[1]
|
Goyal, D., Ali, S.A. and Singh, R.K. (2021) Emerging Role of Gut Microbiota in Modulation of Neuroinflammation and Neurodegeneration with Emphasis on Alzheimer’s Disease. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 106, Article ID: 110112. https://doi.org/10.1016/j.pnpbp.2020.110112
|
[2]
|
Bulgart, H.R., Neczypor, E.W., Wold, L.E. and Mackos, A.R. (2020) Microbial Involvement in Alzheimer Disease Development and Progression. Molecular Neurodegeneration, 15, Article No. 42. https://doi.org/10.1186/s13024-020-00378-4
|
[3]
|
Zhu, S., Jiang, Y., Xu, K., Cui, M., Ye, W., Zhao, G., et al. (2020) The Progress of Gut Microbiome Research Related to Brain Disorders. Journal of Neuroinflammation, 17, Article No. 25. https://doi.org/10.1186/s12974-020-1705-z
|
[4]
|
Shen, X., Niu, L., Wang, Y., Cao, X., Liu, Q., Tan, L., et al. (2019) Inflammatory Markers in Alzheimer’s Disease and Mild Cognitive Impairment: A Meta-Analysis and Systematic Review of 170 Studies. Journal of Neurology, Neurosurgery & Psychiatry, 90, 590-598. https://doi.org/10.1136/jnnp-2018-319148
|
[5]
|
Thakur, S., Dhapola, R., Sarma, P., Medhi, B. and Reddy, D.H. (2022) Neuroinflammation in Alzheimer’s Disease: Current Progress in Molecular Signaling and Therapeutics. Inflammation, 46, 1-17. https://doi.org/10.1007/s10753-022-01721-1
|
[6]
|
Nguyen, V.T.T. and Endres, K. (2022) Targeting Gut Microbiota to Alleviate Neuroinflammation in Alzheimer’s Disease. Advanced Drug Delivery Reviews, 188, Article ID: 114418.
|
[7]
|
Muzio, L., Viotti, A. and Martino, G. (2021) Microglia in Neuroinflammation and Neurodegeneration: From Understanding to Therapy. Frontiers in Neuroscience, 15, Article 742065. https://doi.org/10.3389/fnins.2021.742065
|
[8]
|
Bonfili, L., Cecarini, V., Gogoi, O., Gong, C., Cuccioloni, M., Angeletti, M., et al. (2020) Microbiota Modulation as Preventative and Therapeutic Approach in Alzheimer’s Disease. The FEBS Journal, 288, 2836-2855. https://doi.org/10.1111/febs.15571
|
[9]
|
Rooks, M.G. and Garrett, W.S. (2016) Gut Microbiota, Metabolites and Host Immunity. Nature Reviews Immunology, 16, 341-352. https://doi.org/10.1038/nri.2016.42
|
[10]
|
Dias-Carvalho, A., Sá, S.I., Carvalho, F., Fernandes, E. and Costa, V.M. (2023) Inflammation as Common Link to Progressive Neurological Diseases. Archives of Toxicology, 98, 95-119. https://doi.org/10.1007/s00204-023-03628-8
|
[11]
|
Wenzel, T.J., Gates, E.J., Ranger, A.L. and Klegeris, A. (2020) Short-Chain Fatty Acids (SCFAs) Alone or in Combination Regulate Select Immune Functions of Microglia-Like Cells. Molecular and Cellular Neuroscience, 105, Article ID: 103493. https://doi.org/10.1016/j.mcn.2020.103493
|
[12]
|
Wang, Y., Wang, Z., Wang, Y., Li, F., Jia, J., Song, X., et al. (2018) The Gut-Microglia Connection: Implications for Central Nervous System Diseases. Frontiers in Immunology, 9, Article 2325. https://doi.org/10.3389/fimmu.2018.02325
|
[13]
|
Mosher, K.I. and Wyss-Coray, T. (2014) Microglial Dysfunction in Brain Aging and Alzheimer’s Disease. Biochemical Pharmacology, 88, 594-604. https://doi.org/10.1016/j.bcp.2014.01.008
|
[14]
|
Kesika, P., Suganthy, N., Sivamaruthi, B.S. and Chaiyasut, C. (2021) Role of Gut-Brain Axis, Gut Microbial Composition, and Probiotic Intervention in Alzheimer’s Disease. Life Sciences, 264, Article ID: 118627. https://doi.org/10.1016/j.lfs.2020.118627
|
[15]
|
Shen, H., Guan, Q., Zhang, X., Yuan, C., Tan, Z., Zhai, L., et al. (2020) New Mechanism of Neuroinflammation in Alzheimer’s Disease: The Activation of NLRP3 Inflammasome Mediated by Gut Microbiota. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 100, Article ID: 109884. https://doi.org/10.1016/j.pnpbp.2020.109884
|
[16]
|
Hoogland, I.C.M., Westhoff, D., Engelen-Lee, J., Melief, J., Valls Serón, M., Houben-Weerts, J.H.M.P., et al. (2018) Microglial Activation after Systemic Stimulation with Lipopolysaccharide and Escherichia Coli. Frontiers in Cellular Neuroscience, 12, Article 110. https://doi.org/10.3389/fncel.2018.00110
|
[17]
|
Yang, W. and Cong, Y. (2021) Gut Microbiota-Derived Metabolites in the Regulation of Host Immune Responses and Immune-Related Inflammatory Diseases. Cellular & Molecular Immunology, 18, 866-877. https://doi.org/10.1038/s41423-021-00661-4
|
[18]
|
Shoaie, S., Ghaffari, P., Kovatcheva-Datchary, P., Mardinoglu, A., Sen, P., Pujos-Guillot, E., et al. (2015) Quantifying Diet-Induced Metabolic Changes of the Human Gut Microbiome. Cell Metabolism, 22, 320-331. https://doi.org/10.1016/j.cmet.2015.07.001
|
[19]
|
Cummings, J.H., Pomare, E.W., Branch, W.J., Naylor, C.P. and Macfarlane, G.T. (1987) Short Chain Fatty Acids in Human Large Intestine, Portal, Hepatic and Venous Blood. Gut, 28, 1221-1227. https://doi.org/10.1136/gut.28.10.1221
|
[20]
|
Al Bander, Z., Nitert, M.D., Mousa, A. and Naderpoor, N. (2020) The Gut Microbiota and Inflammation: An Overview. International Journal of Environmental Research and Public Health, 17, Article 7618. https://doi.org/10.3390/ijerph17207618
|
[21]
|
Jiang, Y., Li, K., Li, X., Xu, L. and Yang, Z. (2021) Sodium Butyrate Ameliorates the Impairment of Synaptic Plasticity by Inhibiting the Neuroinflammation in 5XFAD Mice. Chemico-Biological Interactions, 341, Article ID: 109452. https://doi.org/10.1016/j.cbi.2021.109452
|
[22]
|
van Olst, L., Roks, S.J.M., Kamermans, A., Verhaar, B.J.H., van der Geest, A.M., Muller, M., et al. (2021) Contribution of Gut Microbiota to Immunological Changes in Alzheimer’s Disease. Frontiers in Immunology, 12, Article 683068. https://doi.org/10.3389/fimmu.2021.683068
|
[23]
|
Sochocka, M., Donskow-Łysoniewska, K., Diniz, B.S., Kurpas, D., Brzozowska, E. and Leszek, J. (2018) The Gut Microbiome Alterations and Inflammation-Driven Pathogenesis of Alzheimer’s Disease—A Critical Review. Molecular Neurobiology, 56, 1841-1851. https://doi.org/10.1007/s12035-018-1188-4
|
[24]
|
Suzuki, T., Yoshida, S. and Hara, H. (2008) Physiological Concentrations of Short-Chain Fatty Acids Immediately Suppress Colonic Epithelial Permeability. British Journal of Nutrition, 100, 297-305. https://doi.org/10.1017/s0007114508888733
|
[25]
|
Macia, L., Tan, J., Vieira, A.T., Leach, K., Stanley, D., Luong, S., et al. (2015) Metabolite-Sensing Receptors GPR43 and GPR109A Facilitate Dietary Fibre-Induced Gut Homeostasis through Regulation of the Inflammasome. Nature Communications, 6, Article No. 6734. https://doi.org/10.1038/ncomms7734
|
[26]
|
Braniste, V., Al-Asmakh, M., Kowal, C., Anuar, F., Abbaspour, A., Tóth, M., et al. (2014) The Gut Microbiota Influences Blood-Brain Barrier Permeability in Mice. Science Translational Medicine, 6, 263ra158. https://doi.org/10.1126/scitranslmed.3009759
|
[27]
|
Silva, Y.P., Bernardi, A. and Frozza, R.L. (2020) The Role of Short-Chain Fatty Acids from Gut Microbiota in Gut-Brain Communication. Frontiers in Endocrinology, 11, Article 25. https://doi.org/10.3389/fendo.2020.00025
|
[28]
|
Larraufie, P., Martin-Gallausiaux, C., Lapaque, N., Dore, J., Gribble, F.M., Reimann, F., et al. (2018) SCFAs Strongly Stimulate PYY Production in Human Enteroendocrine Cells. Scientific Reports, 8, Article No. 74. https://doi.org/10.1038/s41598-017-18259-0
|
[29]
|
Brown, A.J., Goldsworthy, S.M., Barnes, A.A., Eilert, M.M., Tcheang, L., Daniels, D., et al. (2003) The Orphan G Protein-Coupled Receptors GPR41 and GPR43 Are Activated by Propionate and Other Short Chain Carboxylic Acids. Journal of Biological Chemistry, 278, 11312-11319. https://doi.org/10.1074/jbc.m211609200
|
[30]
|
Rothhammer, V., Mascanfroni, I.D., Bunse, L., Takenaka, M.C., Kenison, J.E., Mayo, L., et al. (2016) Type I Interferons and Microbial Metabolites of Tryptophan Modulate Astrocyte Activity and Central Nervous System Inflammation via the Aryl Hydrocarbon Receptor. Nature Medicine, 22, 586-597. https://doi.org/10.1038/nm.4106
|
[31]
|
Rothhammer, V., Borucki, D.M., Tjon, E.C., Takenaka, M.C., Chao, C., Ardura-Fabregat, A., et al. (2018) Microglial Control of Astrocytes in Response to Microbial Metabolites. Nature, 557, 724-728. https://doi.org/10.1038/s41586-018-0119-x
|
[32]
|
Tan, L., Yu, J. and Tan, L. (2012) The Kynurenine Pathway in Neurodegenerative Diseases: Mechanistic and Therapeutic Considerations. Journal of the Neurological Sciences, 323, 1-8. https://doi.org/10.1016/j.jns.2012.08.005
|
[33]
|
Gulaj, E., Pawlak, K., Bien, B. and Pawlak, D. (2010) Kynurenine and Its Metabolites in Alzheimer’s Disease Patients. Advances in Medical Sciences, 55, 204-211. https://doi.org/10.2478/v10039-010-0023-6
|
[34]
|
Ruddick, J.P., Evans, A.K., Nutt, D.J., Lightman, S.L., Rook, G.A.W. and Lowry, C.A. (2006) Tryptophan Metabolism in the Central Nervous System: Medical Implications. Expert Reviews in Molecular Medicine, 8, 1-27. https://doi.org/10.1017/s1462399406000068
|
[35]
|
Ting, K.K., Brew, B.J. and Guillemin, G.J. (2009) Effect of Quinolinic Acid on Human Astrocytes Morphology and Functions: Implications in Alzheimer’s Disease. Journal of Neuroinflammation, 6, Article No. 36. https://doi.org/10.1186/1742-2094-6-36
|
[36]
|
Li, W., Setzu, A., Zhao, C. and Franklin, R.J.M. (2005) Minocycline-Mediated Inhibition of Microglia Activation Impairs Oligodendrocyte Progenitor Cell Responses and Remyelination in a Non-Immune Model of Demyelination. Journal of Neuroimmunology, 158, 58-66. https://doi.org/10.1016/j.jneuroim.2004.08.011
|
[37]
|
Widner, B., Leblhuber, F., Walli, J., Tilz, G.P., Demel, U. and Fuchs, D. (2000) Tryptophan Degradation and Immune Activation in Alzheimer’s Disease. Journal of Neural Transmission, 107, 343-353. https://doi.org/10.1007/s007020050029
|
[38]
|
Tavares, R.G., Tasca, C.I., Santos, C.E.S., Alves, L.B., Porciúncula, L.O., Emanuelli, T., et al. (2002) Quinolinic Acid Stimulates Synaptosomal Glutamate Release and Inhibits Glutamate Uptake into Astrocytes. Neurochemistry International, 40, 621-627. https://doi.org/10.1016/s0197-0186(01)00133-4
|
[39]
|
Janeiro, M., Ramírez, M., Milagro, F., Martínez, J. and Solas, M. (2018) Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients, 10, Article 1398. https://doi.org/10.3390/nu10101398
|
[40]
|
Xu, R. and Wang, Q. (2016) Towards Understanding Brain-Gut-Microbiome Connections in Alzheimer’s Disease. BMC Systems Biology, 10, Article No. 63. https://doi.org/10.1186/s12918-016-0307-y
|
[41]
|
Tseng, H., Lu, Q., Henderson, E. and Graves, D.J. (1999) Phosphorylated Tau Can Promote Tubulin Assembly. Proceedings of the National Academy of Sciences, 96, 9503-9508. https://doi.org/10.1073/pnas.96.17.9503
|
[42]
|
Subramaniam, S. and Fletcher, C. (2017) Trimethylamine N‐Oxide: Breathe New Life. British Journal of Pharmacology, 175, 1344-1353. https://doi.org/10.1111/bph.13959
|
[43]
|
Yang, M., Gu, Y., Li, L., Liu, T., Song, X., Sun, Y., et al. (2021) Bile Acid-Gut Microbiota Axis in Inflammatory Bowel Disease: From Bench to Bedside. Nutrients, 13, Article 3143. https://doi.org/10.3390/nu13093143
|
[44]
|
Postler, T.S. and Ghosh, S. (2017) Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metabolism, 26, 110-130. https://doi.org/10.1016/j.cmet.2017.05.008
|
[45]
|
Sun, Y., Koyama, Y. and Shimada, S. (2022) Inflammation from Peripheral Organs to the Brain: How Does Systemic Inflammation Cause Neuroinflammation? Frontiers in Aging Neuroscience, 14, Article 903455. https://doi.org/10.3389/fnagi.2022.903455
|
[46]
|
Obermeier, B., Daneman, R. and Ransohoff, R.M. (2013) Development, Maintenance and Disruption of the Blood-Brain Barrier. Nature Medicine, 19, 1584-1596. https://doi.org/10.1038/nm.3407
|
[47]
|
Liu, Y., Tsai, Y., Tang, S., Liou, H., Kang, K., Liou, H., et al. (2018) Cytokine MIF Enhances Blood-Brain Barrier Permeability: Impact for Therapy in Ischemic Stroke. Scientific Reports, 8, Article No. 743. https://doi.org/10.1038/s41598-017-16927-9
|
[48]
|
Zhao, Y., Cong, L., Jaber, V. and Lukiw, W.J. (2017) Microbiome-derived Lipopolysaccharide Enriched in the Perinuclear Region of Alzheimer’s Disease Brain. Frontiers in Immunology, 8, Article 1064. https://doi.org/10.3389/fimmu.2017.01064
|
[49]
|
Houser, M.C. and Tansey, M.G. (2017) The Gut-Brain Axis: Is Intestinal Inflammation a Silent Driver of Parkinson’s Disease Pathogenesis? npj Parkinson’s Disease, 3, Article No. 3. https://doi.org/10.1038/s41531-016-0002-0
|
[50]
|
Calsolaro, V. and Edison, P. (2016) Neuroinflammation in Alzheimer’s Disease: Current Evidence and Future Directions. Alzheimer’s & Dementia, 12, 719-732. https://doi.org/10.1016/j.jalz.2016.02.010
|
[51]
|
Marizzoni, M., Cattaneo, A., Mirabelli, P., Festari, C., Lopizzo, N., Nicolosi, V., et al. (2020) Short-Chain Fatty Acids and Lipopolysaccharide as Mediators between Gut Dysbiosis and Amyloid Pathology in Alzheimer’s Disease. Journal of Alzheimer’s Disease, 78, 683-697. https://doi.org/10.3233/jad-200306
|
[52]
|
Serrano-Pozo, A., Muzikansky, A., Gómez-Isla, T., Growdon, J.H., Betensky, R.A., Frosch, M.P., et al. (2013) Differential Relationships of Reactive Astrocytes and Microglia to Fibrillar Amyloid Deposits in Alzheimer Disease. Journal of Neuropathology & Experimental Neurology, 72, 462-471. https://doi.org/10.1097/nen.0b013e3182933788
|
[53]
|
Li, B., He, Y., Ma, J., Huang, P., Du, J., Cao, L., et al. (2019) Mild Cognitive Impairment Has Similar Alterations as Alzheimer’s Disease in Gut Microbiota. Alzheimer’s & Dementia, 15, 1357-1366. https://doi.org/10.1016/j.jalz.2019.07.002
|
[54]
|
Zhang, B., Wang, H.E., Bai, Y., Tsai, S., Su, T., Chen, T., et al. (2020) Inflammatory Bowel Disease Is Associated with Higher Dementia Risk: A Nationwide Longitudinal Study. Gut, 70, 85-91. https://doi.org/10.1136/gutjnl-2020-320789
|
[55]
|
Kim, G.H., Lee, Y.C., Kim, T.J., Kim, E.R., Hong, S.N., Chang, D.K., et al. (2021) Risk of Neurodegenerative Diseases in Patients with Inflammatory Bowel Disease: A Nationwide Population-Based Cohort Study. Journal of Crohn’s and Colitis, 16, 436-443. https://doi.org/10.1093/ecco-jcc/jjab162
|
[56]
|
Zhang, M., Zhao, D., Zhou, G. and Li, C. (2020) Dietary Pattern, Gut Microbiota, and Alzheimer’s Disease. Journal of Agricultural and Food Chemistry, 68, 12800-12809. https://doi.org/10.1021/acs.jafc.9b08309
|
[57]
|
Valcheva, R., Koleva, P., Martínez, I., Walter, J., Gänzle, M.G. and Dieleman, L.A. (2018) Inulin-Type Fructans Improve Active Ulcerative Colitis Associated with Microbiota Changes and Increased Short-Chain Fatty Acids Levels. Gut Microbes, 10, 334-357. https://doi.org/10.1080/19490976.2018.1526583
|
[58]
|
Pluta, R., Ułamek-Kozioł, M., Januszewski, S. and Czuczwar, S.J. (2020) Gut Microbiota and Pro/Prebiotics in Alzheimer’s Disease. Aging, 12, 5539-5550. https://doi.org/10.18632/aging.102930
|
[59]
|
Fieldhouse, J.L.P., Doorduijn, A.S., de Leeuw, F.A., Verhaar, B.J.H., Koene, T., Wesselman, L.M.P., et al. (2020) A Suboptimal Diet Is Associated with Poorer Cognition: The NUDAD Project. Nutrients, 12, Article 703. https://doi.org/10.3390/nu12030703
|