478.
https://doi.org/10.1016/j.scitotenv.2016.07.013
[41] Hu, J. and Shipley, H.J. (2012) Evaluation of Desorption of Pb(II), Cu(II) and Zn(II) from Titanium Dioxide Nanoparticles. Science of the Total Environment, 431, 209-220.
https://doi.org/10.1016/j.scitotenv.2012.05.039
[42] Fang, J., Shan, X., Wen, B., Lin, J., Owens, G. and Zhou, S. (2011) Transport of Copper as Affected by Titania Nanoparticles in Soil Columns. Environmental Pollution, 159, 1248-1256.
https://doi.org/10.1016/j.envpol.2011.01.039
[43] Afzal, M.T.K., Firouzi, A.F. and Zahedkolaei, M.T. (2024) Enhanced Transport of Zerovalent Iron Nanoparticles and Nitrate Removal in Saturated Porous Media. Water, Air, & Soil Pollution, 235, Article No. 548.
https://doi.org/10.1007/s11270-024-07361-5
[44] Abbasi, A., Qi, L. and Chen, G. (2024) Transport of Nanoscale Zero-Valent Iron in the Presence of Rhamnolipid. Science of the Total Environment, 927, Article ID: 172279.
https://doi.org/10.1016/j.scitotenv.2024.172279
[45] Li, M., He, L., Zhang, M., Liu, X., Tong, M. and Kim, H. (2019) Cotransport and Deposition of Iron Oxides with Different-Sized Plastic Particles in Saturated Quartz Sand. Environmental Science & Technology, 53, 3547-3557.
https://doi.org/10.1021/acs.est.8b06904
[46] Wang, D., Jin, Y. and Jaisi, D.P. (2015) Effect of Size-Selective Retention on the Cotransport of Hydroxyapatite and Goethite Nanoparticles in Saturated Porous Media. Environmental Science & Technology, 49, 8461-8470.
https://doi.org/10.1021/acs.est.5b01210
[47] Wang, Z., Chen, M., Zhang, L., Wang, K., Yu, X., Zheng, Z., et al. (2018) Sorption Behaviors of Phenanthrene on the Microplastics Identified in a Mariculture Farm in Xiangshan Bay, Southeastern China. Science of the Total Environment, 628, 1617-1626.
https://doi.org/10.1016/j.scitotenv.2018.02.146
[48] Liu, J., Ma, Y., Zhu, D., Xia, T., Qi, Y., Yao, Y., et al. (2018) Polystyrene Nanoplastics-Enhanced Contaminant Transport: Role of Irreversible Adsorption in Glassy Polymeric Domain. Environmental Science & Technology, 52, 2677-2685.
https://doi.org/10.1021/acs.est.7b05211
[49] Xia, T., Lin, Y., Li, S., Yan, N., Xie, Y., He, M., et al. (2021) Co-Transport of Negatively Charged Nanoparticles in Saturated Porous Media: Impacts of Hydrophobicity and Surface O-Functional Groups. Journal of Hazardous Materials, 409, Article ID: 124477.
https://doi.org/10.1016/j.jhazmat.2020.124477
[50] Dong, Z., Zhang, W., Qiu, Y., Yang, Z., Wang, J. and Zhang, Y. (2019) Cotransport of Nanoplastics (NPs) with Fullerene (C60) in Saturated Sand: Effect of NPs/C60 Ratio and Seawater Salinity. Water Research, 148, 469-478.
https://doi.org/10.1016/j.watres.2018.10.071
[51] Yao, J., Wang, H., Ma, C., Cao, Y., Chen, W., Gu, L., et al. (2022) Cotransport of Thallium(I) with Polystyrene Plastic Particles in Water-Saturated Porous Media. Journal of Hazardous Materials, 422, Article ID: 126910.
https://doi.org/10.1016/j.jhazmat.2021.126910
[52] Zhao, W., Zhao, Y., Geng, T., Tian, Y. and Zhao, P. (2023) Co-Transport Behavior and Trojan-Horse Effect of Colloidal Microplastics with Different Functional Groups and Heavy Metals in Porous Media. Journal of Hazardous Materials, 459, Article ID: 131892.
https://doi.org/10.1016/j.jhazmat.2023.131892
[53] Hu, E., Shang, S., Fu, Z., Zhao, X., Nan, X., Du, Y., et al. (2020) Cotransport of Naphthalene with Polystyrene Nano-Plastics (PSNP) in Saturated Porous Media: Effects of PSNP/Naphthalene Ratio and Ionic Strength. Chemosphere, 245, Article ID: 125602.
https://doi.org/10.1016/j.chemosphere.2019.125602
[54] Li, J., Zhang, K. and Zhang, H. (2018) Adsorption of Antibiotics on Microplastics. Environmental Pollution, 237, 460-467.
https://doi.org/10.1016/j.envpol.2018.02.050
[55] Zhao, P., Cui, L., Zhao, W., Tian, Y., Li, M., Wang, Y., et al. (2021) Cotransport and Deposition of Colloidal Polystyrene Microplastic Particles and Tetracycline in Porous Media: The Impact of Ionic Strength and Cationic Types. Science of the Total Environment, 753, Article ID: 142064.
https://doi.org/10.1016/j.scitotenv.2020.142064
[56] Zhou, D., Cai, Y., Yang, Z. and Wan, H. (2023) Interplay of Compound Pollutants with Microplastics Transported in Saturated Porous Media: Effect of Co-Existing Graphene Oxide and Tetracycline. Journal of Contaminant Hydrology, 259, Article ID: 104255.
https://doi.org/10.1016/j.jconhyd.2023.104255
[57] Xu, L., Liang, Y., Liao, C., Xie, T., Zhang, H., Liu, X., et al. (2022) Cotransport of Micro-and Nano-Plastics with Chlortetracycline Hydrochloride in Saturated Porous Media: Effects of Physicochemical Heterogeneities and Ionic Strength. Water Research, 209, Article ID: 117886.
https://doi.org/10.1016/j.watres.2021.117886