|
[1]
|
Koren, E. and Fuchs, Y. (2021) Modes of Regulated Cell Death in Cancer. Cancer Discovery, 11, 245-265. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Bertheloot, D., Latz, E. and Franklin, B.S. (2021) Necroptosis, Pyroptosis and Apoptosis: An Intricate Game of Cell Death. Cellular & Molecular Immunology, 18, 1106-1121. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Galluzzi, L., Vitale, I., Aaronson, S.A., Abrams, J.M., Adam, D., Agostinis, P., et al. (2018) Molecular Mechanisms of Cell Death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation, 25, 486-541. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Yang, W.S. and Stockwell, B.R. (2008) Synthetic Lethal Screening Identifies Compounds Activating Iron-Dependent, Nonapoptotic Cell Death in Oncogenic-Ras-Harboring Cancer Cells. Chemistry & Biology, 15, 234-245. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Friedmann Angeli, J.P., Schneider, M., Proneth, B., Tyurina, Y.Y., Tyurin, V.A., Hammond, V.J., et al. (2014) Inactivation of the Ferroptosis Regulator GPX4 Triggers Acute Renal Failure in Mice. Nature Cell Biology, 16, 1180-1191. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Tang, D., Chen, X., Kang, R. and Kroemer, G. (2020) Ferroptosis: Molecular Mechanisms and Health Implications. Cell Research, 31, 107-125. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
El Hout, M., Dos Santos, L., Hamaï, A. and Mehrpour, M. (2018) A Promising New Approach to Cancer Therapy: Targeting Iron Metabolism in Cancer Stem Cells. Seminars in Cancer Biology, 53, 125-138. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ryu, M., Zhang, D., Protchenko, O., Shakoury-Elizeh, M. and Philpott, C.C. (2017) PCBP1 and NCOA4 Regulate Erythroid Iron Storage and Heme Biosynthesis. Journal of Clinical Investigation, 127, 1786-1797. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Hou, W., Xie, Y., Song, X., Sun, X., Lotze, M.T., Zeh, H.J., et al. (2016) Autophagy Promotes Ferroptosis by Degradation of Ferritin. Autophagy, 12, 1425-1428. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Hulbert, A.J., Rana, T. and Couture, P. (2002) The Acyl Composition of Mammalian Phospholipids: An Allometric Analysis. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 132, 515-527. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Gill, I. and Valivety, R. (1997) Polyunsaturated Fatty Acids, Part 1: Occurrence, Biological Activities and Applications. Trends in Biotechnology, 15, 401-409. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Thiele, C. and Spandl, J. (2008) Cell Biology of Lipid Droplets. Current Opinion in Cell Biology, 20, 378-385. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Doll, S., Proneth, B., Tyurina, Y.Y., Panzilius, E., Kobayashi, S., Ingold, I., et al. (2016) ACSL4 Dictates Ferroptosis Sensitivity by Shaping Cellular Lipid Composition. Nature Chemical Biology, 13, 91-98. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Küch, E., Vellaramkalayil, R., Zhang, I., Lehnen, D., Brügger, B., Stremmel, W., et al. (2014) Differentially Localized Acyl-Coa Synthetase 4 Isoenzymes Mediate the Metabolic Channeling of Fatty Acids towards Phosphatidylinositol. Biochimica et Biophysica Acta (BBA)—Molecular and Cell Biology of Lipids, 1841, 227-239. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Hishikawa, D., Shindou, H., Kobayashi, S., Nakanishi, H., Taguchi, R. and Shimizu, T. (2008) Discovery of a Lysophospholipid Acyltransferase Family Essential for Membrane Asymmetry and Diversity. Proceedings of the National Academy of Sciences of the United States of America, 105, 2830-2835. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Kagan, V.E., Mao, G., Qu, F., Angeli, J.P.F., Doll, S., Croix, C.S., et al. (2016) Oxidized Arachidonic and Adrenic Pes Navigate Cells to Ferroptosis. Nature Chemical Biology, 13, 81-90. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yang, W.S., Kim, K.J., Gaschler, M.M., Patel, M., Shchepinov, M.S. and Stockwell, B.R. (2016) Peroxidation of Polyunsaturated Fatty Acids by Lipoxygenases Drives Ferroptosis. Proceedings of the National Academy of Sciences of the United States of America, 113, E4966-E4975. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Diggle, C.P. (2002) In Vitro Studies on the Relationship between Polyunsaturated Fatty Acids and Cancer: Tumour or Tissue Specific Effects? Progress in Lipid Research, 41, 240-253. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Rice-Evans, C. and Burdon, R. (1993) Free Radical-Lipid Interactions and Their Pathological Consequences. Progress in Lipid Research, 32, 71-110. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Michalski, M., Calzada, C., Makino, A., Michaud, S. and Guichardant, M. (2008) Oxidation Products of Polyunsaturated Fatty Acids in Infant Formulas Compared to Human Milk—A Preliminary Study. Molecular Nutrition & Food Research, 52, 1478-1485. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Funk, C.D., Chen, X., Johnson, E.N. and Zhao, L. (2002) Lipoxygenase Genes and Their Targeted Disruption. Prostaglandins & Other Lipid Mediators, 68, 303-312. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wenzel, S.E., Tyurina, Y.Y., Zhao, J., St. Croix, C.M., Dar, H.H., Mao, G., et al. (2017) PEBP1 Wardens Ferroptosis by Enabling Lipoxygenase Generation of Lipid Death Signals. Cell, 171, 628-641.e26. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Battista, N., Meloni, M.A., Bari, M., Mastrangelo, N., Galleri, G., Rapino, C., et al. (2012) 5‐Lipoxygenase‐Dependent Apoptosis of Human Lymphocytes in the International Space Station: Data from the ROALD Experiment. The FASEB Journal, 26, 1791-1798. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Shah, R., Shchepinov, M.S. and Pratt, D.A. (2018) Resolving the Role of Lipoxygenases in the Initiation and Execution of Ferroptosis. ACS Central Science, 4, 387-396. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Hou, L., Huang, R., Sun, F., Zhang, L. and Wang, Q. (2019) NADPH Oxidase Regulates Paraquat and Maneb-Induced Dopaminergic Neurodegeneration through Ferroptosis. Toxicology, 417, 64-73. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zou, Y., Li, H., Graham, E.T., Deik, A.A., Eaton, J.K., Wang, W., et al. (2020) Cytochrome P450 Oxidoreductase Contributes to Phospholipid Peroxidation in Ferroptosis. Nature Chemical Biology, 16, 302-309. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Yang, W.S., SriRamaratnam, R., Welsch, M.E., Shimada, K., Skouta, R., Viswanathan, V.S., et al. (2014) Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell, 156, 317-331. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Chen, D., Tavana, O., Chu, B., Erber, L., Chen, Y., Baer, R., et al. (2017) NRF2 Is a Major Target of ARF in P53-Independent Tumor Suppression. Molecular Cell, 68, 224-232.e4. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Ye, Y., Chen, A., Li, L., Liang, Q., Wang, S., Dong, Q., et al. (2022) Repression of the Antiporter SLC7A11/Glutathione/Glutathione Peroxidase 4 Axis Drives Ferroptosis of Vascular Smooth Muscle Cells to Facilitate Vascular Calcification. Kidney International, 102, 1259-1275. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhang, H., He, Y., Wang, J., Chen, M., Xu, J., Jiang, M., et al. (2020) miR-30-5p-Mediated Ferroptosis of Trophoblasts Is Implicated in the Pathogenesis of Preeclampsia. Redox Biology, 29, Article ID: 101402. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Li, R., Zhang, X., Gu, L., Yuan, Y., Luo, X., Shen, W., et al. (2023) CDGSH Iron Sulfur Domain 2 Over‐Expression Alleviates Neuronal Ferroptosis and Brain Injury by Inhibiting Lipid Peroxidation via Akt/mTOR Pathway Following Intracerebral Hemorrhage in Mice. Journal of Neurochemistry, 165, 426-444. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Shangguan, M., Zheng, J., Liu, N., Zhao, J. and Wang, Q. (2024) A Preliminary Study Unveils CISD2 as a Ferroptosis-Related Therapeutic Target for Recurrent Spontaneous Abortion through Immunological Analysis and Two-Sample Mendelian Randomization. Journal of Reproductive Immunology, 163, Article ID: 104249. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Dai, F., Zhang, Y., Deng, Z., Zhang, J., Wang, R., Chen, J., et al. (2024) IGF2BP3 Participates in the Pathogenesis of Recurrent Spontaneous Abortion by Regulating Ferroptosis. Journal of Reproductive Immunology, 165, Article ID: 104271. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Chen, L., Dai, F., Huang, Y., Chen, J., Li, Z., Liu, H., et al. (2024) Mechanisms of YAP1-Mediated Trophoblast Ferroptosis in Recurrent Pregnancy Loss. Journal of Assisted Reproduction and Genetics, 41, 1669-1685. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lai, Y., Zhang, Y., Zhang, H., Chen, Z., Zeng, L., Deng, G., et al. (2024) Modified Shoutai Pill Inhibited Ferroptosis to Alleviate Recurrent Pregnancy Loss. Journal of Ethnopharmacology, 319, Article ID: 117028. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Brown, F.M. and Wyckoff, J. (2017) Application of One-Step IADPSG versus Two-Step Diagnostic Criteria for Gestational Diabetes in the Real World: Impact on Health Services, Clinical Care, and Outcomes. Current Diabetes Reports, 17, Article No. 85. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Zaugg, J., Melhem, H., Huang, X., Wegner, M., Baumann, M., Surbek, D., et al. (2020) Gestational Diabetes Mellitus Affects Placental Iron Homeostasis: Mechanism and Clinical Implications. The FASEB Journal, 34, 7311-7329. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Crowther, C.A., Samuel, D., Hughes, R., Tran, T., Brown, J. and Alsweiler, J.M. (2022) Tighter or Less Tight Glycaemic Targets for Women with Gestational Diabetes Mellitus for Reducing Maternal and Perinatal Morbidity: A Stepped-Wedge, Cluster-Randomised Trial. PLOS Medicine, 19, e1004087. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Zheng, Y., Hu, Q. and Wu, J. (2021) Adiponectin Ameliorates Placental Injury in Gestational Diabetes Mice by Correcting Fatty Acid Oxidation/Peroxide Imbalance-Induced Ferroptosis via Restoration of CPT-1 Activity. Endocrine, 75, 781-793. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Han, D., Jiang, L., Gu, X., Huang, S., Pang, J., Wu, Y., et al. (2020) SIRT3 Deficiency Is Resistant to Autophagy‐dependent Ferroptosis by Inhibiting the AMPK/mTOR Pathway and Promoting GPX4 Levels. Journal of Cellular Physiology, 235, 8839-8851. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Jiang, J., Gao, H., Zhou, W., Cai, H., Liao, L. and Wang, C. (2023) Circular RNA HIPK3 Facilitates Ferroptosis in Gestational Diabetes Mellitus by Regulating Glutathione Peroxidase 4 DNA Methylation. The Journal of Gene Medicine, 25, e3526. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Webster, K., Fishburn, S., Maresh, M., Findlay, S.C. and Chappell, L.C. (2019) Diagnosis and Management of Hypertension in Pregnancy: Summary of Updated NICE Guidance. BMJ, 366, L5119. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Tew, W.P. (1938) Pre-Eclampsia. Canadian Medical Association Journal, 38, 20-24.
|
|
[45]
|
Ng, S., Norwitz, S.G. and Norwitz, E.R. (2019) The Impact of Iron Overload and Ferroptosis on Reproductive Disorders in Humans: Implications for Preeclampsia. International Journal of Molecular Sciences, 20, Article 3283. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Irwinda, R., Hiksas, R., Siregar, A.A., Saroyo, Y.B. and Wibowo, N. (2021) Long-Chain Polyunsaturated Fatty Acid (LC-PUFA) Status in Severe Preeclampsia and Preterm Birth: A Cross Sectional Study. Scientific Reports, 11, Article No. 14701. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Liao, T., Xu, X., Ye, X. and Yan, J. (2022) DJ-1 Upregulates the Nrf2/GPX4 Signal Pathway to Inhibit Trophoblast Ferroptosis in the Pathogenesis of Preeclampsia. Scientific Reports, 12, Article No. 2934. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Aydın, S., Benian, A., Madazli, R., Uludaǧ, S., Uzun, H. and Kaya, S. (2004) Plasma Malondialdehyde, Superoxide Dismutase, Se-Selectin, Fibronectin, Endothelin-1 and Nitric Oxide Levels in Women with Preeclampsia. European Journal of Obstetrics & Gynecology and Reproductive Biology, 113, 21-25. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Roland-Zejly, L., Moisan, V., St-Pierre, I. and Bilodeau, J.-F. (2011) Altered Placental Glutathione Peroxidase mRNA Expression in Preeclampsia According to the Presence or Absence of Labor. Placenta, 32, 161-167. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Yang, X., Ding, Y., Sun, L., Shi, M., Zhang, P., Huang, Z., et al. (2022) Ferritin Light Chain Deficiency-Induced Ferroptosis Is Involved in Preeclampsia Pathophysiology by Disturbing Uterine Spiral Artery Remodelling. Redox Biology, 58, Article ID: 102555. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Peng, X., Lin, Y., Li, J., Liu, M., Wang, J., Li, X., et al. (2016) Evaluation of Glutathione Peroxidase 4 Role in Preeclampsia. Scientific Reports, 6, Article No. 33300. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Mistry, H.D., Kurlak, L.O., Williams, P.J., Ramsay, M.M., Symonds, M.E. and Broughton Pipkin, F. (2010) Differential Expression and Distribution of Placental Glutathione Peroxidases 1, 3 and 4 in Normal and Preeclamptic Pregnancy. Placenta, 31, 401-408. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Imai, H., Hirao, F., Sakamoto, T., Sekine, K., Mizukura, Y., Saito, M., et al. (2003) Early Embryonic Lethality Caused by Targeted Disruption of the Mouse PHGPx Gene. Biochemical and Biophysical Research Communications, 305, 278-286. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Beharier, O., Tyurin, V.A., Goff, J.P., Guerrero-Santoro, J., Kajiwara, K., Chu, T., et al. (2020) PLA2G6 Guards Placental Trophoblasts against Ferroptotic Injury. Proceedings of the National Academy of Sciences, 117, 27319-27328. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Ramanadham, S., Ali, T., Ashley, J.W., Bone, R.N., Hancock, W.D. and Lei, X. (2015) Calcium-Independent Phospholipases A2 and Their Roles in Biological Processes and Diseases. Journal of Lipid Research, 56, 1643-1668. [Google Scholar] [CrossRef] [PubMed]
|