铁对人体影响的研究进展
Research Progress on the Effects of Iron on Human Body
DOI: 10.12677/acm.2025.153659, PDF, HTML, XML,   
作者: 王洪洋, 高 建*:重庆医科大学附属第二医院消化内科,重庆
关键词: 血清铁心功能肝功能认知功能造血系统Serum Iron Cardiac Function Liver Function Cognitive Function Hematopoietic System
摘要: 随着对人体微量元素研究的逐步进展,各种元素对人体的影响逐渐被揭示,其中铁元素作为较为常见的微量元素之一,其对人体各个器官功能的影响受到了越来越多的重视。当人体铁状态失衡时,可能导致铁缺乏或铁超载,此时除了常见的对血液系统的影响外,其对心功能、肝功能、认知功能等全身多器官功能都产生了影响。文章就铁对人体全身多器官功能的影响为主题,总结当前的研究进展,为相应的诊断治疗提供依据。
Abstract: With the gradual progress of research on human trace elements, the influence of various elements on the human body has been gradually revealed, among which iron, as one of the more common trace elements, has received more and more attention on its influence on the function of various organs of the human body. When the iron state of the human body is unbalanced, it may lead to iron deficiency or iron overload. It has an impact on the multi-organ functions of the whole body, such as heart function, liver function, and cognitive function. This paper summarizes the current research progress on the impact of iron on the multi-organ functions of the whole body and provides a basis for the corresponding diagnosis and treatment.
文章引用:王洪洋, 高建. 铁对人体影响的研究进展[J]. 临床医学进展, 2025, 15(3): 645-650. https://doi.org/10.12677/acm.2025.153659

1. 引言

随着工业社会的发展以及对人体认知的逐渐加深,包括环境污染物[1]、微量元素[2]等多种因素对人体的影响受到越来越多的重视。如今常见的微量元素包括铁、铜、锌、钴、铬、锰、硒等[3],它们在体内发挥着各种各样的作用,而当它们在体内失衡时,也会对人体产生损伤。铁作为最为常见的微量元素之一,其对人体的影响不容忽视[4],当体内铁代谢均衡时,其对人体的益处不言而喻,而当体内的铁代谢平衡被打破时,也会引起铁缺乏[5]或铁超载[6]

2. 铁对人体的影响

作为活细胞中的关键元素,铁在多种人体功能包括心脏、肝脏、血液、神经系统中发挥着关键作用。对于心血管系统而言,维持体内铁稳态对于保证心脏功能而言十分重要[7],由于铁在氧气运输与储存,以及在线粒体功能中的关键作用,其能维持心血管系统的能量需求[8],而当铁平衡被打破时,则可能引发心力衰竭等多种疾病[9];对于肝脏而言,一方面,肝脏本身既是储存铁的器官,也能通过铁调素调节体内铁平衡[10],另一方面,有研究表明了铁失调与代谢功能障碍之间的关系,论证了铁失调可能是非酒精性肝损伤的危险因素[11];在人体内铁作为血红蛋白的基本原料,其缺乏容易导致缺铁性贫血,其既是最普遍的营养缺乏症,也是儿童贫血的主要原因[12];而在神经性系统中,铁对大脑发育起着重要作用,这得益于其在许多代谢过程和胺能神经递质合成的辅助因子[13],同样,在如脊髓损伤、中风、多发性硬化症、帕金森病等多种神经系统疾病中观测到了铁代谢失衡及铁死亡的现象[14]。而除了对上述各个人体系统的影响外,铁元素对各个系统之间的相互影响也存在作用,例如,当人体出现铁缺乏或铁失衡时,肝脏功能会受到影响,严重时可能进展为肝硬化或肝衰竭等晚期肝损伤,而这会导致消化道出血的风险提高,从而影响血液系统的功能,而当铁缺乏引起缺铁性贫血时,心功能、肝功能、神经系统功能也会由于贫血受到相应的影响,另外,有研究表明多系统铁中毒是长期β-地中海贫血管理的主要问题,然而,这在脑神经组织中可能表现为一种更加有限的现象[15]。本文将在后续详细讨论上述结论,进一步揭示铁在人体内的多种影响。

2.1. 铁对心脏功能的影响

目前,心脏疾病在我国乃至全球范围内都呈现出日渐加剧的趋势,其发病率及发生发展受到多种危险因素的影响,包括高血压、血脂异常、糖尿病、超重和肥胖、吸烟、过度饮酒、低体力活动以及年龄性别等多种因素[16]。而随着越来越多的机制被研究及阐明,铁代谢对心脏功能的影响也受到越来越多的关注。当铁在体内明显不足时,线粒体功能会下降以及能量产生会减少,从而导致心肌细胞的收缩力减弱[17],Muizz Wahid等人的研究也表明心力衰竭与缺铁相关[18],而对这些患者进行静脉补铁治疗后,其症状、生活质量、运动耐力等多项指标都有明显改善[19],同时,缺铁不仅与心力衰竭相关,其也是冠状动脉疾病的危险因素[20];而当铁代谢平衡被打破出现铁超载时,铁会在血液循环中积累,通过氧化应激机制损伤细胞[21],而“铁死亡”概念的提出,也证实了这种铁依赖性的细胞死亡方式会导致过量的过氧化物积累,从而导致如心肌缺血及再灌注损伤等多种心脏功能受损[22],但同时这也成为心脏疾病的新型治疗靶点[23],铁超载及铁死亡除了造成上述多种心脏功能受损外,在最新研究中提示在小鼠心房肌细胞的模型下,其导致了心动过缓及传导速度受损,这表明铁超载与铁死亡同心律失常之间也存在联系,这可能与铁死亡所诱导的氧化应激与炎症相关[24]。如今,无创测量器官中铁含量的新技术得到了更广泛的关注[25],许多大分子、药物、中草药和食品提取物可以抑制铁超载及铁死亡进程,这也提供了新颖、有前途的治疗靶点[26]

2.2. 铁对肝脏功能的影响

尽管铁在大自然中储存丰富,但其生物利用度相对偏低。人体内脾脏、肝脏及骨髓是主要储存器官[27],铁也对肝脏存在影响。一方面,肝脏是铁的储存器官,同时,肝脏也通过分泌铁调素调控铁转运蛋白,从而针对性地操纵铁调素–铁转运蛋白轴[28];另一方面,铁缺乏在非酒精性脂肪性肝病(NAFLD)中十分常见,且肥胖和女性是更为重要的危险因素[29],缺铁在慢性肝病中也较为常见,这种缺铁性贫血常常是多因素且复杂的原因造成的。当肝脏疾病发展到后期形成肝硬化时,往往会出现继发于门脉高压的并发症,如胃食管静脉曲张破裂、胃病、胃窦血管扩张(GAVE)或消化性溃疡,除了常见的肝病发展到后期所导致的消化道出血外,溶血、酒精乃至药物都是可能的原因[30]。当铁超载时,由于其促氧化剂的性质,当反应产生大量活性氧后,将损伤质膜和胞内细胞器,最终导致细胞变化乃至死亡[31],这不可避免地会损伤肝细胞,而当肝细胞受损从而影响铁调素分泌调节肠道铁吸收时,损伤的严重程度又决定了铁超载的进展速度和临床病程[32]。已有案例表明,非球形红细胞遗传性贫血偶尔伴有明显的铁超负荷,这种继发性铁超负荷可能导致慢性肝病和肝硬化[33],而涉及到NAFLD这类具体的肝脏疾病时,铁超载可能会加重其自然病程,反过来说,体内铁的减少可以延缓2型糖尿病、心血管疾病和晚期肝病等并发症的发生[34]。此外,铁超载还会诱发上文中提到的铁死亡,引发NAFLD甚至是非酒精性脂肪性肝炎(NASH),其病程中会出现名为自噬的自我降解的细胞内过程,降解异常蛋白质和过度丰度或受损的细胞器,这一有益的生理进程也被表明会诱导铁死亡[35],如今,也有证据证明肝铁的积聚与肝癌尤其是原发性肝癌之间存在关联,这可能是由于促进细胞增殖、诱发铁死亡、调节p53的表达等多种因素引起的。而在肿瘤的发展过程中,铁同样扮演着关键角色,与非癌细胞相比,癌细胞因为生长的需要而对铁的需求增加。这种对铁的依赖使癌细胞更容易受到铁相关的活性氧或铁调控的细胞死亡,此时,要么启动肿瘤发生,要么支持未转化细胞的转化,要么导致癌细胞死亡,因此,癌细胞在进展和转移过程中适应了这些铁相关的细胞反应[36]。除上述影响外,遗传性血色病也是一种常染色体隐性遗传病,其特征是铁的吸收过度增加。由于缺乏有效的排泄机制,过量的铁会积累,从而导致毒性作用,常常表现为肝功能的受损,严重时可能导致肝硬化,门静脉高压,甚至是上消化道出血和肝昏迷[37]。如今,简单的干预措施如静脉切开术可以预防或逆转铁过载引起的器官损伤,因此确保提供适当的干预和仅在需要的患者中使用静脉切开术也至关重要[38]

2.3. 铁对血液系统的影响

提到铁对血液系统的影响时,缺铁性贫血总是脱离不开讨论的范畴,其作为世界卫生组织确定的世界上最为常见的营养缺乏症,包括充血性心力衰竭、慢性肾病、慢性肝病、炎症性肠病等多种疾病同样是该病的危险因素[39]。在缺铁性贫血中,铁缺乏通常分为三个阶段,即铁减少期、红细胞生成缺铁期和缺铁性贫血期,通常见于铁需求特别高的生命时期,如婴儿期和怀孕期或是铁丢失超过铁摄入量的时候[40]。因此,铁的补充治疗对于缺铁患者而言势在必得,口服补铁因其便利性、有效性与易于普及性成为急性和慢性缺铁的一线治疗方法,但口服铁剂、给药方案和监测方案的最佳选择仍然不明确,是否联合静脉补铁治疗也尚需研究[41]

2.4. 铁对神经系统的影响

大脑作为人体内最为活跃的几个器官之一,铁同样在其发挥相应功能中扮演着重要地位,包括髓鞘合成及神经递质合成等,而当铁代谢障碍时,铁超载所导致的脑铁沉积会产生神经毒性,进而导致多种神经系统疾病如帕金森病、阿尔兹海默症、亨廷顿舞蹈症等[42],而上文中提到的铁死亡作为一种程序性细胞死亡方式,在这些疾病进展中同样不可或缺[43]。当铁缺乏时,铁在大脑中作为神经递质(多巴胺和血清素)合成以及ATP产生和髓鞘形成的辅助因子的作用受到影响,最终导致不可逆的神经认知和行为缺陷,这在胎儿早期发育及儿童青少年时期更为常见[44]。以帕金森病及阿尔兹海默症举例,具体来说,帕金森病的特征是黑质中多巴胺能神经元的进行性丢失,铁死亡是这一进展的关键参与者,同时,多巴胺的缺失又可能使神经元更易受到铁死亡的影响[45],而除了多巴胺神经元,其他类型的神经元同样受到铁毒性的损伤。基于上述过程,铁螯合物用于治疗帕金森病这一治疗方式也走进大众视野[46]。而对于阿尔茨海默病而言,脑铁积聚会增加血脑屏障的通透性,诱发炎症,影响铁离子在脑中的重新分布,进而改变脑铁代谢。当机体通过上述过程产生的自由基水平超过细胞器的抗氧化能力时,便会诱导氧化应激并损害神经元[47],而对于病程进展中关键的脑β-淀粉样斑块沉积以及Tau的过度磷酸化过程也有铁失衡的参与,最终,铁死亡通过诱发胰岛素失衡加重脑内能量代谢损伤,进一步加剧了上述病理过程并最终导致疾病的进展[48]

3. 结语

综上所述,铁在人体内的作用得到越来越多的重视,一方面,人体内许多重要的细胞过程都需要铁的参与,包括基因调控、新陈代谢、能量循环等[49],另一方面,由包括环境、疾病、遗传等多种因素所引起的铁代谢紊乱,如铁缺乏和铁超载,通过氧化应激、引发炎症、程序性细胞死亡等方式损伤多种器官功能[50]。而如今,针对铁缺乏的铁剂补充治疗[51]以及铁超载的铁螯合疗法[52]也逐渐成熟,未来有关铁的更多研究也将走进大众视野,为疾病的诊断治疗提供宝贵的帮助。

NOTES

*通讯作者。

参考文献

[1] Aryal, N., Wood, J., Rijal, I., Deng, D., Jha, M.K. and Ofori-Boadu, A. (2020) Fate of Environmental Pollutants: A Review. Water Environment Research, 92, 1587-1594.
https://doi.org/10.1002/wer.1404
[2] Rolić, T., Yazdani, M., Mandić, S. and Distante, S. (2024) Iron Metabolism, Calcium, Magnesium and Trace Elements: A Review. Biological Trace Element Research.
https://doi.org/10.1007/s12011-024-04289-z
[3] Berger, M.M., Shenkin, A., Dizdar, O.S., Amrein, K., Augsburger, M., Biesalski, H., et al. (2024) ESPEN Practical Short Micronutrient Guideline. Clinical Nutrition, 43, 825-857.
https://doi.org/10.1016/j.clnu.2024.01.030
[4] Ru, Q., Li, Y., Chen, L., Wu, Y., Min, J. and Wang, F. (2024) Iron Homeostasis and Ferroptosis in Human Diseases: Mechanisms and Therapeutic Prospects. Signal Transduction and Targeted Therapy, 9, Article No. 271.
https://doi.org/10.1038/s41392-024-01969-z
[5] Pasricha, S., Tye-Din, J., Muckenthaler, M.U. and Swinkels, D.W. (2021) Iron Deficiency. The Lancet, 397, 233-248.
https://doi.org/10.1016/s0140-6736(20)32594-0
[6] Hsu, C.C., Senussi, N.H., Fertrin, K.Y. and Kowdley, K.V. (2022) Iron Overload Disorders. Hepatology Communications, 6, 1842-1854.
https://doi.org/10.1002/hep4.2012
[7] Fang, X., Ardehali, H., Min, J. and Wang, F. (2022) The Molecular and Metabolic Landscape of Iron and Ferroptosis in Cardiovascular Disease. Nature Reviews Cardiology, 20, 7-23.
https://doi.org/10.1038/s41569-022-00735-4
[8] Sawicki, K.T., De Jesus, A. and Ardehali, H. (2023) Iron Metabolism in Cardiovascular Disease: Physiology, Mechanisms, and Therapeutic Targets. Circulation Research, 132, 379-396.
https://doi.org/10.1161/circresaha.122.321667
[9] Zhang, J., Song, Y., Li, Y., Lin, H. and Fang, X. (2023) Iron Homeostasis in the Heart: Molecular Mechanisms and Pharmacological Implications. Journal of Molecular and Cellular Cardiology, 174, 15-24.
https://doi.org/10.1016/j.yjmcc.2022.11.001
[10] Wang, C. and Babitt, J.L. (2019) Liver Iron Sensing and Body Iron Homeostasis. Blood, 133, 18-29.
https://doi.org/10.1182/blood-2018-06-815894
[11] Ameka, M.K. and Hasty, A.H. (2022) Paying the Iron Price: Liver Iron Homeostasis and Metabolic Disease. Comprehensive Physiology, 12, Article 3641.
[12] Leung, A.K.C., Lam, J.M., Wong, A.H.C., Hon, K.L. and Li, X. (2024) Iron Deficiency Anemia: An Updated Review. Current Pediatric Reviews, 20, 339-356.
https://doi.org/10.2174/1573396320666230727102042
[13] Vallée, L. (2017) Fer et neurodéveloppement. Archives de Pédiatrie, 24, 5S18-5S22.
https://doi.org/10.1016/s0929-693x(17)24005-6
[14] David, S., Jhelum, P., Ryan, F., Jeong, S.Y. and Kroner, A. (2022) Dysregulation of Iron Homeostasis in the Central Nervous System and the Role of Ferroptosis in Neurodegenerative Disorders. Antioxidants & Redox Signaling, 37, 150-170.
https://doi.org/10.1089/ars.2021.0218
[15] Manara, R., Ponticorvo, S., Tartaglione, I., Femina, G., Elefante, A., Russo, C., et al. (2019) Brain Iron Content in Systemic Iron Overload: A Beta-Thalassemia Quantitative MRI Study. NeuroImage: Clinical, 24, Article 102058.
https://doi.org/10.1016/j.nicl.2019.102058
[16] 《中国心血管健康与疾病报告2022》要点解读[J]. 中国心血管杂志, 2023, 28(4): 297-312.
[17] 方瑾, 黄鹤. 铁代谢在心肌缺血再灌注损伤及心脏保护中的作用及机制[J]. 医学综述, 2022, 28(6): 1046-1050.
[18] Wahid, M., Islam, S., Sepehrvand, N., Dover, D.C., McAlister, F.A., Kaul, P., et al. (2024) Iron Deficiency, Anemia, and Iron Supplementation in Patients with Heart Failure: A Population-Level Study. Circulation: Heart Failure, 17, e011351.
https://doi.org/10.1161/circheartfailure.123.011351
[19] von Haehling, S., Ebner, N., Evertz, R., Ponikowski, P. and Anker, S.D. (2019) Iron Deficiency in Heart Failure. JACC: Heart Failure, 7, 36-46.
https://doi.org/10.1016/j.jchf.2018.07.015
[20] Savarese, G., von Haehling, S., Butler, J., Cleland, J.G.F., Ponikowski, P. and Anker, S.D. (2022) Iron Deficiency and Cardiovascular Disease. European Heart Journal, 44, 14-27.
https://doi.org/10.1093/eurheartj/ehac569
[21] 方学贤, 蔡昭贤, 王浩, 等. 铁过载及铁死亡在心脏疾病中的研究进展[J]. 科学通报, 2019, 64(Z2): 2974-2987.
[22] Chen, Y., Guo, X., Zeng, Y., Mo, X., Hong, S., He, H., et al. (2023) Oxidative Stress Induces Mitochondrial Iron Overload and Ferroptotic Cell Death. Scientific Reports, 13, Article No. 15515.
https://doi.org/10.1038/s41598-023-42760-4
[23] Wu, X., Li, Y., Zhang, S. and Zhou, X. (2021) Ferroptosis as a Novel Therapeutic Target for Cardiovascular Disease. Theranostics, 11, 3052-3059.
https://doi.org/10.7150/thno.54113
[24] Siri-Angkul, N., Xie, L., Chattipakorn, S.C. and Chattipakorn, N. (2018) Cellular Electrophysiology of Iron-Overloaded Cardiomyocytes. Frontiers in Physiology, 9, Article 1615.
https://doi.org/10.3389/fphys.2018.01615
[25] Sohal, A. and Kowdley, K.V. (2024) A Review of New Concepts in Iron Overload. Gastroenterology & Hepatology, 20, 98-107.
[26] Xu, X., Xu, X., Ma, M., Liang, Y., Cai, Y., Zhu, Z., et al. (2024) The Mechanisms of Ferroptosis and Its Role in Atherosclerosis. Biomedicine & Pharmacotherapy, 171, Article 116112.
https://doi.org/10.1016/j.biopha.2023.116112
[27] Nemeth, E. and Ganz, T. (2021) Hepcidin-Ferroportin Interaction Controls Systemic Iron Homeostasis. International Journal of Molecular Sciences, 22, Article 6493.
https://doi.org/10.3390/ijms22126493
[28] Billesbølle, C.B., Azumaya, C.M., Kretsch, R.C., Powers, A.S., Gonen, S., Schneider, S., et al. (2020) Structure of Hepcidin-Bound Ferroportin Reveals Iron Homeostatic Mechanisms. Nature, 586, 807-811.
https://doi.org/10.1038/s41586-020-2668-z
[29] Siddique, A., Nelson, J.E., Aouizerat, B., Yeh, M.M. and Kowdley, K.V. (2014) Iron Deficiency in Patients with Nonalcoholic Fatty Liver Disease Is Associated with Obesity, Female Gender, and Low Serum Hepcidin. Clinical Gastroenterology and Hepatology, 12, 1170-1178.
https://doi.org/10.1016/j.cgh.2013.11.017
[30] Gkamprela, E. (2017) Iron Deficiency Anemia in Chronic Liver Disease: Etiopathogenesis, Diagnosis and Treatment. Annals of Gastroenterology, 30, Article 405.
https://doi.org/10.20524/aog.2017.0152
[31] Sousa, L., Oliveira, M.M., Pessôa, M.T.C. and Barbosa, L.A. (2020) Iron Overload: Effects on Cellular Biochemistry. Clinica Chimica Acta, 504, 180-189.
https://doi.org/10.1016/j.cca.2019.11.029
[32] Nemeth, E. and Ganz, T. (2023) Hepcidin and Iron in Health and Disease. Annual Review of Medicine, 74, 261-277.
https://doi.org/10.1146/annurev-med-043021-032816
[33] Hilgard, P. (2005) Liver Cirrhosis as a Consequence of Iron Overload Caused by Hereditary Nonspherocytic Hemolytic Anemia. World Journal of Gastroenterology, 11, 1241-1244.
https://doi.org/10.3748/wjg.v11.i8.1241
[34] Datz, C., Müller, E. and Aigner, E. (2017) Iron Overload and Non-Alcoholic Fatty Liver Disease. Minerva Endocrinology, 42, 173-183.
https://doi.org/10.23736/s0391-1977.16.02565-7
[35] Honma, K., Kirihara, S., Nakayama, H., Fukuoka, T., Ohara, T., Kitamori, K., et al. (2023) Selective Autophagy Associated with Iron Overload Aggravates Non-Alcoholic Steatohepatitis via Ferroptosis. Experimental Biology and Medicine, 248, 1112-1123.
https://doi.org/10.1177/15353702231191197
[36] Hino, K., Yanatori, I., Hara, Y. and Nishina, S. (2021) Iron and Liver Cancer: An Inseparable Connection. The FEBS Journal, 289, 7810-7829.
https://doi.org/10.1111/febs.16208
[37] Kowdley, K.V., Brown, K.E., Ahn, J. and Sundaram, V. (2019) ACG Clinical Guideline: Hereditary Hemochromatosis. American Journal of Gastroenterology, 114, 1202-1218.
https://doi.org/10.14309/ajg.0000000000000315
[38] Murphree, C.R., Nguyen, N.N., Raghunathan, V., Olson, S.R., DeLoughery, T. and Shatzel, J.J. (2020) Diagnosis and Management of Hereditary Haemochromatosis. Vox Sanguinis, 115, 255-262.
https://doi.org/10.1111/vox.12896
[39] Kumar, A., Sharma, E., Marley, A., Samaan, M.A. and Brookes, M.J. (2022) Iron Deficiency Anaemia: Pathophysiology, Assessment, Practical Management. BMJ Open Gastroenterology, 9, e000759.
https://doi.org/10.1136/bmjgast-2021-000759
[40] Chaparro, C.M. and Suchdev, P.S. (2019) Anemia Epidemiology, Pathophysiology, and Etiology in Low and Middle-Income Countries. Annals of the New York Academy of Sciences, 1450, 15-31.
https://doi.org/10.1111/nyas.14092
[41] Lo, J.O., Benson, A.E., Martens, K.L., Hedges, M.A., McMurry, H.S., DeLoughery, T., et al. (2022) The Role of Oral Iron in the Treatment of Adults with Iron Deficiency. European Journal of Haematology, 110, 123-130.
https://doi.org/10.1111/ejh.13892
[42] 刘旭, 刘文虎. 脑铁沉积与衰老关系的研究进展[J]. 中华老年多器官疾病杂志, 2023, 22(7): 546-549.
[43] 买孝林, 曹成珠, 王海燕, 等. 铁死亡调控机制及在神经系统相关疾病中的研究进展[J]. 中国临床药学杂志, 2024, 33(12): 947-954.
[44] McWilliams, S., Singh, I., Leung, W., Stockler, S. and Ipsiroglu, O.S. (2022) Iron Deficiency and Common Neurodevelopmental Disorders—A Scoping Review. PLOS ONE, 17, e0273819.
https://doi.org/10.1371/journal.pone.0273819
[45] Ding, X., Gao, L., Han, Z., Eleuteri, S., Shi, W., Shen, Y., et al. (2023) Ferroptosis in Parkinson’s Disease: Molecular Mechanisms and Therapeutic Potential. Ageing Research Reviews, 91, Article 102077.
https://doi.org/10.1016/j.arr.2023.102077
[46] 王雨朔, 孟凡超. 铁元素与帕金森病研究进展[J]. 中国实用神经疾病杂志, 2021, 24(16): 1465-1472.
[47] Peng, Y., Chang, X. and Lang, M. (2021) Iron Homeostasis Disorder and Alzheimer’s Disease. International Journal of Molecular Sciences, 22, Article 12442.
https://doi.org/10.3390/ijms222212442
[48] Wang, J., Fu, J., Zhao, Y., Liu, Q., Yan, X. and Su, J. (2023) Iron and Targeted Iron Therapy in Alzheimer’s Disease. International Journal of Molecular Sciences, 24, Article 16353.
https://doi.org/10.3390/ijms242216353
[49] Teh, M.R., Armitage, A.E. and Drakesmith, H. (2024) Why Cells Need Iron: A Compendium of Iron Utilisation. Trends in Endocrinology & Metabolism, 35, 1026-1049.
https://doi.org/10.1016/j.tem.2024.04.015
[50] Abbasi, U., Abbina, S., Gill, A., Takuechi, L.E. and Kizhakkedathu, J.N. (2021) Role of Iron in the Molecular Pathogenesis of Diseases and Therapeutic Opportunities. ACS Chemical Biology, 16, 945-972.
https://doi.org/10.1021/acschembio.1c00122
[51] Man, Y., Xu, T., Adhikari, B., Zhou, C., Wang, Y. and Wang, B. (2021) Iron Supplementation and Iron-Fortified Foods: A Review. Critical Reviews in Food Science and Nutrition, 62, 4504-4525.
https://doi.org/10.1080/10408398.2021.1876623
[52] Bruzzese, A., Martino, E.A., Mendicino, F., Lucia, E., Olivito, V., Bova, C., et al. (2023) Iron Chelation Therapy. European Journal of Haematology, 110, 490-497.
https://doi.org/10.1111/ejh.13935