CAR-T细胞治疗难治/复发急性T淋巴细胞白血病的临床进展
Clinical Progress of CAR-T Cell Therapy for Refractory/Relapsed Acute T Lymphoblastic Leukemia
DOI: 10.12677/acm.2025.153664, PDF, HTML, XML,   
作者: 梁明佳, 沈 燕:重庆医科大学附属第二医院血液内科,重庆
关键词: CAR-T细胞疗法急性淋巴细胞白血病治疗CAR-T Cell Therapy Acute Lymphoblastic Leukemia Treatment
摘要: 急性T淋巴细胞白血病(T-ALL)起源于未成熟的胸腺细胞,患者的总体预后较急性B淋巴细胞白血病(B-ALL)患者差,生存时间短,尤其难治/复发T-ALL (R/R T-ALL)。虽然新型化疗药物、靶向治疗等治疗方案使该类患者的预后得到了一定程度的改善,但患者的获益仍有限。随着肿瘤免疫治疗时代的到来,嵌合抗原受体T细胞(CAR-T)疗法引入了血液肿瘤的治疗,一定程度上改善了R/R T-ALL患者的预后,本文就CAR-T细胞治疗R/R T-ALL的进展进行综述,以探讨其可行性及潜能。
Abstract: T cell acute lymphoblastic leukemia (T-ALL) originates from immature thymocytes, and the overall prognosis for patients is poorer compared to those with acute B-lymphoblastic leukemia (B-ALL), with shorter survival times, especially in cases of refractory or relapsed T-ALL (R/R T-ALL). Although novel chemotherapeutic agents and targeted therapies have improved the prognosis for these patients to some extent, the benefits remain limited. With the advent of the era of tumor immunotherapy, chimeric antigen receptor T-cell (CAR-T) therapy has been introduced into the treatment of hematologic malignancies, which has improved the prognosis of R/R T-ALL patients to a certain extent. This article reviews the progress of CAR-T cell therapy for R/R T-ALL, so as to explore this therapy’s feasibility and potential.
文章引用:梁明佳, 沈燕. CAR-T细胞治疗难治/复发急性T淋巴细胞白血病的临床进展[J]. 临床医学进展, 2025, 15(3): 676-685. https://doi.org/10.12677/acm.2025.153664

1. 引言

急性T淋巴细胞白血病(T-ALL)是一种起源于未成熟胸腺细胞的恶性疾病[1]。T-ALL占成人急性白血病的20%~25% [2]。有效的治疗方法比较有限,尽管近年来强化化疗方案、同种异体造血干细胞移植(allo-HSCT)改善了患者预后,但5年无事件生存率和总生存率仍然很低,尤其是难治性/复发T-ALL (R/R T-ALL)患者,R/R T-ALL患者长期生存率很差[2],中位生存期为5~8个月[3]。因此亟需新的治疗方案改善该类患者的总体预后,免疫疗法的出现改变了患者的预后,是治疗血液肿瘤的有力武器。嵌合抗原受体T细胞(CAR-T)在治疗急性淋巴细胞白血病上取得了重大成果[4]-[7]。但在T-ALL的治疗上受到了限制,因为CAR-T细胞和T-ALL肿瘤细胞存在共同的靶抗原导致CAR-T细胞自相残杀[8] [9],使其扩展到T-ALL充满挑战性。但在免疫疗法的大力推动下,CAR-T细胞疗法已经在R/R T-ALL的治疗上看到了曙光。

2. CAR-T治疗R/R T-ALL的临床应用靶点

2.1. CD7-CAR-T

CD7在T-ALL患者诊断、复发时的肿瘤细胞中高表达,在微小残留病灶(MRD)中>99%的肿瘤细胞CD7+,CD7在治疗期间保持高水平[10],是治疗T-ALL的可靠靶点。通过CRISPR-Cas9编辑、自然选择、重组抗CD7抗体、SECTM1 CAR-T细胞、内质网保留等方式,阻断CAR-T细胞CD7的表达[11]-[17],可以预防CAR-T细胞的自相残杀。N. Watanabe等人还发现使用达沙替尼等激酶抑制剂可以预防CD7 CAR-T细胞的自相残杀[18]

Pan等人使用IntraBlock技术设计了一种供体来源的靶向CD7的CAR-T细胞,并纳入20名R/R T-ALL患者进行了I期临床试验。90%患者达到完全缓解(CR),随访6.3个月时,15名仍处于缓解状态。早期缓解率高。主要不良事件为细胞因子释放综合征(CRS)、血细胞减少,CRS多为1~2级,3~4级血细胞减少在所有患者中均可观察到,60%患者发生1~2级移植物抗宿主病(GVHD),部分患者出现神经毒性、病毒感染等。绝大部分不良事件都是可逆的[17]。持续随访发现,1年无进展生存期(PFS)和总生存期(OS)为51.6%和72.5%,远期生存率较高。短期不良事件包括 ≥ 3级CRS和1~2级GVHD,是可逆的不良事件,6名患者发生了迟发性严重不良事件。复发患者检测多有CD7阴性[19]。X. Zhang等人从大量T细胞中提取天然选择的CD7 CAR-T细胞(NS7CAR-T),并进行了I/II期临床试验,分析了53名接受NS7CAR-T细胞输注的R/R T-ALL/淋巴母细胞淋巴瘤(LBL)患者的预后情况,其中34人为T-ALL。完善评估的48名患者中95.8%在第28天达到MRD阴性CR。18个月OS和无事件生存期(EFS)分别为75.0%和53.1%。32名患者在3个月内行巩固性allo-HSCT,18个月OS和EFS分别为75.8%和71.5%。21名无巩固性allo-HSCT患者中,未达到CR的患者(11/21)接受挽救性移植,7 (7/21)名患者在中位88 (45~122)天内仍处于CR状态,2 (2/21)名患者在5个月内死亡,1 (1/21)名患者在6个月后失访。88.7%患者发生轻度CRS,只有2名患者出现I级神经毒性。同时他们还发现STIL-TAL1融合基因阳性患者往往反应较差且复发较早[20]。A. Ghobadi等人用CRISPR-Cas9编辑获得的WU-CART-007是一种同种异体CD7靶向CAR-T细胞[21]。针对该种CAR-T细胞进行了I/II期临床试验,入组的26名患者中,13名患者接受WU-CART-007细胞输注,复合完全缓解率为81.8%。有88.5%患者出现CRS,其中19.2%为3~4级CRS。严重不良事件比较少见[21]。从上述研究中我们可以发现不同方法制备的CD7 CAR-T虽然在临床疗效和安全性上存在一定差异,但总体来说对于细胞疗法治疗R/R T-ALL患者有着较好的疗效及安全性。患者缓解率高,为81.8%~90%,NS7CAR-T细胞治疗R/R T-ALL/LBL患者的缓解率甚至达到了95.8%。1年以上的OS和EFS率可以达到70%和50%以上。最常见的不良事件为CRS,发生率为88.5%~100%,且以1~2级CRS为主。同时血细胞减少、GVHD也是常见的不良反应,神经毒性、重症感染等相对少见。对于复发的患者多有CD靶点的丢失,是影响复发的重要因素。

Y. Zhang等人探索了自体和同种异体抗CD7 CAR-T疗法在T-ALL和T细胞淋巴瘤中的差异,与接受自体CAR-T细胞疗法的患者相比,接受同种异体CAR-T细胞治疗的患者具有更高的缓解率、更少复发,同时CAR-T存在时间更长[22]。对于R/R T-ALL患者供体来源的CAR-T细胞疗效可能是更好的选择。

Z. Li等人回顾性分析了R/R T-ALL (40, 44.4%)及T-LBL (50, 55.6%)共90例患者的预后,发现使用CD7 CAR-T细胞桥接同种异体HSCT大大增强了化疗耐药T-ALL/LBL患者的长期DFS [23]。X. Zhang等人的研究中可以发现予以患者CAR -T治疗后行HSCT的EFS率较总体水平高,分别为71.5%和53.1% [20]。CAR-T桥接HSCT可能更大程度地改善患者的预后。

2.2. CD5

CD5在大多数T细胞恶性肿瘤中表达,包括T-ALL和T淋巴瘤,也在一些B细胞淋巴瘤中表达,但在造血干细胞和其他非造血细胞中不表达[24] [25]。J. Pan等人纳入了19名R/R T-ALL患者行临床研究,16名患者(既往大多接受过CD7 CAR-T治疗)予以靶向CD5 CAR-T细胞治疗,所有患者在第30天时均达到CR或完全缓解伴不完全血液学恢复(CRi)。中位随访14.3个月时,4例接受了移植,3例缓解,1例死于感染;在12名未移植患者中,2例缓解,3例复发,5例死于感染,2例死于血栓性微血管病;14.3月OS和PFS为50.0%和31.3%。所有患者均出现3~4级血细胞减少症,1人在30天内出现3级感染[26]。巩固性移植可以减轻迟发性严重感染的风险[26]。从上述研究中我们可以看到相较于CD7 CAR-T,CD5 CAR-T治疗R/R T-ALL患者早期可以获得更高的缓解率,远期效果似乎CD7 CAR-T更佳显著。最常见的不良反应为血细胞减少,感染等风险相对少见。但该研究的样本量相对较小,需要扩大样本量及更多的临床研究以深入探索CD5 CAR-T细胞疗法的有效性和安全性。

3. CAR-T治疗R/R T-ALL的潜力靶点

3.1. CD1a

CD1a是一种脂质呈递分子,仅在皮质T-ALL (coT-ALL)和朗格汉斯细胞(LC)表达,在coT-ALL复发时仍有表达[27],在发育中的皮质胸腺细胞和LC以外的其他人体组织中几乎不存在[28]-[30],从而限制了靶点外毒性的风险。D. Sánchez-Martínez等人开发并验证了一种CD1a CAR-T细胞,在coT-ALL异种移植模型中具有强大且特异的体外细胞毒性和体内抗肿瘤活性。由于缺少共同抗原,CD1a CAR-T具有抗自相残杀作用,可在体内长期存在,并对病毒抗原做出反应[27]。CD1a CAR-T治疗R/R coT-ALL提供临床前依据。现在有CD1a CAR-T治疗复发/难治性T细胞急性淋巴细胞白血病/淋巴瘤的临床试验正在招募中(NCT05745181)。

3.2. CCR9

趋化因子受体CCR9在>70%的T-ALL患者中表达,包括>85%的难治/复发患者,仅在一小部分(<5%)正常T细胞中表达[31]。P.M. Maciocia等人开发了一种CCR9 CAR-T细胞,这种CAR-T细胞有抗自相残杀作用。通过动物实验发现未治疗、接受未转导T细胞或CAR19 CAR-T细胞静脉注射的小鼠经历了疾病进展、体重减轻和死亡,但接受CCR9 -T静脉注射的小鼠出现疾病消退、体重持续增加和延长超过80天的生存期。建立病人来源异种移植移植模型(PDX)发现随着时间推移所有接受未转导T细胞或CAR19 CAR-T细胞静脉注射的小鼠外周血ALL负荷增加,体重减轻、脾肿大和最终死亡。而所有予以CCR9 CAR-T的小鼠检测不到肿瘤细胞和长期的无病生存,尸检时骨髓或脾脏中没有检测到原始细胞[32]。即使在低靶抗原密度的情况下在体外和体内仍具有强大的抗白血病活性[31]。CCR9 CAR-T细胞有强大抗白血病作用,它可能在治疗T-ALL上取得重大进展。

3.3. CD38

CD38在多发性骨髓瘤(MM)细胞上表达水平较高,在正常淋巴细胞以及一些非造血组织中表达水平相对较低[32],多能造血干细胞不表达CD38 [33],S.D. Jalal对282名ALL患者进行的免疫表型分析显示95.1%的T-ALL患者样本表达CD38 [34],同时有其他研究发现T-ALL细胞中CD38表达水平显著高于B-ALL [35]。这使得CD38成为了有潜力的治疗靶点。T. Glisovic-Aplenc等人建立了5个PDX,小鼠随机分配接受CD38 CAR-T、非转导T细胞或生理盐水注射,同时监测小鼠肿瘤负荷,虽然CD38 CAR-T在不同模型中对T-ALL的抗肿瘤活性不同,但4个模型中小鼠的生存期均有延长,在所有未转导T细胞或daratumumab治疗的对照小鼠中都观察到了白血病快速进展[36]。X. Wang等人的研究发现CD38 CAR-T细胞在体外和小鼠异种移植物中显著抑制CD38高表达的MM、套细胞淋巴瘤(MCL)、Waldenstrom巨球蛋白血症(WM)、T-ALL和NK/T细胞淋巴瘤(NKTCL)的生长。CD38 CAR-T细胞显着降低小鼠肿瘤负荷并减缓疾病进展[37]。CD38 CAR-T有望在CD38+的T-ALL患者中得到应用。

3.4. CD99

CD99在新诊断的T-ALL中表达更高[38],也被用作检测MRD的新工具[39]。J. Shi等发现,T-ALL肿瘤细胞与正常T细胞相比,CD99在转录产物和蛋白质水平上调[40]。他们分离了一种低亲和力CD99 (12E7)抗体,它特异性识别表达CD99的T-ALL细胞系,但不识别正常血细胞。通过系统的分析发现仅在胸腺观察到部分12E7 mAb阳性信号,在脾脏、肝脏、肾脏或其他重要器官中没有观察到12E7 mAb阳性信号,说明该抗体识别肿瘤细胞特异性高。进一步研究发现抗CD99 CAR-T细胞在体外显示出对CD99+T-ALL细胞系和原代肿瘤细胞的强大细胞毒性[40]。结果表明抗CD99 CAR-T细胞是用于治疗T-ALL的潜在靶点。

3.5. CD147

CD147是一种免疫球蛋白超家族的高度糖基化跨膜糖蛋白,在各种肿瘤中高度表达[41] [42]。尽管CD147在健康受试者的白细胞、红细胞、血小板和内皮细胞中也有表达[40],大约一半的T细胞低表达CD147,但是T-ALL患者大多数T细胞的CD147表达显著高于健康受试者,并且CD147在淋巴母细胞淋巴瘤、间变性大细胞淋巴瘤和血管免疫母细胞性T细胞淋巴瘤中过表达[43]。N.-S. Zheng等构建CD147特异性CAR-T细胞,并完善了动物实验,通过监测和分析小鼠肿瘤负荷、体重和生存率,发现CD147 CAR-T细胞对T-ALL具有极好的抑制作用[44]

3.6. NKG2D

自然杀伤组2D (NKG2D)受体是一种激活受体,在保护宿主免受感染和癌症方面发挥重要作用[45]。NKG2D受体配体(NKG2DL)在急性髓系白血病(AML)和ALL在内的肿瘤中有表达[46] [47],在白血病原始细胞中上调[45]。以上发现使其成为基于NKG2D CAR-T治疗的潜力靶点。L. Driouk等人报道了 NKG2D CAR-T细胞具有强大、特异的抗白血病细胞活性[48]。已经有难治/复发急性髓系白血病患者在接受自体NKG2D CAR-T细胞治疗后达到CR [49]。M. Ibáñez-Navarro等人发现NKG2D CAR-T细胞在体内控制了T-ALL负荷并提高了小鼠的存活率,但未能治愈。在人T-ALL的小鼠模型中,NKG2D CAR-T细胞延迟了白血病进展并延长了生存期,同时在最高剂量下也没有观察到治疗相关的毒性表现[50]

3.7. CD2

CD2是一种局限于造血细胞的跨膜糖蛋白,在NK细胞和T细胞中高表达[51]。CD2在T细胞活化以及免疫突触形成起重要作用[52]。CD2在多种T细胞恶性肿瘤中表达,包括T-ALL、SS (Sezary综合征)、外周T细胞恶性肿瘤和成人T细胞白血病/淋巴瘤(ATL)。而且CD2是T细胞恶性肿瘤中缺失或丢失频率最低的表面标志物之一[53]。J. Xiang等人研发了一种针对同种异体通用CD2靶点CAR-T细胞(UCART2),通过移除CD2分子和T细胞受体,有效预防了细胞自相残杀现象以及移植物抗宿主病(GVHD)的发生[54]。CD2缺失导致的CAR-T功能功效的丧失通过与rhIL-7-hyFc (重组人白细胞介素7与杂交Fc 融合)的共同处理来补偿,以达到增强CAR-T胞的扩增、疗效和持久性[55]。在临床前模型体内使用rhIL-7-hyFc,以达到UCART2能治疗T细胞恶性肿瘤的目的。UCART2对T-ALL、皮肤T细胞淋巴瘤(CTCL)和患者来源的T-ALL异种移植物表现出有效的反应。UCART2可能是一种有效的治疗方法,可用于多种CD2+T细胞肿瘤[54]

3.8. CD4

CD4是一种T细胞标志物,在45%~80%的T-ALL [56]和外周T细胞淋巴瘤(PTCL)上表达[57],但不在造血干细胞上表达。双阴性T细胞(DNT)是一种罕见的成熟T细胞亚群,表达CD3但不表达CD4或CD8 [58]。K.K.-L. Fang等人发现了同种异体CD4 CAR-DNT作为治疗T细胞恶性肿瘤的潜力,并为同种异体DNT作为治疗其他T细胞肿瘤的载体开辟了道路[59]。G. Ma等也证实了CD4 CAR-T细胞在将来用于治疗CD4阳性T-ALL的潜在用途[60]

3.9. TfR

转铁蛋白受体(TfR/CD71)在肿瘤增殖、侵袭和转移中起重要作用[61]-[63],其过表达与癌症患者的不良预后有关。TfR在快速增殖的肿瘤细胞上普遍表达,并有可能成为替代靶标[64]。Z. Guo等人生成了TfR CAR-T细胞,并针对几种TfR + 血液恶性细胞评估TfR CAR-T细胞的效果,TfR CAR-T细胞杀死体外多种肿瘤细胞和体内T-ALL细胞效果强大[62]。TfR可能是扩大和提高CAR-T细胞治疗效果的通用靶点。

4. 结语

随着不同治疗方法的出现R/R T-ALL患者得到了一定的改善。以奈拉滨为基础的化疗方案在一定程度上改善了患者的预后,R/R T-ALL患者CR率和PR率分别为37.2%和10.2% [65],1年总生存率为24%~37% [66] [67]。BCL-2抑制剂维奈克拉联合多药化疗、去甲基化药物、达雷妥尤单抗治疗R/R T-ALL也显示出了一定的疗效[68]-[72]。维奈克拉联合多药化疗治疗R/R ETP-ALL总缓解率为67.7%,1年的OS率为60.0%,中位OS为17.7个月[69]。随着CAR-T细胞疗法的问世进一步改善了R/R T-ALL患者的预后,使患者获益更多,CR率可以达到80%以上,1年以上的OS和EFS率较新化疗方案及靶向治疗更高[16] [18]-[20]。新型化疗方案、CAR-T细胞疗法等桥接HSCT可以改善患者的总体预后[22] [66] [67],同时也有研究发现巩固性移植有减轻迟发性严重感染的风险的作用[26]。HSCT仍然是影响患者预后的重要因素之一,未来造血干细胞移植的地位是否能被撼动需要更多的研究来证实。尽管随着CAR-T疗法的发展,我们对R/R T-ALL的治疗有了更多的选择,但如何使R/R T-ALL患者的总体预后如何得到提升,减少治疗相关不良反应以及管理治疗不良反应需要更多的经验累计。CAR-T细胞疗法潜在靶点的研究可能会进一步提升疗效,R/R T-ALL的治疗可能有更多的选择和空间。靶点丢失可导致疾病复发[18] [20],通过双靶点CAR-T细胞疗法也许能使患者的预后得到改善,但制备技术要求更高及不良反应可能更严重。同时,随着新的免疫细胞(如自然杀伤细胞[41]、巨噬细胞[73]等)的运用可能是治疗R/R T-ALL的有效策略。

参考文献

[1] Karrman, K. and Johansson, B. (2016) Pediatric T‐Cell Acute Lymphoblastic Leukemia. Genes, Chromosomes and Cancer, 56, 89-116.
https://doi.org/10.1002/gcc.22416
[2] Litzow, M.R. and Ferrando, A.A. (2015) How I Treat T-Cell Acute Lymphoblastic Leukemia in Adults. Blood, 126, 833-841.
https://doi.org/10.1182/blood-2014-10-551895
[3] Mak, V., Hamm, J., Chhanabhai, M., Shenkier, T., Klasa, R., Sehn, L.H., et al. (2013) Survival of Patients with Peripheral T-Cell Lymphoma after First Relapse or Progression: Spectrum of Disease and Rare Long-Term Survivors. Journal of Clinical Oncology, 31, 1970-1976.
https://doi.org/10.1200/jco.2012.44.7524
[4] Shah, N.N., Lee, D.W., Yates, B., Yuan, C.M., Shalabi, H., Martin, S., et al. (2021) Long-Term Follow-Up of CD19-CAR T-Cell Therapy in Children and Young Adults with B-All. Journal of Clinical Oncology, 39, 1650-1659.
https://doi.org/10.1200/jco.20.02262
[5] Gu, R., Liu, F., Zou, D., Xu, Y., Lu, Y., Liu, B., et al. (2020) Efficacy and Safety of CD19 CAR T Constructed with a New Anti-CD19 Chimeric Antigen Receptor in Relapsed or Refractory Acute Lymphoblastic Leukemia. Journal of Hematology & Oncology, 13, Article No. 122.
https://doi.org/10.1186/s13045-020-00953-8
[6] Roddie, C., Lekakis, L.J., Marzolini, M.A.V., Ramakrishnan, A., Zhang, Y., Hu, Y., et al. (2023) Dual Targeting of CD19 and CD22 with Bicistronic CAR-T Cells in Patients with Relapsed/refractory Large B Cell Lymphoma. Blood, 141, 2470-2482.
https://doi.org/10.1182/blood.2022018598
[7] Jess, J., Yates, B., Dulau-Florea, A., Parker, K., Inglefield, J., Lichtenstein, D., et al. (2023) CD22 CAR T-Cell Associated Hematologic Toxicities, Endothelial Activation and Relationship to Neurotoxicity. Journal for ImmunoTherapy of Cancer, 11, e005898.
https://doi.org/10.1136/jitc-2022-005898
[8] Fang, K.K., Lee, J.B. and Zhang, L. (2022) Adoptive Cell Therapy for T-Cell Malignancies. Cancers, 15, Article 94.
https://doi.org/10.3390/cancers15010094
[9] Alcantara, M., Tesio, M., June, C.H. and Houot, R. (2018) CAR T-Cells for T-Cell Malignancies: Challenges in Distinguishing between Therapeutic, Normal, and Neoplastic T-Cells. Leukemia, 32, 2307-2315.
https://doi.org/10.1038/s41375-018-0285-8
[10] Png, Y.T., Vinanica, N., Kamiya, T., Shimasaki, N., Coustan-Smith, E. and Campana, D. (2017) Blockade of CD7 Expression in T Cells for Effective Chimeric Antigen Receptor Targeting of T-Cell Malignancies. Blood Advances, 1, 2348-2360.
https://doi.org/10.1182/bloodadvances.2017009928
[11] Lu, P., Liu, Y., Yang, J., Zhang, X., Yang, X., Wang, H., et al. (2022) Naturally Selected CD7 CAR-T Therapy without Genetic Manipulations for T-ALL/LBL: First-In-Human Phase I Clinical Trial. Blood, 140, 321-334.
https://doi.org/10.1182/blood.2021014498
[12] Cooper, M.L., Choi, J., Staser, K., Ritchey, J.K., Devenport, J.M., Eckardt, K., et al. (2018) An “Off-the-Shelf” Fratricide-Resistant CAR-T for the Treatment of T Cell Hematologic Malignancies. Leukemia, 32, 1970-1983.
https://doi.org/10.1038/s41375-018-0065-5
[13] Ye, J., Jia, Y., Tuhin, I.J., Tan, J., Monty, M.A., Xu, N., et al. (2022) Feasibility Study of a Novel Preparation Strategy for Anti-CD7 CAR-T Cells with a Recombinant Anti-CD7 Blocking Antibody. Molecular TherapyOncolytics, 24, 719-728.
https://doi.org/10.1016/j.omto.2022.02.013
[14] Wei, W., Ma, H., Yang, D., Sun, B., Tang, J., Zhu, Y., et al. (2023) SECTM1-Based CAR T Cells Enriched with CD7-Low/Negative Subsets Exhibit Efficacy in CD7-Positive Malignancies. Blood Advances, 7, 2941-2951.
https://doi.org/10.1182/bloodadvances.2022008402
[15] Hu, Y., Zhou, Y., Zhang, M., Zhao, H., Wei, G., Ge, W., et al. (2022) Genetically Modified CD7-Targeting Allogeneic CAR-T Cell Therapy with Enhanced Efficacy for Relapsed/Refractory CD7-Positive Hematological Malignancies: A Phase I Clinical Study. Cell Research, 32, 995-1007.
https://doi.org/10.1038/s41422-022-00721-y
[16] Zhang, M., Chen, D., Fu, X., Meng, H., Nan, F., Sun, Z., et al. (2022) Autologous Nanobody-Derived Fratricide-Resistant CD7-CAR T-Cell Therapy for Patients with Relapsed and Refractory T-Cell Acute Lymphoblastic Leukemia/lymphoma. Clinical Cancer Research, 28, 2830-2843.
https://doi.org/10.1158/1078-0432.ccr-21-4097
[17] Pan, J., Tan, Y., Wang, G., Deng, B., Ling, Z., Song, W., et al. (2021) Donor-Derived CD7 Chimeric Antigen Receptor T Cells for T-Cell Acute Lymphoblastic Leukemia: First-in-Human, Phase I Trial. Journal of Clinical Oncology, 39, 3340-3351.
https://doi.org/10.1200/jco.21.00389
[18] Watanabe, N., Mo, F., Zheng, R., Ma, R., Bray, V.C., van Leeuwen, D.G., et al. (2023) Feasibility and Preclinical Efficacy of CD7-Unedited CD7 CAR T Cells for T Cell Malignancies. Molecular Therapy, 31, 24-34.
https://doi.org/10.1016/j.ymthe.2022.09.003
[19] Pan, J., Tan, Y., Wang, G., Deng, B., Ling, Z., Song, W., et al. (2022) Updated Efficacy and Safety Report of a Phase I Trial of Donor-Derived CD7 CAR T Cells for T-Cell Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 40, 7023-7023.
https://doi.org/10.1200/jco.2022.40.16_suppl.7023
[20] Zhang, X., Yang, J., Li, J., Qiu, L., Li, J. and Lu, P. (2022) Analysis of 53 Patients with Relapsed or Refractory (R/R) T-Cell Acute Lymphoblastic Leukemia (T-ALL) and T-Cell Lymphoblastic Lymphoma (T-LBL) Treated with CD7-Targeted CAR-T Cell Therapy. Blood, 140, 2369-2370.
https://doi.org/10.1182/blood-2022-158878
[21] Ghobadi, A., Aldoss, I., Maude, S., Bhojwani, D., Wayne, A., Bajel, A., et al. (2024) Anti-CD7 Allogeneic WU-CART-007 in Patients with Relapsed/Refractory T-Cell Acute Lymphoblastic Leukemia/Lymphoma: A Phase 1/2 Trial.
https://doi.org/10.21203/rs.3.rs-4676375/v1
[22] Zhang, Y., Li, C., Du, M., Jiang, H., Luo, W., Tang, L., et al. (2023) Allogenic and Autologous Anti-CD7 CAR-T Cell Therapies in Relapsed or Refractory T-Cell Malignancies. Blood Cancer Journal, 13, Article No. 61.
https://doi.org/10.1038/s41408-023-00822-w
[23] Li, Z., Zheng, Q., Yang, K., Xu, T., Wang, L., Wang, X., et al. (2025) CD7 CART Therapy Bridging Allo-HSCT Remarkably Improves Long-Term DFS in Refractory/relapsed T-ALL/LBL. Transplantation and Cellular Therapy, 31, 73.e1-73.e11.
https://doi.org/10.1016/j.jtct.2024.11.009
[24] Campana, D., van Dongen, J., Mehta, A., Coustan-Smith, E., Wolvers-Tettero, I., Ganeshaguru, K., et al. (1991) Stages of T-Cell Receptor Protein Expression in T-Cell Acute Lymphoblastic Leukemia. Blood, 77, 1546-1554.
https://doi.org/10.1182/blood.v77.7.1546.1546
[25] Pui, C., Behm, F. and Crist, W. (1993) Clinical and Biologic Relevance of Immunologic Marker Studies in Childhood Acute Lymphoblastic Leukemia. Blood, 82, 343-362.
https://doi.org/10.1182/blood.v82.2.343.343
[26] Pan, J., Tan, Y., Shan, L., Seery, S., Deng, B., Ling, Z., et al. (2024) Allogeneic CD5-Specific CAR-T Therapy for Relapsed/Refractory T-ALL: A Phase 1 Trial. Nature Medicine, 31, 126-136.
https://doi.org/10.1038/s41591-024-03282-2
[27] Sánchez-Martínez, D., Baroni, M.L., Gutierrez-Agüera, F., Roca-Ho, H., Blanch-Lombarte, O., González-García, S., et al. (2019) Fratricide-Resistant CD1A-Specific CAR T Cells for the Treatment of Cortical T-Cell Acute Lymphoblastic Leukemia. Blood, 133, 2291-2304.
https://doi.org/10.1182/blood-2018-10-882944
[28] Carrera Silva, E.A., Nowak, W., Tessone, L., Olexen, C.M., Ortiz Wilczyñski, J.M., Estecho, I.G., et al. (2017) CD207+CD1a+ Cells Circulate in Pediatric Patients with Active Langerhans Cell Histiocytosis. Blood, 130, 1898-1902.
https://doi.org/10.1182/blood-2017-05-782730
[29] Bechan, G.I., Lee, D.W., Zajonc, D.M., Heckel, D., Xian, R., Throsby, M., et al. (2012) Phage Display Generation of a Novel Human Anti‐CD1A Monoclonal Antibody with Potent Cytolytic Activity. British Journal of Haematology, 159, 299-310.
https://doi.org/10.1111/bjh.12033
[30] Cernadas, M., Lu, J., Watts, G. and Brenner, M.B. (2008) Cd1a Expression Defines an Interleukin-12 Producing Population of Human Dendritic Cells. Clinical and Experimental Immunology, 155, 523-533.
https://doi.org/10.1111/j.1365-2249.2008.03853.x
[31] Maciocia, P.M., Wawrzyniecka, P.A., Maciocia, N.C., Burley, A., Karpanasamy, T., Devereaux, S., et al. (2022) Anti-CCR9 Chimeric Antigen Receptor T Cells for T-Cell Acute Lymphoblastic Leukemia. Blood, 140, 25-37.
https://doi.org/10.1182/blood.2021013648
[32] Lin, P., Owens, R., Tricot, G. and Wilson, C.S. (2004) Flow Cytometric Immunophenotypic Analysis of 306 Cases of Multiple Myeloma. American Journal of Clinical Pathology, 121, 482-488.
https://doi.org/10.1309/74r4-tb90-buwh-27jx
[33] Laubach, J.P., Tai, Y., Richardson, P.G. and Anderson, K.C. (2014) Daratumumab Granted Breakthrough Drug Status. Expert Opinion on Investigational Drugs, 23, 445-452.
https://doi.org/10.1517/13543784.2014.889681
[34] Jalal, S.D., Al‐Allawi, N.A.S. and Al Doski, A.A.S. (2017) Immunophenotypic Aberrancies in Acute Lymphoblastic Leukemia from 282 Iraqi Patients. International Journal of Laboratory Hematology, 39, 625-632.
https://doi.org/10.1111/ijlh.12716
[35] Deckert, J., Wetzel, M., Bartle, L.M., Skaletskaya, A., Goldmacher, V.S., Vallée, F., et al. (2014) SAR650984, a Novel Humanized CD38-Targeting Antibody, Demonstrates Potent Antitumor Activity in Models of Multiple Myeloma and Other CD38+ Hematologic Malignancies. Clinical Cancer Research, 20, 4574-4583.
https://doi.org/10.1158/1078-0432.ccr-14-0695
[36] Glisovic-Aplenc, T., Diorio, C., Chukinas, J.A., Veliz, K., Shestova, O., Shen, F., et al. (2023) CD38 as a Pan-Hematologic Target for Chimeric Antigen Receptor T Cells. Blood Advances, 7, 4418-4430.
https://doi.org/10.1182/bloodadvances.2022007059
[37] Wang, X., Yu, X., Li, W., Neeli, P., Liu, M., Li, L., et al. (2022) Expanding Anti-CD38 Immunotherapy for Lymphoid Malignancies. Journal of Experimental & Clinical Cancer Research, 41, Article No. 210.
https://doi.org/10.1186/s13046-022-02421-2
[38] Cox, C.V., Diamanti, P., Moppett, J.P. and Blair, A. (2016) Investigating CD99 Expression in Leukemia Propagating Cells in Childhood T Cell Acute Lymphoblastic Leukemia. PLOS ONE, 11, e0165210.
https://doi.org/10.1371/journal.pone.0165210
[39] Dworzak, M.N., Fröschl, G., Printz, D., Zen, L.D., Gaipa, G., Ratei, R., et al. (2004) CD99 Expression in T-Lineage ALL: Implications for Flow Cytometric Detection of Minimal Residual Disease. Leukemia, 18, 703-708.
https://doi.org/10.1038/sj.leu.2403303
[40] Shi, J., Zhang, Z., Cen, H., Wu, H., Zhang, S., Liu, J., et al. (2021) CAR T Cells Targeting CD99 as an Approach to Eradicate T-Cell Acute Lymphoblastic Leukemia without Normal Blood Cells Toxicity. Journal of Hematology & Oncology, 14, Article No. 162.
https://doi.org/10.1186/s13045-021-01178-z
[41] Mullard, A. (2021) FDA Approves Fourth CAR-T Cell Therapy. Nature Reviews Drug Discovery, 20, 166-166.
https://doi.org/10.1038/d41573-021-00031-9
[42] Pinz, K., Liu, H., Golightly, M., Jares, A., Lan, F., Zieve, G.W., et al. (2015) Preclinical Targeting of Human T-Cell Malignancies Using CD4-Specific Chimeric Antigen Receptor (CAR)-Engineered T Cells. Leukemia, 30, 701-707.
https://doi.org/10.1038/leu.2015.311
[43] Maciocia, P.M., Wawrzyniecka, P.A., Philip, B., Ricciardelli, I., Akarca, A.U., Onuoha, S.C., et al. (2017) Targeting the T Cell Receptor Β-Chain Constant Region for Immunotherapy of T Cell Malignancies. Nature Medicine, 23, 1416-1423.
https://doi.org/10.1038/nm.4444
[44] Zheng, N., Zhao, X., Wei, D., Miao, J., Liu, Z., Yong, Y., et al. (2022) CD147-Specific Chimeric Antigen Receptor T Cells Effectively Inhibit T Cell Acute Lymphoblastic Leukemia. Cancer Letters, 542, 215762.
https://doi.org/10.1016/j.canlet.2022.215762
[45] Raulet, D.H. (2003) Roles of the NKG2D Immunoreceptor and Its Ligands. Nature Reviews Immunology, 3, 781-790.
https://doi.org/10.1038/nri1199
[46] Torelli, G.F., Peragine, N., Raponi, S., Pagliara, D., De Propris, M.S., Vitale, A., et al. (2014) Recognition of Adult and Pediatric Acute Lymphoblastic Leukemia Blasts by Natural Killer Cells. Haematologica, 99, 1248-1254.
https://doi.org/10.3324/haematol.2013.101931
[47] Schlegel, P., Ditthard, K., Lang, P., Mezger, M., Michaelis, S., Handgretinger, R., et al. (2015) NKG2D Signaling Leads to NK Cell Mediated Lysis of Childhood AML. Journal of Immunology Research, 2015, Article ID: 473175.
https://doi.org/10.1155/2015/473175
[48] Driouk, L., Gicobi, J.K., Kamihara, Y., Rutherford, K., Dranoff, G., Ritz, J., et al. (2020) Chimeric Antigen Receptor T Cells Targeting NKG2D-Ligands Show Robust Efficacy against Acute Myeloid Leukemia and T-Cell Acute Lymphoblastic Leukemia. Frontiers in Immunology, 11, Article 58028.
https://doi.org/10.3389/fimmu.2020.580328
[49] Sallman, D.A., Brayer, J., Sagatys, E.M., Lonez, C., Breman, E., Agaugué, S., et al. (2018) NKG2D-BASED Chimeric Antigen Receptor Therapy Induced Remission in a Relapsed/refractory Acute Myeloid Leukemia Patient. Haematologica, 103, e424-e426.
https://doi.org/10.3324/haematol.2017.186742
[50] Ibáñez-Navarro, M., Fernández, A., Escudero, A., Esteso, G., Campos-Silva, C., Navarro-Aguadero, M.Á., et al. (2023) NKG2D-CAR Memory T Cells Target Pediatric T-Cell Acute Lymphoblastic Leukemia in Vitro and in Vivo but Fail to Eliminate Leukemia Initiating Cells. Frontiers in Immunology, 14, Article 1187665.
https://doi.org/10.3389/fimmu.2023.1187665
[51] Binder, C., Cvetkovski, F., Sellberg, F., Berg, S., Paternina Visbal, H., Sachs, D.H., et al. (2020) CD2 Immunobiology. Frontiers in Immunology, 11, Article 1090.
https://doi.org/10.3389/fimmu.2020.01090
[52] Dustin, M.L. and Springer, T.A. (1991) Role of Lymphocyte Adhesion Receptors in Transient Interactions and Cell Locomotion. Annual Review of Immunology, 9, 27-66.
https://doi.org/10.1146/annurev.iy.09.040191.000331
[53] Gorczyca, W., Weisberger, J., Liu, Z., Tsang, P., Hossein, M., Wu, C.D., et al. (2002) An Approach to Diagnosis of T‐cell Lymphoproliferative Disorders by Flow Cytometry. Cytometry, 50, 177-190.
https://doi.org/10.1002/cyto.10003
[54] Xiang, J., Devenport, J.M., Carter, A.J., Staser, K.W., Kim, M.Y., O’Neal, J., et al. (2023) An “Off-the-Shelf” CD2 Universal CAR-T Therapy for T-Cell Malignancies. Leukemia, 37, 2448-2456.
https://doi.org/10.1038/s41375-023-02039-z
[55] DiPersio, J.F., Staser, K. and Cooper, M. (2020) Immunotherapy for T-Cell ALL and T-Cell NHL. Clinical Lymphoma Myeloma and Leukemia, 20, S56-S58.
https://doi.org/10.1016/s2152-2650(20)30462-6
[56] Noronha, E.P., Marques, L.V.C., Andrade, F.G., Thuler, L.C.S., Terra-Granado, E. and Pombo-de-Oliveira, M.S. (2019) The Profile of Immunophenotype and Genotype Aberrations in Subsets of Pediatric T-Cell Acute Lymphoblastic Leukemia. Frontiers in Oncology, 9, Article 316.
https://doi.org/10.3389/fonc.2019.00316
[57] Pu, Q., Qiao, J., Liu, Y., Cao, X., Tan, R., Yan, D., et al. (2022) Differential Diagnosis and Identification of Prognostic Markers for Peripheral T-Cell Lymphoma Subtypes Based on Flow Cytometry Immunophenotype Profiles. Frontiers in Immunology, 13, Article 1008695.
https://doi.org/10.3389/fimmu.2022.1008695
[58] Lee, J.B., Kang, H., Fang, L., D'Souza, C., Adeyi, O. and Zhang, L. (2019) Developing Allogeneic Double-Negative T Cells as a Novel Off-the-Shelf Adoptive Cellular Therapy for Cancer. Clinical Cancer Research, 25, 2241-2253.
https://doi.org/10.1158/1078-0432.ccr-18-2291
[59] Fang, K.K., Lee, J., Khatri, I., Na, Y. and Zhang, L. (2023) Targeting T-Cell Malignancies Using Allogeneic Double-Negative CD4-CAR-T Cells. Journal for ImmunoTherapy of Cancer, 11, e007277.
https://doi.org/10.1136/jitc-2023-007277
[60] Ma, G., Shen, J., Pinz, K., Wada, M., Park, J., Kim, S., et al. (2019) Targeting T Cell Malignancies Using CD4CAR T-Cells and Implementing a Natural Safety Switch. Stem Cell Reviews and Reports, 15, 443-447.
https://doi.org/10.1007/s12015-019-09876-5
[61] Ohkuma, M., Haraguchi, N., Ishii, H., Mimori, K., Tanaka, F., Kim, H.M., et al. (2011) Absence of CD71 Transferrin Receptor Characterizes Human Gastric Adenosquamous Carcinoma Stem Cells. Annals of Surgical Oncology, 19, 1357-1364.
https://doi.org/10.1245/s10434-011-1739-7
[62] Gu, Z., Wang, H., Xia, J., Yang, Y., Jin, Z., Xu, H., et al. (2015) Decreased Ferroportin Promotes Myeloma Cell Growth and Osteoclast Differentiation. Cancer Research, 75, 2211-2221.
https://doi.org/10.1158/0008-5472.can-14-3804
[63] Singh, M., Mugler, K., Hailoo, D.W., Burke, S., Nemesure, B., Torkko, K., et al. (2011) Differential Expression of Transferrin Receptor (TFR) in a Spectrum of Normal to Malignant Breast Tissues. Applied Immunohistochemistry & Molecular Morphology, 19, 417-423.
https://doi.org/10.1097/pai.0b013e318209716e
[64] Guo, Z., Zhang, Y., Fu, M., Zhao, L., Wang, Z., Xu, Z., et al. (2021) The Transferrin Receptor-Directed CAR for the Therapy of Hematologic Malignancies. Frontiers in Immunology, 12, Article 652924.
https://doi.org/10.3389/fimmu.2021.652924
[65] Kathpalia, M., Mishra, P., Bajpai, R., Bhurani, D. and Agarwal, N. (2022) Efficacy and Safety of Nelarabine in Patients with Relapsed or Refractory T-Cell Acute Lymphoblastic Leukemia: A Systematic Review and Meta-Analysis. Annals of Hematology, 101, 1655-1666.
https://doi.org/10.1007/s00277-022-04880-1
[66] Candoni, A., Lazzarotto, D., Ferrara, F., Curti, A., Lussana, F., Papayannidis, C., et al. (2020) Nelarabine as Salvage Therapy and Bridge to Allogeneic Stem Cell Transplant in 118 Adult Patients with Relapsed/Refractory T‐Cell Acute Lymphoblastic Leukemia/lymphoma. A Campus All Study. American Journal of Hematology, 95, 1466-1472.
https://doi.org/10.1002/ajh.25957
[67] Gökbuget, N., Basara, N., Baurmann, H., Beck, J., Brüggemann, M., Diedrich, H., et al. (2011) High Single-Drug Activity of Nelarabine in Relapsed T-Lymphoblastic Leukemia/lymphoma Offers Curative Option with Subsequent Stem Cell Transplantation. Blood, 118, 3504-3511.
https://doi.org/10.1182/blood-2011-01-329441
[68] Feng, L., Li, H., Tang, A., Xu, M. and Wang, S. (2025) Venetoclax and Azacitidine in Combination with Homoharringtonine, Cytarabine, and Aclarubicin for Salvage Therapy of Relapsed/Refractory T Cell Acute Lymphoblastic Leukemia. International Journal of Hematology.
https://doi.org/10.1007/s12185-025-03915-3
[69] Kong, J.Y., Zong, L.H., Pu, Y., Liu, Y., Kong, X., Li, M.Y., et al. (2023) Clinical Efficacy and Safety of Venetoclax Combined with Multidrug Chemotherapy in the Treatment of 15 Patients with Relapsed or Refractory Early T-Cell Precursor Acute Lymphoblastic Leukemia. Chinese Journal of Hematology, 44, 649-653.
https://doi.org/10.3760/cma.j.issn.0253-2727.2023.08.006
[70] Wan, C., Zou, J., Qiao, M., Yin, J., Shen, X., Qiu, Q., et al. (2021) Venetoclax Combined with Azacitidine as an Effective and Safe Salvage Regimen for Relapsed or Refractory T-Cell Acute Lymphoblastic Leukemia: A Case Series. Leukemia & Lymphoma, 62, 3300-3303.
https://doi.org/10.1080/10428194.2021.1957876
[71] Rahmat, L.T., Nguyen, A., Abdulhaq, H., Prakash, S., Logan, A.C. and Mannis, G.N. (2018) Venetoclax in Combination with Decitabine for Relapsed T-Cell Acute Lymphoblastic Leukemia after Allogeneic Hematopoietic Cell Transplant. Case Reports in Hematology, 2018, Article ID: 6092646.
https://doi.org/10.1155/2018/6092646
[72] Prejzner, W., Piekoś, O., Bełdzińska, K., Sadowska-Klasa, A., Zarzycka, E., Bieniaszewska, M., et al. (2023) The Role of Daratumumab in Relapsed/Refractory CD38 Positive Acute Leukemias—Case Report on Three Cases with a Literature Review. Frontiers in Oncology, 13, Article 1228481.
https://doi.org/10.3389/fonc.2023.1228481
[73] Chupradit, K., Muneekaew, S. and Wattanapanitch, M. (2024) Engineered CD147-CAR Macrophages for Enhanced Phagocytosis of Cancers. Cancer Immunology, Immunotherapy, 73, Article No. 170.
https://doi.org/10.1007/s00262-024-03759-6