临床下癫痫样放电在儿童神经发育障碍中的研究进展
Research Progress of Subclinical Epileptiform Discharges in Childhood Neurodevelopmental Disorders
摘要: 临床下癫痫样放电(Subclinical Epileptiform Discharges, SEDs)本质是皮层兴奋–抑制网络失衡的神经电生理标志。研究表明,SEDs与高级皮层功能损害(如认知、语言及社交功能缺陷)密切相关。在神经发育障碍(Neurodevelopmental Disorders, NDDs)中,SEDs的检出率显著升高,且与疾病严重程度及远期癫痫转化风险有关,提示其可能作为NDDs共性病理表型和潜在治疗靶点。本文系统性综述:1) SEDs的多层级发生机制;2) SEDs与NDDs的双向关联;3) 抗癫痫药物对NDDs合并SEDs患儿的神经发育改善效应和局限性。以期加深对NDDs合并SEDs的认识以及为未来精准诊疗提供思路。
Abstract: Subclinical Epileptiform Discharges (SEDs) are essentially neurophysiological markers of the imbalance in the cortical excitation-inhibition network. Studies have shown that SEDs are closely associated with impairments in higher cortical functions, such as cognitive, language, and social deficits. The detection rate of SEDs in Neurodevelopmental Disorders (NDDs) is significantly higher and is associated with disease severity and long-term risk of epilepsy transformation, suggesting that SEDs may serve as a common pathological phenotype and potential therapeutic target for NDDs. This paper systematically reviews: 1) The multilevel mechanisms underlying SEDs; 2) The bidirectional relationship between SEDs and NDDs; 3) The neurodevelopmental improvement effects and limitations of antiepileptic drugs in children with NDDs and SEDs. The aim is to deepen the understanding of SEDs in the context of NDDs and provide insights for future precision diagnosis and treatment.
文章引用:叶鹏, 肖农. 临床下癫痫样放电在儿童神经发育障碍中的研究进展[J]. 临床医学进展, 2025, 15(3): 921-928. https://doi.org/10.12677/acm.2025.153695

1. 引言

神经发育障碍(Neurodevelopmental disorders, NDDs)是一组在发育时期,由遗传和环境因素综合作用引起的慢性发育性脑功能障碍性疾病,表现为语言、学习、运动及社交等多种功能发育缺陷,包括注意缺陷多动障碍(attention deficit hyperactivity disorder, ADHD)、孤独症谱系障碍(autism spectrum disorder, ASD)、特定的学习障碍以及智力障碍/全面性发育迟缓等。目前对NDDs的干预以康复训练为主,辅以精神类药物(如哌甲酯、利培酮)对症治疗,但缺乏针对病因的生物学干预靶点且疗效高度异质性[1]。寻找NDDs相关生物标志物以及药物干预靶点是当前发展精准医疗的重点。

癫痫作为神经发育障碍(NDDs)的高频共患病(共病率约15%~30%),可能与NDDs共享遗传–环境交互作用下的病理生理机制:包括突触修剪异常、兴奋/抑制神经递质失衡及神经网络改变[2]。癫痫的核心特征—神经元异常同步放电,在无临床发作期亦可表现为脑电图(EEG)上的痫性放电(棘波、尖波或棘慢复合波),即临床下癫痫样放电(Subclinical Epileptiform Discharges, SEDs)。SEDs不仅是癫痫发作间期(interictal)的电生理标志,亦广泛存在于无癫痫史的神经退行性疾病(如阿尔茨海默病,其SEDs检出率22%~54% [3])及NDDs患者中[4],在一些文献中被称为孤立性(isolated)癫痫样放电,SEDs在这些疾病中与病情进展、癫痫转化风险具有相关性,提示其可能作为跨疾病脑网络失稳态的共性病理表型。基于此假说,有学者提出SEDs可能是NDDs儿童潜在的神经发育风险标志物和治疗靶点,抑制SEDs可能改善部分NDDs患儿的神经发育结局[5] [6]。下面对SEDs的病理生理机制、与NDDs的关系、抗癫痫药物治疗SEDs的循证进展进行综述。

2. SEDs与认知损害概述

癫痫患者的认知缺陷是病因(如离子通道病)、发作本身(神经损伤)、SEDs和抗癫痫药物(antiepileptic drug, AED)神经毒性共同作用的结果,癫痫研究表明SEDs对认知功能有独立的影响效应[5]。SEDs能够干扰正在进行的认知过程,造成短暂的脑功能障碍。Aarts等人使用短暂认知障碍(Transient Cognitive Impairment, TCI)来描述检测到发作间期棘慢波爆发时反应和语言、操作的准确性下降的现象,约50%存在SEDs的受试者表现出TCI,SEDs持续3 s时尤为明显[7]。在空间上来说,SEDs的效应与相应脑区的功能有关。优势半球侧的SEDs似乎更容易影响语言功能,特定任务可以激活或抑制介导相关认知活动的大脑区域的局灶性放电[8]。基于海马SEDs动物模型的电生理–行为学研究表明,SEDs干扰海马CA1、CA3区γ振荡耦合(记忆检索的核心环节),导致短期记忆检索能力显著下降,而记忆编码和储存功能因前额叶皮层代偿性执行而得以保留[9]。SEDs影响并不局限,还具有远程抑制效应,即通过神经网络抑制放电区域外的皮层活动[10]

频繁的TCI对整体认知功能的影响具有累积效应,应特别注意儿童时期SEDs对脑发育的影响[3]。一些儿童癫痫综合征,如慢波睡眠期间持续性棘慢波综合征(continuous spike-wave during slow wave sleep syndrome, CSWS)、Landau-Kleffner综合征,以睡眠期频繁的SEDs为特征,可导致显著的语言障碍、学习困难等发育问题而少有临床发作,其对认知能力的影响取决于SEDs的频率、持续时间和位置,即使脑电图改善,仍然有部分患者遗留长期或终生的认知缺陷[11]。动物实验也证明了脑发育早期SEDs与NDDs的关联。幼鼠前额叶SEDs模型表明,生命早期的SEDs与成年后的注意力减退和社交功能缺陷有关,即使在SEDs消退后这些功能障碍依然存在[12]。Khan等发现新生儿期广泛的持续性棘波放电可导致成年后显著的空间认知障碍,而与癫痫进展无直接联系[13]

3. SEDs的病理生理机制

3.1. SEDs的产生背景

在神经网络的稳态调控中,兴奋性(谷氨酸能)与抑制性(GABA能)神经元的兴奋–抑制(Excitation/Inhibition Balance, E/I)平衡是维持信息处理精度与网络稳定性的核心机制[14]。SEDs是皮质过度兴奋的标志,通过不同方法能够在离体脑片或动物模型中复现SEDs,揭示其多维度发生机制:① 增强兴奋性信号:升高外源性谷氨酸浓度、AMPA/NMDA受体激动剂局部灌注;② 抑制性突触削弱:GABA_A受体拮抗剂或GABA再摄取抑制剂干预;③ 胶质细胞–神经元交互异常:激活星形胶质细胞谷氨酸释放通路;④ 离子通道功能障碍:选择性阻断电压门控钾通道或增强钠通道持续性电流(如SCN2A突变模型)。一种或多种机制导致E/I平衡向兴奋性偏移,形成自维持的异常放电环路[15]

发作间期棘波爆发期间,神经元膜电位在高压下(100~200 mv)迅速、阵发性去极化,表现为脑电图中的棘(尖)波,随后GABA能神经元输入抑制电流,使兴奋细胞超极化(即为慢波)限制SEDs持续和扩散,也暂时抑制了区域皮层的活动。与此对应的,TCI恰好在棘(尖)波出现前发生,在慢波消失后随即结束,并且在慢波期间表现更明显[16]

3.2. 神经兴奋性毒性

SEDs反映了皮层过度兴奋,兴奋性受体过度激活可导致神经元细胞死亡,即神经兴奋性毒性。由离子型谷氨酸受体(iGluRs)介导的神经兴奋性毒性是癫痫、获得性脑损伤、神经退行性疾病和NDDs的重要机制[17]。iGluRs是一种配体门控通道,包括N-甲基-D-天冬氨酸(NMDA)受体、α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体和海人酸受体(KARs),iGluRs调控Ca2+进入细胞,参与细胞内重要生化活动。长期的SEDs可导致神经元iGluRs过度激活,允许大量Ca2+内流形成钙超载,在离子失衡、氧化应激、线粒体功能障碍的共同作用下,引起细胞损伤甚至死亡[17]

3.3. 重塑神经网络

大脑在不同功能状态时存在多层面及不同等级的结构和功能性联系,即神经网络,网络内部兴奋–抑制信号的平衡是网络正常工作的基础。神经网络损伤是多种神经精神疾病(如癫痫、NDDs、AD)的基本特征。癫痫网络最显著的特点是过度联系,局部的抑制性神经纤维芽生限制癫痫活动扩散,同时也减弱了癫痫区域和其他区域网络的连接。脑网络改变是癫痫患者共患NDDs的重要原因[18]

越来越多的证据表明,SEDs与神经网络损伤存在时空上的密切联系,脑网络改变既是SEDs发生的结构基础,又是SEDs作用的结果。海马内的SEDs可扰乱睡眠期间海马–皮层网络中的神经元同步振荡,影响记忆过程[19]。Ibrahim等人对癫痫患者的脑磁图数据进行时频分析发现,SEDs能够破坏儿童静息态网络之间的功能连接、扰乱大脑的“小世界属性”,网络拓扑结构的变化幅度越大,SEDs对认知功能的损害越显著。他们还发现脑网络的大规模紊乱在SEDs前就已发生[20]。默认模式网络(DMN)尤其易受SEDs影响,DMN是大脑的静息态网络之一,在任务相关的认知操作期间被抑制,在静息状态活跃,DMN在认知、情感活动和自我意识中发挥重要作用。SEDs能够选择性地抑制DMN区域内的γ振荡,降低DMN内关键节点神经元的代谢水平,造成DMN相关的认知损伤[21]。对ASD儿童脑网络的图论分析发现,相比于无SEDs患者,存在孤立性SEDs的脑网络中θ波平均聚类系数(C)显著升高,升高的C值与症状的严重程度正相关,这种改变与癫痫脑网络的特征相似[22]

3.4. 影响睡眠结构和记忆巩固

在癫痫和非癫痫人群中,SEDs与睡眠周期存在密切联系。NREM时期海马、丘脑、皮层神经元的同步振荡可能是激活SEDs的潜在机制。相比于清醒期,非快速眼动睡眠(NREM)期的SEDs频率更高、分布范围更广[18]。癫痫患者NREM期SEDs的频率与发作易感性有关;而快速眼动睡眠(REM)期脑电活动去同步化,对SEDs和癫痫发作具有强抑制作用。SEDs与睡眠周期的密切联系强调了其不良本性[23]

NREM期是记忆巩固的主要时期,记忆巩固的本质是储存于海马中新编码的情景记忆被逐渐转化整合为皮质中长期储存的语义记忆。这种海马–皮层网络内的信息传递的依赖于慢波睡眠时期(SWS) 3种内源性节律的精确相位耦合,即来自新皮质的慢振荡(slow oscillation)、源于丘脑的纺锤波(spindles)和海马网络中伴随记忆重放的涟漪(ripples)。慢振荡–纺锤波–涟漪的耦合使大脑皮层与海马神经元活动保持精确联系,是记忆巩固的基础[24]。在癫痫动物模型中观察到海马SEDs能够拮抗生理性涟漪,将异常信号引入网络中,诱导皮层进入沉默状态(down stage),形成病理性的SEDs-纺锤波耦合,破坏海马–皮层网络的信息整合,进而损害记忆巩固[19]

3.5. 干扰突触修剪和突触可塑性表达

在神经发育过程中,突触可塑性通过长时程增强和长时程抑制决定突触命运,突触修剪消除冗余连接,提高神经网络效率。脑发育早期,神经元的轴突不断延伸,与靶神经元形成大量突触联系,同步放电是神经元相互连接的必要条件。突触修剪主要发生在慢波睡眠期,儿童睡眠期持续的SEDs会诱导神经元之间形成异常联系,持续的兴奋信号干扰正常的突触修剪,在发育的关键时期形成病态冗余的神经网络[11]。在睡眠期癫痫性电持续状态患儿脑代谢地形图中观察到的睡眠期皮层高代谢特征,可能就与过度的突触活动有关[25]。SEDs反复激活NMDA受体的过程中,可能导致细胞内钙离子浓度持续升高,激活钙依赖性酶(如钙调蛋白激酶II,CaMKII),进而影响突触可塑性[26]。突触修剪与突触可塑性在神经发育关键窗口期(如婴幼儿至青少年阶段)高度活跃,若此期间受病理因素(如SEDs)干扰,即使后期病理状态缓解,其对神经环路的异常重塑仍可导致不可逆的认知、行为或社交功能缺陷。

4. NDDs合并SEDs的临床研究

4.1. ADHD

ADHD是一种常见的NDDs,特征是与发育水平不匹配的注意缺陷和(或)多动及冲动行为。ADHD多起病于儿童期,可持续到成年,预后与早期治疗效果有关。ADHD的发病机制受遗传、社会环境等多种因素的影响,与神经递质(如多巴胺及去甲肾上腺素系统功能低下)、脑结构(如前额叶皮层发育不良)、神经网络异常(如DMN功能减弱)的异常有关[27]。SEDs可能通过短期的TCI效应,以及对神经递质活动和神经网络的影响,参与ADHD的病理生理过程。

ADHD影响全球5%的未成年人和2.5%的成年人[27],在癫痫儿童中的患病率更高。一项对75名新诊癫痫儿童的研究发现,ADHD的患病率为31%,而对照组为6%,行为问题在癫痫发生前即存在[28]。以发作间期棘波为特征的伴中央颞区棘波的自限性癫痫患儿中,ADHD的患病率为30%~50%,一些研究报告患者更严重的行为问题与SEDs数量正相关[29]。ADHD儿童中SEDs的发生率在16%~35%之间[4]。Lee等人回顾了180名ADHD儿童的脑电图结果,16.1%的患者存在SEDs,其中16.7%随后出现新发癫痫,而EEG正常的患儿均未发病[30]。对517例ADHD儿童的脑电图研究发现,有SEDs的儿童中注意力不集中亚型比例更高[31]。Mahmoud等人报告了类似发现,SEDs与起病年龄小、注意力不集中亚型和智力障碍显著相关,而这些特征不受癫痫发作本身的影响[32]

在一项双盲、随机分组、安慰剂对照的临床试验中,使用钙通道抑制剂左乙拉西坦能有效抑制ADHD儿童睡眠期的痫性放电(包括癫痫和非癫痫人群),并减轻ADHD症状[33]。Kanemura等人使用丙戊酸治疗13名伴有孤立性SEDs的ADHD患儿,8/13的受试者的痫性放电减少,并且与行为改善高度相关[34]。但目前使用抗癫痫药物治疗ADHD的研究普遍存在样本量少、缺乏对照、随访时间短的问题,尚不能确定抑制痫性放电对改善ADHD症状的有效性。

4.2. 孤独症谱系障碍(ASD)

ASD是一组起病于儿童早期、临床表现高异质性的NDDs,以社会交往与交流障碍、刻板行为和兴趣狭隘为核心特征。ASD发病机制复杂,涉及遗传学、表观遗传学和环境因素的作用,这些因素干扰神经发育的各个阶段,如神经发生、轴突导向、突触形成[35]。一些学者认为皮层过度兴奋是ASD的基本神经生物学特征,该假说得到了表观遗传学和解剖学证据的支持[36]。ASD的脑网络研究发现,ASD的核心症状与执行任务、行为抑制相关的网络功能缺陷有关,并伴有跨网络连接的大规模减弱甚至断开[35]。有研究指出,SEDs是ASD儿童脑网络拓扑结构变化的重要因素[22]

既往研究表明,约20%~60%的ASD患者存在SEDs,使用睡眠期脑电图的研究普遍报告了更高的比例[4]。几项研究表明,SEDs可能与ASD的严重程度有关[37]。Hrdlicka等人发现ASD儿童早期的发育迟缓与SEDs显著相关[38]。Nicotera等人对69名ASD患者进行较为全面的神经心理测试,有SEDs的ASD患者更容易出现ADHD、攻击行为、自残行为、智力障碍和语言障碍[39]。Kawasaki发现158例ASD患者中有60.8%存在阵发性SEDs,其中39%后来发展为癫痫[40]。Hara等学者通过一项为期10年的纵向队列研究(n = 130 ASD儿童)发现,68%的后续确诊癫痫的患儿在首次癫痫发作前已检测到SEDs [41]。在Kanemura等人的研究中,52%的ASD儿童存在SEDs,其中29%在随访期内发展为癫痫,与其他脑区相比,额区异常放电与癫痫发生的相关性更高[42]。一项研究对72名无癫痫史的ASD儿童进行了2年随访,发现合并SEDs的儿童(n = 30, 42%)表现出更严重的自闭症、社交障碍和行为问题,并且癫痫发生率较无SEDs组显著升高(20% vs 3%, p = 0.032) [43]。以上研究提示SEDs可作为ASD患儿神经发育风险分层及癫痫预警的敏感电生理标志物。

在一项研究中,176存在SEDs的ASD患者接受了丙戊酸治疗。在脑电图随访中(平均10个月后),46.6%的患者脑电图恢复正常,17%的出现改善,但缺乏ASD症状的数据[44]。一项小样本研究使用双丙戊酸钠治疗ASD,观察到脑电图和核心症状改善[45]。Jiang等人在一项双盲、随机分组、安慰剂对照试验中使用左乙拉西坦作为伴有SEDs的ASD儿童的辅助治疗,相比于安慰剂对照组,左乙拉西坦使痫性放电显著减少并改善了ASD症状[46]。一些临床试验显示AED对ASD患者症状改善有限,但未基于EEG筛选SEDs亚组,可能遗漏潜在获益人群[47]

5. 总结与展望

我国神经发育障碍(NDDs)儿童群体基数庞大,其长期照护需求对家庭和社会经济构成严峻挑战。尽管NDDs的病理机制尚未完全阐明,但近年来研究提示,针对SEDs的干预可能为NDDs管理提供新思路。新一代抗癫痫药物(如左乙拉西坦、拉考沙胺)在控制癫痫发作的同时显著减少认知功能损害,已展现出对NDDs合并SEDs患儿的潜在治疗价值,现有证据表明,抑制SEDs可能改善部分NDDs患儿的神经发育结局。然而,NDDs人群SEDs的神经生物学机制仍不明确,且AED用于NDDs的疗效与安全性缺乏高质量循证支持,尤其是针对不同临床亚型(如脑电图特征、特定基因变异)的个体化用药策略亟待探索。基于上述挑战,未来研究可聚焦以下方向:1) 机制解析:结合多模态脑电图(EEG-fMRI-基因测序)明确SEDs在NDDs中的神经环路靶点;2) 精准分层:建立以EEG为核心的NDDs亚型分类体系,筛选可能从AEDs治疗中获益的SEDs阳性人群;3) 临床验证:设计多中心随机对照试验(RCT),评估抑制SEDs对NDDs核心症状(如语言、社交功能)的改善效应及长期神经发育结局影响。

参考文献

[1] 朱红敏, 袁纯辉, 刘智胜. 儿童神经发育障碍疾病研究进展[J]. 中国当代儿科杂志, 2023, 25(1): 91-97.
[2] Nordin, V., Olsson, I.B. and Tomson, T. (2018) Epilepsy and Comorbid Neurodevelopmental Disorders. Lakartidningen, 115, E47E.
[3] Csernus, E.A., Werber, T., Kamondi, A. and Horvath, A.A. (2022) The Significance of Subclinical Epileptiform Activity in Alzheimer’s Disease: A Review. Frontiers in Neurology, 13, Article ID: 856500.
https://doi.org/10.3389/fneur.2022.856500
[4] Swatzyna, R.J., Arns, M., Tarnow, J.D., Turner, R.P., Barr, E., MacInerney, E.K., et al. (2020) Isolated Epileptiform Activity in Children and Adolescents: Prevalence, Relevance, and Implications for Treatment. European Child & Adolescent Psychiatry, 31, 545-552.
https://doi.org/10.1007/s00787-020-01597-2
[5] Holmes, G.L. (2016) Effect of Seizures on the Developing Brain and Cognition. Seminars in Pediatric Neurology, 23, 120-126.
https://doi.org/10.1016/j.spen.2016.05.001
[6] Horvath, A.A., Csernus, E.A., Lality, S., Kaminski, R.M. and Kamondi, A. (2020) Inhibiting Epileptiform Activity in Cognitive Disorders: Possibilities for a Novel Therapeutic Approach. Frontiers in Neuroscience, 14, Article ID: 557416.
https://doi.org/10.3389/fnins.2020.557416
[7] Binnie, C.D. (2003) Cognitive Impairment during Epileptiform Discharges: Is It Ever Justifiable to Treat the EEG? The Lancet Neurology, 2, 725-730.
https://doi.org/10.1016/s1474-4422(03)00584-2
[8] Aarts, J.H.P., Binnie, C.D., Smit, A.M. and Wilkins, A.J. (1984) Selective Cognitive Impairment during Focal and Generalized Epileptiform EEG Activity. Brain, 107, 293-308.
https://doi.org/10.1093/brain/107.1.293
[9] Kleen, J.K., Scott, R.C., Holmes, G.L. and Lenck‐Santini, P.P. (2010) Hippocampal Interictal Spikes Disrupt Cognition in Rats. Annals of Neurology, 67, 250-257.
https://doi.org/10.1002/ana.21896
[10] Federico, P., Archer, J.S., Abbott, D.F. and Jackson, G.D. (2005) Cortical/Subcortical BOLD Changes Associated with Epileptic Discharges. Neurology, 64, 1125-1130.
https://doi.org/10.1212/01.wnl.0000156358.72670.ad
[11] Overvliet, G.M., Besseling, R.M.H., Vles, J.S.H., Hofman, P.A.M., Backes, W.H., van Hall, M.H.J.A., et al. (2010) Nocturnal Epileptiform EEG Discharges, Nocturnal Epileptic Seizures, and Language Impairments in Children: Review of the Literature. Epilepsy & Behavior, 19, 550-558.
https://doi.org/10.1016/j.yebeh.2010.09.015
[12] Hernan, A.E., Alexander, A., Jenks, K.R., Barry, J., Lenck-Santini, P., Isaeva, E., et al. (2014) Focal Epileptiform Activity in the Prefrontal Cortex Is Associated with Long-Term Attention and Sociability Deficits. Neurobiology of Disease, 63, 25-34.
https://doi.org/10.1016/j.nbd.2013.11.012
[13] Khan, O.I., Zhao, Q., Miller, F. and Holmes, G.L. (2010) Interictal Spikes in Developing Rats Cause Long-Standing Cognitive Deficits. Neurobiology of Disease, 39, 362-371.
https://doi.org/10.1016/j.nbd.2010.05.002
[14] Sengupta, B., Laughlin, S.B. and Niven, J.E. (2013) Balanced Excitatory and Inhibitory Synaptic Currents Promote Efficient Coding and Metabolic Efficiency. PLOS Computational Biology, 9, e1003263.
https://doi.org/10.1371/journal.pcbi.1003263
[15] Guida, M., Iudice, A., Bonanni, E. and Giorgi, F.S. (2015) Effects of Antiepileptic Drugs on Interictal Epileptiform Discharges in Focal Epilepsies: An Update on Current Evidence. Expert Review of Neurotherapeutics, 15, 947-959.
https://doi.org/10.1586/14737175.2015.1065180
[16] Shewmon, D.A. and Erwin, R.J. (1988) Focal Spike‐Induced Cerebral Dysfunction Is Related to the After‐Coming Slow Wave. Annals of Neurology, 23, 131-137.
https://doi.org/10.1002/ana.410230205
[17] Verma, M., Lizama, B.N. and Chu, C.T. (2022) Excitotoxicity, Calcium and Mitochondria: A Triad in Synaptic Neurodegeneration. Translational Neurodegeneration, 11, Article No. 3.
https://doi.org/10.1186/s40035-021-00278-7
[18] Horvath, A.A., Csernus, E.A., Lality, S., Kaminski, R.M. and Kamondi, A. (2020) Inhibiting Epileptiform Activity in Cognitive Disorders: Possibilities for a Novel Therapeutic Approach. Frontiers in Neuroscience, 14, Article ID: 557416.
https://doi.org/10.3389/fnins.2020.557416
[19] Gelinas, J.N., Khodagholy, D., Thesen, T., Devinsky, O. and Buzsáki, G. (2016) Interictal Epileptiform Discharges Induce Hippocampal-Cortical Coupling in Temporal Lobe Epilepsy. Nature Medicine, 22, 641-648.
https://doi.org/10.1038/nm.4084
[20] Ibrahim, G.M., Cassel, D., Morgan, B.R., Smith, M.L., Otsubo, H., Ochi, A., et al. (2014) Resilience of Developing Brain Networks to Interictal Epileptiform Discharges Is Associated with Cognitive Outcome. Brain, 137, 2690-2702.
https://doi.org/10.1093/brain/awu214
[21] Fahoum, F., Zelmann, R., Tyvaert, L., Dubeau, F. and Gotman, J. (2013) Epileptic Discharges Affect the Default Mode Network—fMRI and Intracerebral EEG Evidence. PLOS ONE, 8, e68038.
https://doi.org/10.1371/journal.pone.0068038
[22] Hirosawa, T., An, K., Soma, D., Shiota, Y., Sano, M., Kameya, M., et al. (2021) Epileptiform Discharges Relate to Altered Functional Brain Networks in Autism Spectrum Disorders. Brain Communications, 3, fcab184.
https://doi.org/10.1093/braincomms/fcab184
[23] Herman, S.T., Walczak, T.S. and Bazil, C.W. (2001) Distribution of Partial Seizures during the Sleep-Wake Cycle Differences by Seizure Onset Site. Neurology, 56, 1453-1459.
https://doi.org/10.1212/wnl.56.11.1453
[24] Staresina, B.P. (2024) Coupled Sleep Rhythms for Memory Consolidation. Trends in Cognitive Sciences, 28, 339-351.
https://doi.org/10.1016/j.tics.2024.02.002
[25] Maquet, P., Hirsch, E., Metz-Lutz, M.N., Motte, J., Dive, D., Marescaux, C., et al. (1995) Regional Cerebral Glucose Metabolism in Children with Deterioration of One or More Cognitive Functions and Continuous Spike-and-Wave Discharges during Sleep. Brain, 118, 1497-1520.
https://doi.org/10.1093/brain/118.6.1497
[26] Blair, R.E., Sombati, S., Churn, S.B. and DeLorenzo, R.J. (2008) Epileptogenesis Causes an N-Methyl-D-Aspartate Receptor/Ca2+-Dependent Decrease in Ca2+/Calmodulin-Dependent Protein Kinase II Activity in a Hippocampal Neuronal Culture Model of Spontaneous Recurrent Epileptiform Discharges. European Journal of Pharmacology, 588, 64-71.
https://doi.org/10.1016/j.ejphar.2008.04.021
[27] Posner, J., Polanczyk, G.V. and Sonuga-Barke, E. (2020) Attention-Deficit Hyperactivity Disorder. The Lancet, 395, 450-462.
https://doi.org/10.1016/s0140-6736(19)33004-1
[28] Hermann, B., Jones, J., Dabbs, K., Allen, C.A., Sheth, R., Fine, J., et al. (2007) The Frequency, Complications and Aetiology of ADHD in New Onset Paediatric Epilepsy. Brain, 130, 3135-3148.
https://doi.org/10.1093/brain/awm227
[29] Kim, E., Yum, M., Kim, H. and Ko, T. (2014) Attention-Deficit/Hyperactivity Disorder and Attention Impairment in Children with Benign Childhood Epilepsy with Centrotemporal Spikes. Epilepsy & Behavior, 37, 54-58.
https://doi.org/10.1016/j.yebeh.2014.05.030
[30] Lee, E.H., Choi, Y.S., Yoon, H.S. and Bahn, G.H. (2015) Clinical Impact of Epileptiform Discharge in Children with Attention-Deficit/hyperactivity Disorder (ADHD). Journal of Child Neurology, 31, 584-588.
https://doi.org/10.1177/0883073815604223
[31] Socanski, D., Herigstad, A., Thomsen, P.H., Dag, A. and Larsen, T.K. (2010) Epileptiform Abnormalities in Children Diagnosed with Attention Deficit/Hyperactivity Disorder. Epilepsy & Behavior, 19, 483-486.
https://doi.org/10.1016/j.yebeh.2010.08.005
[32] Mahmoud, M.B., Ali, N.B., Fray, S., jamoussi, H., Chebbi, S. and Fredj, M. (2021) Utility of EEG on Attention Deficit-Hyperactivity Disorder (ADHD). Epilepsy & Behavior, 114, Article ID: 107583.
https://doi.org/10.1016/j.yebeh.2020.107583
[33] Bakke, K.A., Larsson, P.G., Eriksson, A. and Eeg-Olofsson, O. (2011) Levetiracetam Reduces the Frequency of Interictal Epileptiform Discharges during NREM Sleep in Children with ADHD. European Journal of Paediatric Neurology, 15, 532-538.
https://doi.org/10.1016/j.ejpn.2011.04.014
[34] Kanemura, H., Sano, F., Tando, T., Hosaka, H., Sugita, K. and Aihara, M. (2013) EEG Improvements with Antiepileptic Drug Treatment Can Show a High Correlation with Behavioral Recovery in Children with ADHD. Epilepsy & Behavior, 27, 443-448.
https://doi.org/10.1016/j.yebeh.2013.03.014
[35] Belger, A., Carpenter, K.L.H., Yucel, G.H., Cleary, K.M. and Donkers, F.C.L. (2011) The Neural Circuitry of Autism. Neurotoxicity Research, 20, 201-214.
https://doi.org/10.1007/s12640-010-9234-7
[36] Takarae, Y. and Sweeney, J. (2017) Neural Hyperexcitability in Autism Spectrum Disorders. Brain Sciences, 7, Article No. 129.
https://doi.org/10.3390/brainsci7100129
[37] Mulligan, C.K. and Trauner, D.A. (2013) Incidence and Behavioral Correlates of Epileptiform Abnormalities in Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 44, 452-458.
https://doi.org/10.1007/s10803-013-1888-6
[38] Hrdlicka, M., Komarek, V., Propper, L., Kulisek, R., Zumrova, A., Faladova, L., et al. (2004) Not EEG Abnormalities but Epilepsy Is Associated with Autistic Regression and Mental Functioning in Childhood Autism. European Child & Adolescent Psychiatry, 13, 209-213.
https://doi.org/10.1007/s00787-004-0353-7
[39] Nicotera, A.G., Hagerman, R.J., Catania, M.V., Buono, S., Di Nuovo, S., Liprino, E.M., et al. (2019) EEG Abnormalities as a Neurophysiological Biomarker of Severity in Autism Spectrum Disorder: A Pilot Cohort Study. Journal of Autism and Developmental Disorders, 49, 2337-2347.
https://doi.org/10.1007/s10803-019-03908-2
[40] Kawasaki, Y., Yokota, K., Shinomiya, M., Shimizu, Y. and Niwa, S. (1997) Brief Report: Electroencephalographic Paroxysmal Activities in the Frontal Area Emerged in Middle Childhood and during Adolescence in a Follow-Up Study of Autism. Journal of Autism and Developmental Disorders, 27, 605-620.
https://doi.org/10.1023/a:1025886228387
[41] Hara, H. (2007) Autism and Epilepsy: A Retrospective Follow-Up Study. Brain and Development, 29, 486-490.
https://doi.org/10.1016/j.braindev.2006.12.012
[42] Kanemura, H., Sano, F., Tando, T., Sugita, K. and Aihara, M. (2013) Can EEG Characteristics Predict Development of Epilepsy in Autistic Children? European Journal of Paediatric Neurology, 17, 232-237.
https://doi.org/10.1016/j.ejpn.2012.10.002
[43] Veerappan, V.D., Sweetha, B., Kavitha, H.R., Sivalingam, B., Nambi, S. and Pauline, L. (2018) Two-Year Follow-Up of Isolated Epileptiform Discharges in Autism: An Endophenotypic Biomarker? Indian Journal of Psychological Medicine, 40, 219-224.
https://doi.org/10.4103/ijpsym.ijpsym_555_17
[44] Chez, M.G., Chang, M., Krasne, V., Coughlan, C., Kominsky, M. and Schwartz, A. (2006) Frequency of Epileptiform EEG Abnormalities in a Sequential Screening of Autistic Patients with No Known Clinical Epilepsy from 1996 to 2005. Epilepsy & Behavior, 8, 267-271.
https://doi.org/10.1016/j.yebeh.2005.11.001
[45] Hollander, E., Dolgoff-Kaspar, R., Cartwright, C., Rawitt, R. and Novotny, S. (2001) An Open Trial of Divalproex Sodium in Autism Spectrum Disorders. The Journal of Clinical Psychiatry, 62, 530-534.
https://doi.org/10.4088/jcp.v62n07a05
[46] Wang, M., Jiang, L. and Tang, X. (2017) Levetiracetam Is Associated with Decrease in Subclinical Epileptiform Discharges and Improved Cognitive Functions in Pediatric Patients with Autism Spectrum Disorder. Neuropsychiatric Disease and Treatment, 13, 2321-2326.
https://doi.org/10.2147/ndt.s143966
[47] Hirota, T., Veenstra-VanderWeele, J., Hollander, E. and Kishi, T. (2013) Antiepileptic Medications in Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Journal of Autism and Developmental Disorders, 44, 948-957.
https://doi.org/10.1007/s10803-013-1952-2