[1]
|
中华医学会儿科学分会呼吸学组慢性咳嗽协作组, 儿童慢性湿性咳嗽病因构成比研究协作组. 儿童慢性湿性咳嗽病因构成比多中心研究[J]. 中国实用儿科杂志, 2019, 34(9): 757-762.
|
[2]
|
Chang, A.B., Upham, J.W., Masters, I.B., Redding, G.R., Gibson, P.G., Marchant, J.M., et al. (2015) Protracted Bacterial Bronchitis: The Last Decade and the Road Ahead. Pediatric Pulmonology, 51, 225-242. https://doi.org/10.1002/ppul.23351
|
[3]
|
Li, Q., Guo, Z., Li, Y., Zhang, G., Tian, X., Gu, R., et al. (2021) Diagnosis and Management of Protracted Bacterial Bronchitis: A Survey of Chinese Pediatricians. Annals of Translational Medicine, 9, 46-46. https://doi.org/10.21037/atm-20-3984
|
[4]
|
Kantar, A., Chang, A.B., Shields, M.D., Marchant, J.M., Grimwood, K., Grigg, J., et al. (2017) ERS Statement on Protracted Bacterial Bronchitis in Children. European Respiratory Journal, 50, Article 1602139. https://doi.org/10.1183/13993003.02139-2016
|
[5]
|
中华医学会儿科学分会呼吸学组慢性咳嗽协作组, 《中国实用儿科杂志》编辑委员会. 中国儿童慢性湿性咳嗽的诊断与治疗专家共识(2019年版) [J]. 中国实用儿科杂志, 2019, 34(4): 256-264.
|
[6]
|
Wiltingh, H., Marchant, J.M. and Goyal, V. (2024) Cough in Protracted Bacterial Bronchitis and Bronchiectasis. Journal of Clinical Medicine, 13, Article 3305. https://doi.org/10.3390/jcm13113305
|
[7]
|
Rather, M.A., Gupta, K. and Mandal, M. (2021) Microbial Biofilm: Formation, Architecture, Antibiotic Resistance, and Control Strategies. Brazilian Journal of Microbiology, 52, 1701-1718. https://doi.org/10.1007/s42770-021-00624-x
|
[8]
|
Mirzaei, R., Mohammadzadeh, R., Alikhani, M.Y., Shokri Moghadam, M., Karampoor, S., Kazemi, S., et al. (2020) The Biofilm-Associated Bacterial Infections Unrelated to Indwelling Devices. IUBMB Life, 72, 1271-1285. https://doi.org/10.1002/iub.2266
|
[9]
|
Marsh, R.L., Binks, M.J., Smith-Vaughan, H.C., Janka, M., Clark, S., Richmond, P., et al. (2022) Prevalence and Subtyping of Biofilms Present in Bronchoalveolar Lavage from Children with Protracted Bacterial Bronchitis or Non-Cystic Fibrosis Bronchiectasis: A Cross-Sectional Study. The Lancet Microbe, 3, e215-e223. https://doi.org/10.1016/s2666-5247(21)00300-1
|
[10]
|
Principi, N. and Esposito, S. (2024) Biofilm Production and Its Implications in Pediatrics. Microorganisms, 12, Article 1522. https://doi.org/10.3390/microorganisms12081522
|
[11]
|
鲍燕敏, 戴文魁, 陈杰华, 黄璐, 马红玲, 李志川, 赵海霞, 郑跃杰. 儿童迁延性细菌性支气管炎的呼吸道菌群特征及临床意义[J]. 中华实用儿科临床杂志, 2018, 33(10): 744-747.
|
[12]
|
Atto, B., Anteneh, Y., Bialasiewicz, S., Binks, M.J., Hashemi, M., Hill, J., et al. (2023) The Respiratory Microbiome in Paediatric Chronic Wet Cough: What Is Known and Future Directions. Journal of Clinical Medicine, 13, Article 171. https://doi.org/10.3390/jcm13010171
|
[13]
|
Krishnamurthy, A. and Kyd, J. (2014) The Roles of Epithelial Cell Contact, Respiratory Bacterial Interactions and Phosphorylcholine in Promoting Biofilm Formation by Streptococcus Pneumoniae and Nontypeable Haemophilus Influenzae. Microbes and Infection, 16, 640-647. https://doi.org/10.1016/j.micinf.2014.06.008
|
[14]
|
Mirghani, R., Saba, T., Khaliq, H., Mitchell, J., Do, L., Chambi, L., et al. (2022) Biofilms: Formation, Drug Resistance and Alternatives to Conventional Approaches. AIMS Microbiology, 8, 239-277. https://doi.org/10.3934/microbiol.2022019
|
[15]
|
McMahon, F., Ware, R.S., Grimwood, K. and Atack, J.M. (2024) Haemophilus Influenzae and Pneumococci: Co-Colonization, Interactions, Cooperation and Competition. Pediatric Pulmonology, 60, e27318. https://doi.org/10.1002/ppul.27318
|
[16]
|
Ruffles, T.J.C., Marchant, J.M., Masters, I.B., Yerkovich, S.T., Wurzel, D.F., Gibson, P.G., et al. (2020) Outcomes of Protracted Bacterial Bronchitis in Children: A 5-Year Prospective Cohort Study. Respirology, 26, 241-248. https://doi.org/10.1111/resp.13950
|
[17]
|
Chen, N., Zhang, H. and Feng, Y. (2023) Clinical Features and Pathogen Distributions of Microbiological-Based Protracted Bacterial Bronchitis in Children of Different Ages in Northeast China. Frontiers in Pediatrics, 11, Article 1163014. https://doi.org/10.3389/fped.2023.1163014
|
[18]
|
Gallucci, M., Pedretti, M., Giannetti, A., di Palmo, E., Bertelli, L., Pession, A., et al. (2020) When the Cough Does Not Improve: A Review on Protracted Bacterial Bronchitis in Children. Frontiers in Pediatrics, 8, Article 433. https://doi.org/10.3389/fped.2020.00433
|
[19]
|
Depiazzi, J., Bourke, C., Stick, S. and Withers, A. (2023) Prevalence of Tracheobronchomalacia Is Higher than Previously Reported in Children with Cystic Fibrosis. Pediatric Pulmonology, 58, 2568-2573. https://doi.org/10.1002/ppul.26550
|
[20]
|
Wallis, C., Alexopoulou, E., Antón-Pacheco, J.L., Bhatt, J.M., Bush, A., Chang, A.B., et al. (2019) ERS Statement on Tracheomalacia and Bronchomalacia in Children. European Respiratory Journal, 54, Article 1900382. https://doi.org/10.1183/13993003.00382-2019
|
[21]
|
Tsai, M., Rayner, R.E., Chafin, L., Farkas, D., Adair, J., Mishan, C., et al. (2023) Influenza virus Reduces Ubiquitin E3 Ligase MARCH10 Expression to Decrease Ciliary Beat Frequency. American Journal of Physiology-Lung Cellular and Molecular Physiology, 324, L666-L676. https://doi.org/10.1152/ajplung.00191.2022
|
[22]
|
Chen, Q., Tan, K.S., Liu, J., Ong, H.H., Zhou, S., Huang, H., et al. (2020) Host Antiviral Response Suppresses Ciliogenesis and Motile Ciliary Functions in the Nasal Epithelium. Frontiers in Cell and Developmental Biology, 8, Article 581340. https://doi.org/10.3389/fcell.2020.581340
|
[23]
|
Chatziparasidis, G., Kantar, A. and Grimwood, K. (2023) Pathogenesis of Nontypeable Haemophilus Influenzae Infections in Chronic Suppurative Lung Disease. Pediatric Pulmonology, 58, 1849-1860. https://doi.org/10.1002/ppul.26446
|
[24]
|
Marchant, J.M., Gibson, P.G., Grissell, T.V., Timmins, N.L., Masters, I.B. and Chang, A.B. (2008) Prospective Assessment of Protracted Bacterial Bronchitis: Airway Inflammation and Innate Immune Activation. Pediatric Pulmonology, 43, 1092-1099. https://doi.org/10.1002/ppul.20906
|
[25]
|
Ntesou, D., Douros, K., Tsiambas, E., Maipas, S., Sarlanis, H., Lazaris, A.C., et al. (2021) Impact of Immune-Inflammatory Microenvironment Alterations on the Bronchial Lumen of Children with Protracted Bacterial Bronchitis. Cureus, 13, e20554. https://doi.org/10.7759/cureus.20554
|
[26]
|
Chang, A.B., Oppenheimer, J.J., Weinberger, M.M., Rubin, B.K., Weir, K., Grant, C.C., et al. (2017) Use of Management Pathways or Algorithms in Children with Chronic Cough. Chest, 151, 875-883. https://doi.org/10.1016/j.chest.2016.12.025
|
[27]
|
Marchant, J.M., Chang, A.B., Kennedy, E., King, D., Perret, J.L., Schultz, A., et al. (2023) Cough in Children and Adults: Diagnosis, Assessment and Management (CICADA). Summary of an Updated Position Statement on Chronic Cough in Australia. Medical Journal of Australia, 220, 35-45. https://doi.org/10.5694/mja2.52157
|
[28]
|
Shields, M.D., Bush, A., Everard, M.L., McKenzie, S. and Primhak, R. (2007) Recommendations for the Assessment and Management of Cough in Children. Thorax, 63, iii1-iii15. https://doi.org/10.1136/thx.2007.077370
|
[29]
|
Ruffles, T.J.C., Goyal, V., Marchant, J.M., Masters, I.B., Yerkovich, S., Buntain, H., et al. (2021) Duration of Amoxicillin-Clavulanate for Protracted Bacterial Bronchitis in Children (DACS): A Multi-Centre, Double Blind, Randomised Controlled Trial. The Lancet Respiratory Medicine, 9, 1121-1129. https://doi.org/10.1016/s2213-2600(21)00104-1
|
[30]
|
Chang, A.B., Oppenheimer, J.J., Weinberger, M., Rubin, B.K. and Irwin, R.S. (2016) Children with Chronic Wet or Productive Cough—Treatment and Investigations. Chest, 149, 120-142. https://doi.org/10.1378/chest.15-2065
|
[31]
|
Wurzel, D.F., Marchant, J.M., Yerkovich, S.T., Upham, J.W., Petsky, H.L., Smith-Vaughan, H., et al. (2016) Protracted Bacterial Bronchitis in Children. Chest, 150, 1101-1108. https://doi.org/10.1016/j.chest.2016.06.030
|
[32]
|
Goyal, V., Grimwood, K., Marchant, J., Masters, I.B. and Chang, A.B. (2014) Does Failed Chronic Wet Cough Response to Antibiotics Predict Bronchiectasis? Archives of Disease in Childhood, 99, 522-525. https://doi.org/10.1136/archdischild-2013-304793
|
[33]
|
Zafer, M.M., Mohamed, G.A., Ibrahim, S.R.M., Ghosh, S., Bornman, C. and Elfaky, M.A. (2024) Biofilm-Mediated Infections by Multidrug-Resistant Microbes: A Comprehensive Exploration and Forward Perspectives. Archives of Microbiology, 206, Article No. 101. https://doi.org/10.1007/s00203-023-03826-z
|
[34]
|
Uruén, C., Chopo-Escuin, G., Tommassen, J., Mainar-Jaime, R.C. and Arenas, J. (2020) Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics, 10, Article 3. https://doi.org/10.3390/antibiotics10010003
|
[35]
|
Abebe, G.M. (2020) The Role of Bacterial Biofilm in Antibiotic Resistance and Food Contamination. International Journal of Microbiology, 2020, 1-10. https://doi.org/10.1155/2020/1705814
|
[36]
|
Patel, K.K., Tripathi, M., Pandey, N., Agrawal, A.K., Gade, S., Anjum, M.M., et al. (2019) Alginate Lyase Immobilized Chitosan Nanoparticles of Ciprofloxacin for the Improved Antimicrobial Activity against the Biofilm Associated Mucoid P. Aeruginosa Infection in Cystic Fibrosis. International Journal of Pharmaceutics, 563, 30-42. https://doi.org/10.1016/j.ijpharm.2019.03.051
|
[37]
|
Chan, B.K., Stanley, G., Modak, M., Koff, J.L. and Turner, P.E. (2021) Bacteriophage Therapy for Infections in CF. Pediatric Pulmonology, 56, S4-S9. https://doi.org/10.1002/ppul.25190
|
[38]
|
Principi, N., Silvestri, E. and Esposito, S. (2019) Advantages and Limitations of Bacteriophages for the Treatment of Bacterial Infections. Frontiers in Pharmacology, 10, Article 513. https://doi.org/10.3389/fphar.2019.00513
|
[39]
|
Hoffmann, N., Lee, B., Hentzer, M., Rasmussen, T.B., Song, Z., Johansen, H.K., et al. (2007) Azithromycin Blocks Quorum Sensing and Alginate Polymer Formation and Increases the Sensitivity to Serum and Stationary-Growth-Phase Killing of Pseudomonas aeruginosaand Attenuates Chronic P. aeruginosa Lung Infection in Cftr-/- Mice. Antimicrobial Agents and Chemotherapy, 51, 3677-3687. https://doi.org/10.1128/aac.01011-06
|
[40]
|
Blasi, F., Page, C., Rossolini, G.M., Pallecchi, L., Matera, M.G., Rogliani, P., et al. (2016) The Effect of N-Acetylcysteine on Biofilms: Implications for the Treatment of Respiratory Tract Infections. Respiratory Medicine, 117, 190-197. https://doi.org/10.1016/j.rmed.2016.06.015
|
[41]
|
Ishida, H., Ishida, Y., Kurosaka, Y., Otani, T., Sato, K. and Kobayashi, H. (1998) In Vitro and in Vivo Activities of Levofloxacin against Biofilm-Producing Pseudomonas Aeruginosa. Antimicrobial Agents and Chemotherapy, 42, 1641-1645. https://doi.org/10.1128/aac.42.7.1641
|
[42]
|
de la Fuente-Nunez, C., Cesaro, A. and Hancock, R.E.W. (2023) Antibiotic Failure: Beyond Antimicrobial Resistance. Drug Resistance Updates, 71, Article 101012. https://doi.org/10.1016/j.drup.2023.101012
|
[43]
|
Walters, M.C., Roe, F., Bugnicourt, A., Franklin, M.J. and Stewart, P.S. (2003) Contributions of Antibiotic Penetration, Oxygen Limitation, and Low Metabolic Activity to Tolerance of pseudomonas Aeruginosa Biofilms to Ciprofloxacin and Tobramycin. Antimicrobial Agents and Chemotherapy, 47, 317-323. https://doi.org/10.1128/aac.47.1.317-323.2003
|
[44]
|
Drago, L., Mattina, R., Legnani, D., Romanò, C.L., Vianello, E., Ricci, C., et al. (2011) Modulation of Biofilm of Strains Isolated from Patients with Chronic Obstructive Pulmonary Disease by Levofloxacin, Moxifloxacin, Ciprofloxacin, Amoxicillin/Clavulanic Acid and Ceftriaxone. International Journal of Immunopathology and Pharmacology, 24, 1027-1035. https://doi.org/10.1177/039463201102400420
|
[45]
|
Elborn, J.S., Flume, P.A., Van Devanter, D.R. and Procaccianti, C. (2021) Management of Chronic pseudomonas Aeruginosa Infection with Inhaled Levofloxacin in People with Cystic Fibrosis. Future Microbiology, 16, 1087-1104. https://doi.org/10.2217/fmb-2021-0150
|
[46]
|
Yang, J. (2020) Mechanism of Azithromycin in Airway Diseases. Journal of International Medical Research, 48, Article 300060520932104. https://doi.org/10.1177/0300060520932104
|
[47]
|
林燕美, 赵磊, 张旻, 包婺平. 阿奇霉素在慢性气道疾病中的应用现状及其免疫调节作用机制[J]. 实用心脑肺血管病杂志, 2023, 31(11): 1-6.
|
[48]
|
Thomas, D., McDonald, V.M., Simpson, J.L., Smith, A., Gupta, S., Majellano, E., et al. (2022) Patterns of Azithromycin Use in Obstructive Airway Diseases: A Real-World Observational Study. Internal Medicine Journal, 52, 1016-1023. https://doi.org/10.1111/imj.15216
|
[49]
|
Vermeersch, K., Gabrovska, M., Aumann, J., Demedts, I.K., Corhay, J., Marchand, E., et al. (2019) Azithromycin during Acute Chronic Obstructive Pulmonary Disease Exacerbations Requiring Hospitalization (BACE). A Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial. American Journal of Respiratory and Critical Care Medicine, 200, 857-868. https://doi.org/10.1164/rccm.201901-0094oc
|
[50]
|
张媛媛, 王宁, 谭瑞娟, 等. 口服不同疗程小剂量阿奇霉素对稳定期慢性阻塞性肺疾病患者临床疗效和安全性的研究[J]. 中国医院药学杂志, 2021, 41(3): 282-286.
|
[51]
|
Pu, Y., Wu, Y., Zhou, Y. and Wan, L. (2023) Azithromycin Suppresses TGF-β1-Related Epithelial-Mesenchymal Transition in Airway Epithelial Cells via Targeting RACK1. Chemico-Biological Interactions, 370, Article 110332. https://doi.org/10.1016/j.cbi.2022.110332
|
[52]
|
Hardman, S.J., Shackley, F.M., Ugonna, K., Darton, T.C., Rigby, A.S., Bogaert, D., et al. (2023) Seasonal Azithromycin Use in Paediatric Protracted Bacterial Bronchitis Does Not Promote Antimicrobial Resistance but Does Modulate the Nasopharyngeal Microbiome. International Journal of Molecular Sciences, 24, Article 16053. https://doi.org/10.3390/ijms242216053
|
[53]
|
Calzetta, L., Ritondo, B.L., Zappa, M.C., Manzetti, G.M., Perduno, A., Shute, J., et al. (2022) The Impact of Long-Acting Muscarinic Antagonists on Mucus Hypersecretion and Cough in Chronic Obstructive Pulmonary Disease: A Systematic Review. European Respiratory Review, 31, Article 210196. https://doi.org/10.1183/16000617.0196-2021
|