[1]
|
Karrman, K. and Johansson, B. (2016) Pediatric T‐Cell Acute Lymphoblastic Leukemia. Genes, Chromosomes and Cancer, 56, 89-116. https://doi.org/10.1002/gcc.22416
|
[2]
|
Litzow, M.R. and Ferrando, A.A. (2015) How I Treat T-Cell Acute Lymphoblastic Leukemia in Adults. Blood, 126, 833-841. https://doi.org/10.1182/blood-2014-10-551895
|
[3]
|
Mak, V., Hamm, J., Chhanabhai, M., Shenkier, T., Klasa, R., Sehn, L.H., et al. (2013) Survival of Patients with Peripheral T-Cell Lymphoma after First Relapse or Progression: Spectrum of Disease and Rare Long-Term Survivors. Journal of Clinical Oncology, 31, 1970-1976. https://doi.org/10.1200/jco.2012.44.7524
|
[4]
|
Shah, N.N., Lee, D.W., Yates, B., Yuan, C.M., Shalabi, H., Martin, S., et al. (2021) Long-Term Follow-Up of CD19-CAR T-Cell Therapy in Children and Young Adults with B-All. Journal of Clinical Oncology, 39, 1650-1659. https://doi.org/10.1200/jco.20.02262
|
[5]
|
Gu, R., Liu, F., Zou, D., Xu, Y., Lu, Y., Liu, B., et al. (2020) Efficacy and Safety of CD19 CAR T Constructed with a New Anti-CD19 Chimeric Antigen Receptor in Relapsed or Refractory Acute Lymphoblastic Leukemia. Journal of Hematology & Oncology, 13, Article No. 122. https://doi.org/10.1186/s13045-020-00953-8
|
[6]
|
Roddie, C., Lekakis, L.J., Marzolini, M.A.V., Ramakrishnan, A., Zhang, Y., Hu, Y., et al. (2023) Dual Targeting of CD19 and CD22 with Bicistronic CAR-T Cells in Patients with Relapsed/refractory Large B Cell Lymphoma. Blood, 141, 2470-2482. https://doi.org/10.1182/blood.2022018598
|
[7]
|
Jess, J., Yates, B., Dulau-Florea, A., Parker, K., Inglefield, J., Lichtenstein, D., et al. (2023) CD22 CAR T-Cell Associated Hematologic Toxicities, Endothelial Activation and Relationship to Neurotoxicity. Journal for ImmunoTherapy of Cancer, 11, e005898. https://doi.org/10.1136/jitc-2022-005898
|
[8]
|
Fang, K.K., Lee, J.B. and Zhang, L. (2022) Adoptive Cell Therapy for T-Cell Malignancies. Cancers, 15, Article 94. https://doi.org/10.3390/cancers15010094
|
[9]
|
Alcantara, M., Tesio, M., June, C.H. and Houot, R. (2018) CAR T-Cells for T-Cell Malignancies: Challenges in Distinguishing between Therapeutic, Normal, and Neoplastic T-Cells. Leukemia, 32, 2307-2315. https://doi.org/10.1038/s41375-018-0285-8
|
[10]
|
Png, Y.T., Vinanica, N., Kamiya, T., Shimasaki, N., Coustan-Smith, E. and Campana, D. (2017) Blockade of CD7 Expression in T Cells for Effective Chimeric Antigen Receptor Targeting of T-Cell Malignancies. Blood Advances, 1, 2348-2360. https://doi.org/10.1182/bloodadvances.2017009928
|
[11]
|
Lu, P., Liu, Y., Yang, J., Zhang, X., Yang, X., Wang, H., et al. (2022) Naturally Selected CD7 CAR-T Therapy without Genetic Manipulations for T-ALL/LBL: First-In-Human Phase I Clinical Trial. Blood, 140, 321-334. https://doi.org/10.1182/blood.2021014498
|
[12]
|
Cooper, M.L., Choi, J., Staser, K., Ritchey, J.K., Devenport, J.M., Eckardt, K., et al. (2018) An “Off-the-Shelf” Fratricide-Resistant CAR-T for the Treatment of T Cell Hematologic Malignancies. Leukemia, 32, 1970-1983. https://doi.org/10.1038/s41375-018-0065-5
|
[13]
|
Ye, J., Jia, Y., Tuhin, I.J., Tan, J., Monty, M.A., Xu, N., et al. (2022) Feasibility Study of a Novel Preparation Strategy for Anti-CD7 CAR-T Cells with a Recombinant Anti-CD7 Blocking Antibody. Molecular Therapy—Oncolytics, 24, 719-728. https://doi.org/10.1016/j.omto.2022.02.013
|
[14]
|
Wei, W., Ma, H., Yang, D., Sun, B., Tang, J., Zhu, Y., et al. (2023) SECTM1-Based CAR T Cells Enriched with CD7-Low/Negative Subsets Exhibit Efficacy in CD7-Positive Malignancies. Blood Advances, 7, 2941-2951. https://doi.org/10.1182/bloodadvances.2022008402
|
[15]
|
Hu, Y., Zhou, Y., Zhang, M., Zhao, H., Wei, G., Ge, W., et al. (2022) Genetically Modified CD7-Targeting Allogeneic CAR-T Cell Therapy with Enhanced Efficacy for Relapsed/Refractory CD7-Positive Hematological Malignancies: A Phase I Clinical Study. Cell Research, 32, 995-1007. https://doi.org/10.1038/s41422-022-00721-y
|
[16]
|
Zhang, M., Chen, D., Fu, X., Meng, H., Nan, F., Sun, Z., et al. (2022) Autologous Nanobody-Derived Fratricide-Resistant CD7-CAR T-Cell Therapy for Patients with Relapsed and Refractory T-Cell Acute Lymphoblastic Leukemia/lymphoma. Clinical Cancer Research, 28, 2830-2843. https://doi.org/10.1158/1078-0432.ccr-21-4097
|
[17]
|
Pan, J., Tan, Y., Wang, G., Deng, B., Ling, Z., Song, W., et al. (2021) Donor-Derived CD7 Chimeric Antigen Receptor T Cells for T-Cell Acute Lymphoblastic Leukemia: First-in-Human, Phase I Trial. Journal of Clinical Oncology, 39, 3340-3351. https://doi.org/10.1200/jco.21.00389
|
[18]
|
Watanabe, N., Mo, F., Zheng, R., Ma, R., Bray, V.C., van Leeuwen, D.G., et al. (2023) Feasibility and Preclinical Efficacy of CD7-Unedited CD7 CAR T Cells for T Cell Malignancies. Molecular Therapy, 31, 24-34. https://doi.org/10.1016/j.ymthe.2022.09.003
|
[19]
|
Pan, J., Tan, Y., Wang, G., Deng, B., Ling, Z., Song, W., et al. (2022) Updated Efficacy and Safety Report of a Phase I Trial of Donor-Derived CD7 CAR T Cells for T-Cell Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 40, 7023-7023. https://doi.org/10.1200/jco.2022.40.16_suppl.7023
|
[20]
|
Zhang, X., Yang, J., Li, J., Qiu, L., Li, J. and Lu, P. (2022) Analysis of 53 Patients with Relapsed or Refractory (R/R) T-Cell Acute Lymphoblastic Leukemia (T-ALL) and T-Cell Lymphoblastic Lymphoma (T-LBL) Treated with CD7-Targeted CAR-T Cell Therapy. Blood, 140, 2369-2370. https://doi.org/10.1182/blood-2022-158878
|
[21]
|
Ghobadi, A., Aldoss, I., Maude, S., Bhojwani, D., Wayne, A., Bajel, A., et al. (2024) Anti-CD7 Allogeneic WU-CART-007 in Patients with Relapsed/Refractory T-Cell Acute Lymphoblastic Leukemia/Lymphoma: A Phase 1/2 Trial. https://doi.org/10.21203/rs.3.rs-4676375/v1
|
[22]
|
Zhang, Y., Li, C., Du, M., Jiang, H., Luo, W., Tang, L., et al. (2023) Allogenic and Autologous Anti-CD7 CAR-T Cell Therapies in Relapsed or Refractory T-Cell Malignancies. Blood Cancer Journal, 13, Article No. 61. https://doi.org/10.1038/s41408-023-00822-w
|
[23]
|
Li, Z., Zheng, Q., Yang, K., Xu, T., Wang, L., Wang, X., et al. (2025) CD7 CART Therapy Bridging Allo-HSCT Remarkably Improves Long-Term DFS in Refractory/relapsed T-ALL/LBL. Transplantation and Cellular Therapy, 31, 73.e1-73.e11. https://doi.org/10.1016/j.jtct.2024.11.009
|
[24]
|
Campana, D., van Dongen, J., Mehta, A., Coustan-Smith, E., Wolvers-Tettero, I., Ganeshaguru, K., et al. (1991) Stages of T-Cell Receptor Protein Expression in T-Cell Acute Lymphoblastic Leukemia. Blood, 77, 1546-1554. https://doi.org/10.1182/blood.v77.7.1546.1546
|
[25]
|
Pui, C., Behm, F. and Crist, W. (1993) Clinical and Biologic Relevance of Immunologic Marker Studies in Childhood Acute Lymphoblastic Leukemia. Blood, 82, 343-362. https://doi.org/10.1182/blood.v82.2.343.343
|
[26]
|
Pan, J., Tan, Y., Shan, L., Seery, S., Deng, B., Ling, Z., et al. (2024) Allogeneic CD5-Specific CAR-T Therapy for Relapsed/Refractory T-ALL: A Phase 1 Trial. Nature Medicine, 31, 126-136. https://doi.org/10.1038/s41591-024-03282-2
|
[27]
|
Sánchez-Martínez, D., Baroni, M.L., Gutierrez-Agüera, F., Roca-Ho, H., Blanch-Lombarte, O., González-García, S., et al. (2019) Fratricide-Resistant CD1A-Specific CAR T Cells for the Treatment of Cortical T-Cell Acute Lymphoblastic Leukemia. Blood, 133, 2291-2304. https://doi.org/10.1182/blood-2018-10-882944
|
[28]
|
Carrera Silva, E.A., Nowak, W., Tessone, L., Olexen, C.M., Ortiz Wilczyñski, J.M., Estecho, I.G., et al. (2017) CD207+CD1a+ Cells Circulate in Pediatric Patients with Active Langerhans Cell Histiocytosis. Blood, 130, 1898-1902. https://doi.org/10.1182/blood-2017-05-782730
|
[29]
|
Bechan, G.I., Lee, D.W., Zajonc, D.M., Heckel, D., Xian, R., Throsby, M., et al. (2012) Phage Display Generation of a Novel Human Anti‐CD1A Monoclonal Antibody with Potent Cytolytic Activity. British Journal of Haematology, 159, 299-310. https://doi.org/10.1111/bjh.12033
|
[30]
|
Cernadas, M., Lu, J., Watts, G. and Brenner, M.B. (2008) Cd1a Expression Defines an Interleukin-12 Producing Population of Human Dendritic Cells. Clinical and Experimental Immunology, 155, 523-533. https://doi.org/10.1111/j.1365-2249.2008.03853.x
|
[31]
|
Maciocia, P.M., Wawrzyniecka, P.A., Maciocia, N.C., Burley, A., Karpanasamy, T., Devereaux, S., et al. (2022) Anti-CCR9 Chimeric Antigen Receptor T Cells for T-Cell Acute Lymphoblastic Leukemia. Blood, 140, 25-37. https://doi.org/10.1182/blood.2021013648
|
[32]
|
Lin, P., Owens, R., Tricot, G. and Wilson, C.S. (2004) Flow Cytometric Immunophenotypic Analysis of 306 Cases of Multiple Myeloma. American Journal of Clinical Pathology, 121, 482-488. https://doi.org/10.1309/74r4-tb90-buwh-27jx
|
[33]
|
Laubach, J.P., Tai, Y., Richardson, P.G. and Anderson, K.C. (2014) Daratumumab Granted Breakthrough Drug Status. Expert Opinion on Investigational Drugs, 23, 445-452. https://doi.org/10.1517/13543784.2014.889681
|
[34]
|
Jalal, S.D., Al‐Allawi, N.A.S. and Al Doski, A.A.S. (2017) Immunophenotypic Aberrancies in Acute Lymphoblastic Leukemia from 282 Iraqi Patients. International Journal of Laboratory Hematology, 39, 625-632. https://doi.org/10.1111/ijlh.12716
|
[35]
|
Deckert, J., Wetzel, M., Bartle, L.M., Skaletskaya, A., Goldmacher, V.S., Vallée, F., et al. (2014) SAR650984, a Novel Humanized CD38-Targeting Antibody, Demonstrates Potent Antitumor Activity in Models of Multiple Myeloma and Other CD38+ Hematologic Malignancies. Clinical Cancer Research, 20, 4574-4583. https://doi.org/10.1158/1078-0432.ccr-14-0695
|
[36]
|
Glisovic-Aplenc, T., Diorio, C., Chukinas, J.A., Veliz, K., Shestova, O., Shen, F., et al. (2023) CD38 as a Pan-Hematologic Target for Chimeric Antigen Receptor T Cells. Blood Advances, 7, 4418-4430. https://doi.org/10.1182/bloodadvances.2022007059
|
[37]
|
Wang, X., Yu, X., Li, W., Neeli, P., Liu, M., Li, L., et al. (2022) Expanding Anti-CD38 Immunotherapy for Lymphoid Malignancies. Journal of Experimental & Clinical Cancer Research, 41, Article No. 210. https://doi.org/10.1186/s13046-022-02421-2
|
[38]
|
Cox, C.V., Diamanti, P., Moppett, J.P. and Blair, A. (2016) Investigating CD99 Expression in Leukemia Propagating Cells in Childhood T Cell Acute Lymphoblastic Leukemia. PLOS ONE, 11, e0165210. https://doi.org/10.1371/journal.pone.0165210
|
[39]
|
Dworzak, M.N., Fröschl, G., Printz, D., Zen, L.D., Gaipa, G., Ratei, R., et al. (2004) CD99 Expression in T-Lineage ALL: Implications for Flow Cytometric Detection of Minimal Residual Disease. Leukemia, 18, 703-708. https://doi.org/10.1038/sj.leu.2403303
|
[40]
|
Shi, J., Zhang, Z., Cen, H., Wu, H., Zhang, S., Liu, J., et al. (2021) CAR T Cells Targeting CD99 as an Approach to Eradicate T-Cell Acute Lymphoblastic Leukemia without Normal Blood Cells Toxicity. Journal of Hematology & Oncology, 14, Article No. 162. https://doi.org/10.1186/s13045-021-01178-z
|
[41]
|
Mullard, A. (2021) FDA Approves Fourth CAR-T Cell Therapy. Nature Reviews Drug Discovery, 20, 166-166. https://doi.org/10.1038/d41573-021-00031-9
|
[42]
|
Pinz, K., Liu, H., Golightly, M., Jares, A., Lan, F., Zieve, G.W., et al. (2015) Preclinical Targeting of Human T-Cell Malignancies Using CD4-Specific Chimeric Antigen Receptor (CAR)-Engineered T Cells. Leukemia, 30, 701-707. https://doi.org/10.1038/leu.2015.311
|
[43]
|
Maciocia, P.M., Wawrzyniecka, P.A., Philip, B., Ricciardelli, I., Akarca, A.U., Onuoha, S.C., et al. (2017) Targeting the T Cell Receptor Β-Chain Constant Region for Immunotherapy of T Cell Malignancies. Nature Medicine, 23, 1416-1423. https://doi.org/10.1038/nm.4444
|
[44]
|
Zheng, N., Zhao, X., Wei, D., Miao, J., Liu, Z., Yong, Y., et al. (2022) CD147-Specific Chimeric Antigen Receptor T Cells Effectively Inhibit T Cell Acute Lymphoblastic Leukemia. Cancer Letters, 542, 215762. https://doi.org/10.1016/j.canlet.2022.215762
|
[45]
|
Raulet, D.H. (2003) Roles of the NKG2D Immunoreceptor and Its Ligands. Nature Reviews Immunology, 3, 781-790. https://doi.org/10.1038/nri1199
|
[46]
|
Torelli, G.F., Peragine, N., Raponi, S., Pagliara, D., De Propris, M.S., Vitale, A., et al. (2014) Recognition of Adult and Pediatric Acute Lymphoblastic Leukemia Blasts by Natural Killer Cells. Haematologica, 99, 1248-1254. https://doi.org/10.3324/haematol.2013.101931
|
[47]
|
Schlegel, P., Ditthard, K., Lang, P., Mezger, M., Michaelis, S., Handgretinger, R., et al. (2015) NKG2D Signaling Leads to NK Cell Mediated Lysis of Childhood AML. Journal of Immunology Research, 2015, Article ID: 473175. https://doi.org/10.1155/2015/473175
|
[48]
|
Driouk, L., Gicobi, J.K., Kamihara, Y., Rutherford, K., Dranoff, G., Ritz, J., et al. (2020) Chimeric Antigen Receptor T Cells Targeting NKG2D-Ligands Show Robust Efficacy against Acute Myeloid Leukemia and T-Cell Acute Lymphoblastic Leukemia. Frontiers in Immunology, 11, Article 58028. https://doi.org/10.3389/fimmu.2020.580328
|
[49]
|
Sallman, D.A., Brayer, J., Sagatys, E.M., Lonez, C., Breman, E., Agaugué, S., et al. (2018) NKG2D-BASED Chimeric Antigen Receptor Therapy Induced Remission in a Relapsed/refractory Acute Myeloid Leukemia Patient. Haematologica, 103, e424-e426. https://doi.org/10.3324/haematol.2017.186742
|
[50]
|
Ibáñez-Navarro, M., Fernández, A., Escudero, A., Esteso, G., Campos-Silva, C., Navarro-Aguadero, M.Á., et al. (2023) NKG2D-CAR Memory T Cells Target Pediatric T-Cell Acute Lymphoblastic Leukemia in Vitro and in Vivo but Fail to Eliminate Leukemia Initiating Cells. Frontiers in Immunology, 14, Article 1187665. https://doi.org/10.3389/fimmu.2023.1187665
|
[51]
|
Binder, C., Cvetkovski, F., Sellberg, F., Berg, S., Paternina Visbal, H., Sachs, D.H., et al. (2020) CD2 Immunobiology. Frontiers in Immunology, 11, Article 1090. https://doi.org/10.3389/fimmu.2020.01090
|
[52]
|
Dustin, M.L. and Springer, T.A. (1991) Role of Lymphocyte Adhesion Receptors in Transient Interactions and Cell Locomotion. Annual Review of Immunology, 9, 27-66. https://doi.org/10.1146/annurev.iy.09.040191.000331
|
[53]
|
Gorczyca, W., Weisberger, J., Liu, Z., Tsang, P., Hossein, M., Wu, C.D., et al. (2002) An Approach to Diagnosis of T‐cell Lymphoproliferative Disorders by Flow Cytometry. Cytometry, 50, 177-190. https://doi.org/10.1002/cyto.10003
|
[54]
|
Xiang, J., Devenport, J.M., Carter, A.J., Staser, K.W., Kim, M.Y., O’Neal, J., et al. (2023) An “Off-the-Shelf” CD2 Universal CAR-T Therapy for T-Cell Malignancies. Leukemia, 37, 2448-2456. https://doi.org/10.1038/s41375-023-02039-z
|
[55]
|
DiPersio, J.F., Staser, K. and Cooper, M. (2020) Immunotherapy for T-Cell ALL and T-Cell NHL. Clinical Lymphoma Myeloma and Leukemia, 20, S56-S58. https://doi.org/10.1016/s2152-2650(20)30462-6
|
[56]
|
Noronha, E.P., Marques, L.V.C., Andrade, F.G., Thuler, L.C.S., Terra-Granado, E. and Pombo-de-Oliveira, M.S. (2019) The Profile of Immunophenotype and Genotype Aberrations in Subsets of Pediatric T-Cell Acute Lymphoblastic Leukemia. Frontiers in Oncology, 9, Article 316. https://doi.org/10.3389/fonc.2019.00316
|
[57]
|
Pu, Q., Qiao, J., Liu, Y., Cao, X., Tan, R., Yan, D., et al. (2022) Differential Diagnosis and Identification of Prognostic Markers for Peripheral T-Cell Lymphoma Subtypes Based on Flow Cytometry Immunophenotype Profiles. Frontiers in Immunology, 13, Article 1008695. https://doi.org/10.3389/fimmu.2022.1008695
|
[58]
|
Lee, J.B., Kang, H., Fang, L., D'Souza, C., Adeyi, O. and Zhang, L. (2019) Developing Allogeneic Double-Negative T Cells as a Novel Off-the-Shelf Adoptive Cellular Therapy for Cancer. Clinical Cancer Research, 25, 2241-2253. https://doi.org/10.1158/1078-0432.ccr-18-2291
|
[59]
|
Fang, K.K., Lee, J., Khatri, I., Na, Y. and Zhang, L. (2023) Targeting T-Cell Malignancies Using Allogeneic Double-Negative CD4-CAR-T Cells. Journal for ImmunoTherapy of Cancer, 11, e007277. https://doi.org/10.1136/jitc-2023-007277
|
[60]
|
Ma, G., Shen, J., Pinz, K., Wada, M., Park, J., Kim, S., et al. (2019) Targeting T Cell Malignancies Using CD4CAR T-Cells and Implementing a Natural Safety Switch. Stem Cell Reviews and Reports, 15, 443-447. https://doi.org/10.1007/s12015-019-09876-5
|
[61]
|
Ohkuma, M., Haraguchi, N., Ishii, H., Mimori, K., Tanaka, F., Kim, H.M., et al. (2011) Absence of CD71 Transferrin Receptor Characterizes Human Gastric Adenosquamous Carcinoma Stem Cells. Annals of Surgical Oncology, 19, 1357-1364. https://doi.org/10.1245/s10434-011-1739-7
|
[62]
|
Gu, Z., Wang, H., Xia, J., Yang, Y., Jin, Z., Xu, H., et al. (2015) Decreased Ferroportin Promotes Myeloma Cell Growth and Osteoclast Differentiation. Cancer Research, 75, 2211-2221. https://doi.org/10.1158/0008-5472.can-14-3804
|
[63]
|
Singh, M., Mugler, K., Hailoo, D.W., Burke, S., Nemesure, B., Torkko, K., et al. (2011) Differential Expression of Transferrin Receptor (TFR) in a Spectrum of Normal to Malignant Breast Tissues. Applied Immunohistochemistry & Molecular Morphology, 19, 417-423. https://doi.org/10.1097/pai.0b013e318209716e
|
[64]
|
Guo, Z., Zhang, Y., Fu, M., Zhao, L., Wang, Z., Xu, Z., et al. (2021) The Transferrin Receptor-Directed CAR for the Therapy of Hematologic Malignancies. Frontiers in Immunology, 12, Article 652924. https://doi.org/10.3389/fimmu.2021.652924
|
[65]
|
Kathpalia, M., Mishra, P., Bajpai, R., Bhurani, D. and Agarwal, N. (2022) Efficacy and Safety of Nelarabine in Patients with Relapsed or Refractory T-Cell Acute Lymphoblastic Leukemia: A Systematic Review and Meta-Analysis. Annals of Hematology, 101, 1655-1666. https://doi.org/10.1007/s00277-022-04880-1
|
[66]
|
Candoni, A., Lazzarotto, D., Ferrara, F., Curti, A., Lussana, F., Papayannidis, C., et al. (2020) Nelarabine as Salvage Therapy and Bridge to Allogeneic Stem Cell Transplant in 118 Adult Patients with Relapsed/Refractory T‐Cell Acute Lymphoblastic Leukemia/lymphoma. A Campus All Study. American Journal of Hematology, 95, 1466-1472. https://doi.org/10.1002/ajh.25957
|
[67]
|
Gökbuget, N., Basara, N., Baurmann, H., Beck, J., Brüggemann, M., Diedrich, H., et al. (2011) High Single-Drug Activity of Nelarabine in Relapsed T-Lymphoblastic Leukemia/lymphoma Offers Curative Option with Subsequent Stem Cell Transplantation. Blood, 118, 3504-3511. https://doi.org/10.1182/blood-2011-01-329441
|
[68]
|
Feng, L., Li, H., Tang, A., Xu, M. and Wang, S. (2025) Venetoclax and Azacitidine in Combination with Homoharringtonine, Cytarabine, and Aclarubicin for Salvage Therapy of Relapsed/Refractory T Cell Acute Lymphoblastic Leukemia. International Journal of Hematology. https://doi.org/10.1007/s12185-025-03915-3
|
[69]
|
Kong, J.Y., Zong, L.H., Pu, Y., Liu, Y., Kong, X., Li, M.Y., et al. (2023) Clinical Efficacy and Safety of Venetoclax Combined with Multidrug Chemotherapy in the Treatment of 15 Patients with Relapsed or Refractory Early T-Cell Precursor Acute Lymphoblastic Leukemia. Chinese Journal of Hematology, 44, 649-653. https://doi.org/10.3760/cma.j.issn.0253-2727.2023.08.006
|
[70]
|
Wan, C., Zou, J., Qiao, M., Yin, J., Shen, X., Qiu, Q., et al. (2021) Venetoclax Combined with Azacitidine as an Effective and Safe Salvage Regimen for Relapsed or Refractory T-Cell Acute Lymphoblastic Leukemia: A Case Series. Leukemia & Lymphoma, 62, 3300-3303. https://doi.org/10.1080/10428194.2021.1957876
|
[71]
|
Rahmat, L.T., Nguyen, A., Abdulhaq, H., Prakash, S., Logan, A.C. and Mannis, G.N. (2018) Venetoclax in Combination with Decitabine for Relapsed T-Cell Acute Lymphoblastic Leukemia after Allogeneic Hematopoietic Cell Transplant. Case Reports in Hematology, 2018, Article ID: 6092646. https://doi.org/10.1155/2018/6092646
|
[72]
|
Prejzner, W., Piekoś, O., Bełdzińska, K., Sadowska-Klasa, A., Zarzycka, E., Bieniaszewska, M., et al. (2023) The Role of Daratumumab in Relapsed/Refractory CD38 Positive Acute Leukemias—Case Report on Three Cases with a Literature Review. Frontiers in Oncology, 13, Article 1228481. https://doi.org/10.3389/fonc.2023.1228481
|
[73]
|
Chupradit, K., Muneekaew, S. and Wattanapanitch, M. (2024) Engineered CD147-CAR Macrophages for Enhanced Phagocytosis of Cancers. Cancer Immunology, Immunotherapy, 73, Article No. 170. https://doi.org/10.1007/s00262-024-03759-6
|