[1]
|
Dolinger, M., Torres, J. and Vermeire, S. (2024) Crohn’s Disease. The Lancet, 403, 1177-1191. https://doi.org/10.1016/s0140-6736(23)02586-2
|
[2]
|
Roda, G., Chien Ng, S., Kotze, P.G., Argollo, M., Panaccione, R., Spinelli, A., et al. (2020) Crohn’s Disease. Nature Reviews Disease Primers, 6, Article No. 22. https://doi.org/10.1038/s41572-020-0156-2
|
[3]
|
Zhao, M. and Burisch, J. (2019) Impact of Genes and the Environment on the Pathogenesis and Disease Course of Inflammatory Bowel Disease. Digestive Diseases and Sciences, 64, 1759-1769. https://doi.org/10.1007/s10620-019-05648-w
|
[4]
|
Mirkov, M.U., Verstockt, B. and Cleynen, I. (2017) Genetics of Inflammatory Bowel Disease: Beyond NOD2. The Lancet Gastroenterology & Hepatology, 2, 224-234. https://doi.org/10.1016/s2468-1253(16)30111-x
|
[5]
|
Albenberg, L. (2023) The Role of Diet in Pediatric Inflammatory Bowel Disease. Gastroenterology Clinics of North America, 52, 565-577. https://doi.org/10.1016/j.gtc.2023.05.011
|
[6]
|
Elford, A.T., Ardalan, Z., Simkin, P. and Christensen, B. (2024) Comprehensive Review and Update of Stricturing Crohn’s Disease. Indian Journal of Gastroenterology, 43, 64-77. https://doi.org/10.1007/s12664-023-01508-8
|
[7]
|
Hornschuh, M., Wirthgen, E., Wolfien, M., Singh, K.P., Wolkenhauer, O. and Däbritz, J. (2021) The Role of Epigenetic Modifications for the Pathogenesis of Crohn’s Disease. Clinical Epigenetics, 13, Article No. 108. https://doi.org/10.1186/s13148-021-01089-3
|
[8]
|
Hugot, J., Chamaillard, M., Zouali, H., Lesage, S., Cézard, J., Belaiche, J., et al. (2001) Association of NOD2 Leucine-Rich Repeat Variants with Susceptibility to Crohn’s Disease. Nature, 411, 599-603. https://doi.org/10.1038/35079107
|
[9]
|
Duerr, R.H., Taylor, K.D., Brant, S.R., Rioux, J.D., Silverberg, M.S., Daly, M.J., et al. (2006) A Genome-Wide Association Study Identifies IL23R as an Inflammatory Bowel Disease Gene. Science, 314, 1461-1463. https://doi.org/10.1126/science.1135245
|
[10]
|
Vuyyuru, S.K., Shackelton, L.M., Hanzel, J., Ma, C., Jairath, V. and Feagan, B.G. (2023) Targeting IL-23 for IBD: Rationale and Progress to Date. Drugs, 83, 873-891. https://doi.org/10.1007/s40265-023-01882-9
|
[11]
|
Takač, B. (2020) Interactions among Interleukin-6, C-Reactive Protein and Interleukin-6 (-174) G/C Polymorphism in the Pathogenesis of Crohn’s Disease and Ulcerative Colitis. Acta Clinica Croatica, 59, 67-80. https://doi.org/10.20471/acc.2020.59.01.09
|
[12]
|
Strober, W. and Watanabe, T. (2011) NOD2, an Intracellular Innate Immune Sensor Involved in Host Defense and Crohn’s Disease. Mucosal Immunology, 4, 484-495. https://doi.org/10.1038/mi.2011.29
|
[13]
|
Hampe, J., Franke, A., Rosenstiel, P., Till, A., Teuber, M., Huse, K., et al. (2006) A Genome-Wide Association Scan of Nonsynonymous SNPs Identifies a Susceptibility Variant for Crohn Disease in Atg16l1. Nature Genetics, 39, 207-211. https://doi.org/10.1038/ng1954
|
[14]
|
Parkes, M., Barrett, J.C., Prescott, N.J., Tremelling, M., Anderson, C.A., Fisher, S.A., et al. (2007) Sequence Variants in the Autophagy Gene IRGM and Multiple Other Replicating Loci Contribute to Crohn’s Disease Susceptibility. Nature Genetics, 39, 830-832. https://doi.org/10.1038/ng2061
|
[15]
|
Ferguson, L.R., Huebner, C., Petermann, I., Gearry, R.B., Barclay, M.L., Demmers, P., et al. (2008) Single Nucleotide Polymorphism in the Tumor Necrosis Factor-α Gene Affects Inflammatory Bowel Diseases Risk. World Journal of Gastroenterology, 14, 4652-4661. https://doi.org/10.3748/wjg.14.4652
|
[16]
|
Glocker, E., Kotlarz, D., Boztug, K., Gertz, E.M., Schäffer, A.A., Noyan, F., et al. (2009) Inflammatory Bowel Disease and Mutations Affecting the Interleukin-10 Receptor. New England Journal of Medicine, 361, 2033-2045. https://doi.org/10.1056/nejmoa0907206
|
[17]
|
Chu, H., Khosravi, A., Kusumawardhani, I.P., Kwon, A.H.K., Vasconcelos, A.C., Cunha, L.D., et al. (2016) Gene-Microbiota Interactions Contribute to the Pathogenesis of Inflammatory Bowel Disease. Science, 352, 1116-1120. https://doi.org/10.1126/science.aad9948
|
[18]
|
Halme, L. (2006) Family and Twin Studies in Inflammatory Bowel Disease. World Journal of Gastroenterology, 12, 3668-3672. https://doi.org/10.3748/wjg.v12.i23.3668
|
[19]
|
Spehlmann, M.E., Begun, A.Z., Burghardt, J., Lepage, P., Raedler, A. and Schreiber, S. (2008) Epidemiology of Inflammatory Bowel Disease in a German Twin Cohort: Results of a Nationwide Study. Inflammatory Bowel Diseases, 14, 968-976. https://doi.org/10.1002/ibd.20380
|
[20]
|
Loddo, I. and Romano, C. (2015) Inflammatory Bowel Disease: Genetics, Epigenetics, and Pathogenesis. Frontiers in Immunology, 6, Article 551. https://doi.org/10.3389/fimmu.2015.00551
|
[21]
|
Ventham, N.T., Kennedy, N.A., Nimmo, E.R. and Satsangi, J. (2013) Beyond Gene Discovery in Inflammatory Bowel Disease: The Emerging Role of Epigenetics. Gastroenterology, 145, 293-308. https://doi.org/10.1053/j.gastro.2013.05.050
|
[22]
|
Hou, J.K., Abraham, B. and El-Serag, H. (2011) Dietary Intake and Risk of Developing Inflammatory Bowel Disease: A Systematic Review of the Literature. American Journal of Gastroenterology, 106, 563-573. https://doi.org/10.1038/ajg.2011.44
|
[23]
|
Kostic, A.D., Xavier, R.J. and Gevers, D. (2014) The Microbiome in Inflammatory Bowel Disease: Current Status and the Future Ahead. Gastroenterology, 146, 1489-1499. https://doi.org/10.1053/j.gastro.2014.02.009
|
[24]
|
Desai, M.S., Seekatz, A.M., Koropatkin, N.M., Kamada, N., Hickey, C.A., Wolter, M., et al. (2016) A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell, 167, 1339-1353.e21. https://doi.org/10.1016/j.cell.2016.10.043
|
[25]
|
Jantchou, P., Morois, S., Clavel-Chapelon, F., Boutron-Ruault, M. and Carbonnel, F. (2010) Animal Protein Intake and Risk of Inflammatory Bowel Disease: The E3N Prospective Study. American Journal of Gastroenterology, 105, 2195-2201. https://doi.org/10.1038/ajg.2010.192
|
[26]
|
Qin, X. (2012) Etiology of Inflammatory Bowel Disease: A Unified Hypothesis. World Journal of Gastroenterology, 18, 1708-1722. https://doi.org/10.3748/wjg.v18.i15.1708
|
[27]
|
Levine, A., Wine, E., Assa, A., Sigall Boneh, R., Shaoul, R., Kori, M., et al. (2019) Crohn’s Disease Exclusion Diet Plus Partial Enteral Nutrition Induces Sustained Remission in a Randomized Controlled Trial. Gastroenterology, 157, 440-450.e8. https://doi.org/10.1053/j.gastro.2019.04.021
|
[28]
|
Xu, D., Peng, Z., Li, Y., Hou, Q., Peng, Y. and Liu, X. (2023) Progress and Clinical Applications of Crohn’s Disease Exclusion Diet in Crohn’s Disease. Gut and Liver, 18, 404-413. https://doi.org/10.5009/gnl230093
|
[29]
|
Pedersen, K.M., Çolak, Y., Vedel-Krogh, S., Kobylecki, C.J., Bojesen, S.E. and Nordestgaard, B.G. (2021) Risk of Ulcerative Colitis and Crohn’s Disease in Smokers Lacks Causal Evidence. European Journal of Epidemiology, 37, 735-745. https://doi.org/10.1007/s10654-021-00763-3
|
[30]
|
Mahid, S.S., Minor, K.S., Soto, R.E., Hornung, C.A. and Galandiuk, S. (2006) Smoking and Inflammatory Bowel Disease: A Meta-analysis. Mayo Clinic Proceedings, 81, 1462-1471. https://doi.org/10.4065/81.11.1462
|
[31]
|
Allais, L., Verschuere, S., Maes, T., De Smet, R., Devriese, S., Gonzales, G.B., et al. (2020) Translational Research into the Effects of Cigarette Smoke on Inflammatory Mediators and Epithelial TRPV1 in Crohn’s Disease. PLOS ONE, 15, e0236657. https://doi.org/10.1371/journal.pone.0236657
|
[32]
|
Berkowitz, L., Schultz, B.M., Salazar, G.A., Pardo-Roa, C., Sebastián, V.P., Álvarez-Lobos, M.M., et al. (2018) Impact of Cigarette Smoking on the Gastrointestinal Tract Inflammation: Opposing Effects in Crohn’s Disease and Ulcerative Colitis. Frontiers in Immunology, 9, Article 74. https://doi.org/10.3389/fimmu.2018.00074
|
[33]
|
To, N., Gracie, D.J. and Ford, A.C. (2016) Systematic Review with Meta‐Analysis: The Adverse Effects of Tobacco Smoking on the Natural History of Crohn’s Disease. Alimentary Pharmacology & Therapeutics, 43, 549-561. https://doi.org/10.1111/apt.13511
|
[34]
|
Wang, X., Wu, J., Wang, Q., et al. (2016) Association between Physical Activity and Inflammatory Bowel Disease Risk: A Meta-Analysis. Digestive and Liver Disease, 48, 1425-1431.
|
[35]
|
Rahmani, J., Kord‐Varkaneh, H., Hekmatdoost, A., Thompson, J., Clark, C., Salehisahlabadi, A., et al. (2019) Body Mass Index and Risk of Inflammatory Bowel Disease: A Systematic Review and Dose‐Response Meta‐Analysis of Cohort Studies of over a Million Participants. Obesity Reviews, 20, 1312-1320. https://doi.org/10.1111/obr.12875
|
[36]
|
Ananthakrishnan, A.N., Long, M.D., Martin, C.F., Sandler, R.S. and Kappelman, M.D. (2013) Sleep Disturbance and Risk of Active Disease in Patients with Crohn’s Disease and Ulcerative Colitis. Clinical Gastroenterology and Hepatology, 11, 965-971. https://doi.org/10.1016/j.cgh.2013.01.021
|
[37]
|
Shephard, R. (2016) The Case for Increased Physical Activity in Chronic Inflammatory Bowel Disease: A Brief Review. International Journal of Sports Medicine, 37, 505-515. https://doi.org/10.1055/s-0042-103157
|
[38]
|
Ananthakrishnan, A.N., McGinley, E.L., Binion, D.G. and Saeian, K. (2011) Ambient Air Pollution Correlates with Hospitalizations for Inflammatory Bowel Disease: An Ecologic Analysis. Inflammatory Bowel Diseases, 17, 1138-1145. https://doi.org/10.1002/ibd.21455
|
[39]
|
Ananthakrishnan, A.N. (2014) Environmental Risk Factors for Inflammatory Bowel Diseases: A Review. Digestive Diseases and Sciences, 60, 290-298. https://doi.org/10.1007/s10620-014-3350-9
|
[40]
|
Shaw, S.Y., Blanchard, J.F. and Bernstein, C.N. (2010) Association between the Use of Antibiotics in the First Year of Life and Pediatric Inflammatory Bowel Disease. American Journal of Gastroenterology, 105, 2687-2692. https://doi.org/10.1038/ajg.2010.398
|
[41]
|
Geremia, A., Biancheri, P., Allan, P., Corazza, G.R. and Di Sabatino, A. (2014) Innate and Adaptive Immunity in Inflammatory Bowel Disease. Autoimmunity Reviews, 13, 3-10. https://doi.org/10.1016/j.autrev.2013.06.004
|
[42]
|
Smith, A.M., Rahman, F.Z., Hayee, B., Graham, S.J., Marks, D.J.B., Sewell, G.W., et al. (2009) Disordered Macrophage Cytokine Secretion Underlies Impaired Acute Inflammation and Bacterial Clearance in Crohn’s Disease. Journal of Experimental Medicine, 206, 1883-1897. https://doi.org/10.1084/jem.20091233
|
[43]
|
Liu, J.Z., van Sommeren, S., Huang, H., Ng, S.C., Alberts, R., Takahashi, A., et al. (2015) Association Analyses Identify 38 Susceptibility Loci for Inflammatory Bowel Disease and Highlight Shared Genetic Risk across Populations. Nature Genetics, 47, 979-986.
|
[44]
|
Sakuraba, A., Sato, T., Kamada, N., Kitazume, M., Sugita, A. and Hibi, T. (2009) Th1/Th17 Immune Response Is Induced by Mesenteric Lymph Node Dendritic Cells in Crohn’s Disease. Gastroenterology, 137, 1736-1745. https://doi.org/10.1053/j.gastro.2009.07.049
|
[45]
|
Maul, J., Loddenkemper, C., Mundt, P., Berg, E., Giese, T., Stallmach, A., et al. (2005) Peripheral and Intestinal Regulatory CD4+CD25high T Cells in Inflammatory Bowel Disease. Gastroenterology, 128, 1868-1878. https://doi.org/10.1053/j.gastro.2005.03.043
|
[46]
|
Strober, W. and Fuss, I.J. (2011) Proinflammatory Cytokines in the Pathogenesis of Inflammatory Bowel Diseases. Gastroenterology, 140, 1756-1767.e1. https://doi.org/10.1053/j.gastro.2011.02.016
|
[47]
|
Hovhannisyan, Z., Treatman, J., Littman, D.R. and Mayer, L. (2011) Characterization of Interleukin-17-Producing Regulatory T Cells in Inflamed Intestinal Mucosa from Patients with Inflammatory Bowel Diseases. Gastroenterology, 140, 957-965. https://doi.org/10.1053/j.gastro.2010.12.002
|
[48]
|
Neurath, M.F. (2014) Cytokines in Inflammatory Bowel Disease. Nature Reviews Immunology, 14, 329-342. https://doi.org/10.1038/nri3661
|
[49]
|
Noti, M., Corazza, N., Mueller, C., Berger, B. and Brunner, T. (2010) TNF Suppresses Acute Intestinal Inflammation by Inducing Local Glucocorticoid Synthesis. Journal of Experimental Medicine, 207, 1057-1066. https://doi.org/10.1084/jem.20090849
|
[50]
|
Mitsuyama, K. (2016) Antibody Markers in the Diagnosis of Inflammatory Bowel Disease. World Journal of Gastroenterology, 22, 1304. https://doi.org/10.3748/wjg.v22.i3.1304
|
[51]
|
Brakenhoff, L.K.P.M., van der Heijde, D.M., Hommes, D.W., Huizinga, T.W.J. and Fidder, H.H. (2010) The Joint-Gut Axis in Inflammatory Bowel Diseases. Journal of Crohn’s and Colitis, 4, 257-268. https://doi.org/10.1016/j.crohns.2009.11.005
|
[52]
|
Rosenblum, M.D., Remedios, K.A. and Abbas, A.K. (2015) Mechanisms of Human Autoimmunity. Journal of Clinical Investigation, 125, 2228-2233. https://doi.org/10.1172/jci78088
|
[53]
|
Ni, J., Wu, G.D., Albenberg, L. and Tomov, V.T. (2017) Gut Microbiota and IBD: Causation or Correlation? Nature Reviews Gastroenterology & Hepatology, 14, 573-584. https://doi.org/10.1038/nrgastro.2017.88
|
[54]
|
Baumgart, D.C. and Carding, S.R. (2007) Inflammatory Bowel Disease: Cause and Immunobiology. The Lancet, 369, 1627-1640. https://doi.org/10.1016/s0140-6736(07)60750-8
|
[55]
|
Peck, B.C.E., Weiser, M., Lee, S.E., Gipson, G.R., Iyer, V.B., Sartor, R.B., et al. (2015) MicroRNAs Classify Different Disease Behavior Phenotypes of Crohnʼs Disease and May Have Prognostic Utility. Inflammatory Bowel Diseases, 21, 2178-2187. https://doi.org/10.1097/mib.0000000000000478
|
[56]
|
Polytarchou, C., Oikonomopoulos, A., Mahurkar, S., Touroutoglou, A., Koukos, G., Hommes, D.W., et al. (2015) Assessment of Circulating MicroRNAs for the Diagnosis and Disease Activity Evaluation in Patients with Ulcerative Colitis by Using the Nanostring Technology. Inflammatory Bowel Diseases, 21, 2533-2539. https://doi.org/10.1097/mib.0000000000000547
|
[57]
|
Sands, B.E. (2015) Biomarkers of Inflammation in Inflammatory Bowel Disease. Gastroenterology, 149, 1275-1285.e2. https://doi.org/10.1053/j.gastro.2015.07.003
|
[58]
|
Gecse, K.B., Brandse, J.F., van Wilpe, S., Löwenberg, M., Ponsioen, C., van den Brink, G., et al. (2015) Impact of Disease Location on Fecal Calprotectin Levels in Crohn’s Disease. Scandinavian Journal of Gastroenterology, 50, 841-847. https://doi.org/10.3109/00365521.2015.1008035
|
[59]
|
Jameson, J.L. and Longo, D.L. (2015) Precision Medicine—Personalized, Problematic, and Promising. New England Journal of Medicine, 372, 2229-2234. https://doi.org/10.1056/nejmsb1503104
|
[60]
|
Weiser, M., Simon, J.M., Kochar, B., Tovar, A., Israel, J.W., Robinson, A., et al. (2016) Molecular Classification of Crohn’s Disease Reveals Two Clinically Relevant Subtypes. Gut, 67, 36-42. https://doi.org/10.1136/gutjnl-2016-312518
|
[61]
|
Marigorta, U.M., Denson, L.A., Hyams, J.S., Mondal, K., Prince, J., Walters, T.D., et al. (2017) Transcriptional Risk Scores Link GWAS to EQTLS and Predict Complications in Crohn’s Disease. Nature Genetics, 49, 1517-1521. https://doi.org/10.1038/ng.3936
|
[62]
|
Walker, G.J., Harrison, J.W., Heap, G.A., Voskuil, M.D., Andersen, V., Anderson, C.A., et al. (2019) Association of Genetic Variants in NUDT15 with Thiopurine-Induced Myelosuppression in Patients with Inflammatory Bowel Disease. JAMA, 321, 773-785. https://doi.org/10.1001/jama.2019.0709
|
[63]
|
Mignini, I., Maresca, R., Ainora, M.E., Larosa, L., Scaldaferri, F., Gasbarrini, A., et al. (2023) Predicting Treatment Response in Inflammatory Bowel Diseases: Cross-Sectional Imaging Markers. Journal of Clinical Medicine, 12, Article 5933. https://doi.org/10.3390/jcm12185933
|
[64]
|
Tamura, H. (2023) Iga Nephropathy Associated with Crohn’s Disease. World Journal of Methodology, 13, 67-78. https://doi.org/10.5662/wjm.v13.i3.67
|
[65]
|
Sokol, H., Landman, C., Seksik, P., Berard, L., Montil, M., Nion-Larmurier, I., et al. (2020) Fecal Microbiota Transplantation to Maintain Remission in Crohn’s Disease: A Pilot Randomized Controlled Study. Microbiome, 8, Article No. 12. https://doi.org/10.1186/s40168-020-0792-5
|