[1]
|
朱红敏, 袁纯辉, 刘智胜. 儿童神经发育障碍疾病研究进展[J]. 中国当代儿科杂志, 2023, 25(1): 91-97.
|
[2]
|
Nordin, V., Olsson, I.B. and Tomson, T. (2018) Epilepsy and Comorbid Neurodevelopmental Disorders. Lakartidningen, 115, E47E.
|
[3]
|
Csernus, E.A., Werber, T., Kamondi, A. and Horvath, A.A. (2022) The Significance of Subclinical Epileptiform Activity in Alzheimer’s Disease: A Review. Frontiers in Neurology, 13, Article ID: 856500. https://doi.org/10.3389/fneur.2022.856500
|
[4]
|
Swatzyna, R.J., Arns, M., Tarnow, J.D., Turner, R.P., Barr, E., MacInerney, E.K., et al. (2020) Isolated Epileptiform Activity in Children and Adolescents: Prevalence, Relevance, and Implications for Treatment. European Child & Adolescent Psychiatry, 31, 545-552. https://doi.org/10.1007/s00787-020-01597-2
|
[5]
|
Holmes, G.L. (2016) Effect of Seizures on the Developing Brain and Cognition. Seminars in Pediatric Neurology, 23, 120-126. https://doi.org/10.1016/j.spen.2016.05.001
|
[6]
|
Horvath, A.A., Csernus, E.A., Lality, S., Kaminski, R.M. and Kamondi, A. (2020) Inhibiting Epileptiform Activity in Cognitive Disorders: Possibilities for a Novel Therapeutic Approach. Frontiers in Neuroscience, 14, Article ID: 557416. https://doi.org/10.3389/fnins.2020.557416
|
[7]
|
Binnie, C.D. (2003) Cognitive Impairment during Epileptiform Discharges: Is It Ever Justifiable to Treat the EEG? The Lancet Neurology, 2, 725-730. https://doi.org/10.1016/s1474-4422(03)00584-2
|
[8]
|
Aarts, J.H.P., Binnie, C.D., Smit, A.M. and Wilkins, A.J. (1984) Selective Cognitive Impairment during Focal and Generalized Epileptiform EEG Activity. Brain, 107, 293-308. https://doi.org/10.1093/brain/107.1.293
|
[9]
|
Kleen, J.K., Scott, R.C., Holmes, G.L. and Lenck‐Santini, P.P. (2010) Hippocampal Interictal Spikes Disrupt Cognition in Rats. Annals of Neurology, 67, 250-257. https://doi.org/10.1002/ana.21896
|
[10]
|
Federico, P., Archer, J.S., Abbott, D.F. and Jackson, G.D. (2005) Cortical/Subcortical BOLD Changes Associated with Epileptic Discharges. Neurology, 64, 1125-1130. https://doi.org/10.1212/01.wnl.0000156358.72670.ad
|
[11]
|
Overvliet, G.M., Besseling, R.M.H., Vles, J.S.H., Hofman, P.A.M., Backes, W.H., van Hall, M.H.J.A., et al. (2010) Nocturnal Epileptiform EEG Discharges, Nocturnal Epileptic Seizures, and Language Impairments in Children: Review of the Literature. Epilepsy & Behavior, 19, 550-558. https://doi.org/10.1016/j.yebeh.2010.09.015
|
[12]
|
Hernan, A.E., Alexander, A., Jenks, K.R., Barry, J., Lenck-Santini, P., Isaeva, E., et al. (2014) Focal Epileptiform Activity in the Prefrontal Cortex Is Associated with Long-Term Attention and Sociability Deficits. Neurobiology of Disease, 63, 25-34. https://doi.org/10.1016/j.nbd.2013.11.012
|
[13]
|
Khan, O.I., Zhao, Q., Miller, F. and Holmes, G.L. (2010) Interictal Spikes in Developing Rats Cause Long-Standing Cognitive Deficits. Neurobiology of Disease, 39, 362-371. https://doi.org/10.1016/j.nbd.2010.05.002
|
[14]
|
Sengupta, B., Laughlin, S.B. and Niven, J.E. (2013) Balanced Excitatory and Inhibitory Synaptic Currents Promote Efficient Coding and Metabolic Efficiency. PLOS Computational Biology, 9, e1003263. https://doi.org/10.1371/journal.pcbi.1003263
|
[15]
|
Guida, M., Iudice, A., Bonanni, E. and Giorgi, F.S. (2015) Effects of Antiepileptic Drugs on Interictal Epileptiform Discharges in Focal Epilepsies: An Update on Current Evidence. Expert Review of Neurotherapeutics, 15, 947-959. https://doi.org/10.1586/14737175.2015.1065180
|
[16]
|
Shewmon, D.A. and Erwin, R.J. (1988) Focal Spike‐Induced Cerebral Dysfunction Is Related to the After‐Coming Slow Wave. Annals of Neurology, 23, 131-137. https://doi.org/10.1002/ana.410230205
|
[17]
|
Verma, M., Lizama, B.N. and Chu, C.T. (2022) Excitotoxicity, Calcium and Mitochondria: A Triad in Synaptic Neurodegeneration. Translational Neurodegeneration, 11, Article No. 3. https://doi.org/10.1186/s40035-021-00278-7
|
[18]
|
Horvath, A.A., Csernus, E.A., Lality, S., Kaminski, R.M. and Kamondi, A. (2020) Inhibiting Epileptiform Activity in Cognitive Disorders: Possibilities for a Novel Therapeutic Approach. Frontiers in Neuroscience, 14, Article ID: 557416. https://doi.org/10.3389/fnins.2020.557416
|
[19]
|
Gelinas, J.N., Khodagholy, D., Thesen, T., Devinsky, O. and Buzsáki, G. (2016) Interictal Epileptiform Discharges Induce Hippocampal-Cortical Coupling in Temporal Lobe Epilepsy. Nature Medicine, 22, 641-648. https://doi.org/10.1038/nm.4084
|
[20]
|
Ibrahim, G.M., Cassel, D., Morgan, B.R., Smith, M.L., Otsubo, H., Ochi, A., et al. (2014) Resilience of Developing Brain Networks to Interictal Epileptiform Discharges Is Associated with Cognitive Outcome. Brain, 137, 2690-2702. https://doi.org/10.1093/brain/awu214
|
[21]
|
Fahoum, F., Zelmann, R., Tyvaert, L., Dubeau, F. and Gotman, J. (2013) Epileptic Discharges Affect the Default Mode Network—fMRI and Intracerebral EEG Evidence. PLOS ONE, 8, e68038. https://doi.org/10.1371/journal.pone.0068038
|
[22]
|
Hirosawa, T., An, K., Soma, D., Shiota, Y., Sano, M., Kameya, M., et al. (2021) Epileptiform Discharges Relate to Altered Functional Brain Networks in Autism Spectrum Disorders. Brain Communications, 3, fcab184. https://doi.org/10.1093/braincomms/fcab184
|
[23]
|
Herman, S.T., Walczak, T.S. and Bazil, C.W. (2001) Distribution of Partial Seizures during the Sleep-Wake Cycle Differences by Seizure Onset Site. Neurology, 56, 1453-1459. https://doi.org/10.1212/wnl.56.11.1453
|
[24]
|
Staresina, B.P. (2024) Coupled Sleep Rhythms for Memory Consolidation. Trends in Cognitive Sciences, 28, 339-351. https://doi.org/10.1016/j.tics.2024.02.002
|
[25]
|
Maquet, P., Hirsch, E., Metz-Lutz, M.N., Motte, J., Dive, D., Marescaux, C., et al. (1995) Regional Cerebral Glucose Metabolism in Children with Deterioration of One or More Cognitive Functions and Continuous Spike-and-Wave Discharges during Sleep. Brain, 118, 1497-1520. https://doi.org/10.1093/brain/118.6.1497
|
[26]
|
Blair, R.E., Sombati, S., Churn, S.B. and DeLorenzo, R.J. (2008) Epileptogenesis Causes an N-Methyl-D-Aspartate Receptor/Ca2+-Dependent Decrease in Ca2+/Calmodulin-Dependent Protein Kinase II Activity in a Hippocampal Neuronal Culture Model of Spontaneous Recurrent Epileptiform Discharges. European Journal of Pharmacology, 588, 64-71. https://doi.org/10.1016/j.ejphar.2008.04.021
|
[27]
|
Posner, J., Polanczyk, G.V. and Sonuga-Barke, E. (2020) Attention-Deficit Hyperactivity Disorder. The Lancet, 395, 450-462. https://doi.org/10.1016/s0140-6736(19)33004-1
|
[28]
|
Hermann, B., Jones, J., Dabbs, K., Allen, C.A., Sheth, R., Fine, J., et al. (2007) The Frequency, Complications and Aetiology of ADHD in New Onset Paediatric Epilepsy. Brain, 130, 3135-3148. https://doi.org/10.1093/brain/awm227
|
[29]
|
Kim, E., Yum, M., Kim, H. and Ko, T. (2014) Attention-Deficit/Hyperactivity Disorder and Attention Impairment in Children with Benign Childhood Epilepsy with Centrotemporal Spikes. Epilepsy & Behavior, 37, 54-58. https://doi.org/10.1016/j.yebeh.2014.05.030
|
[30]
|
Lee, E.H., Choi, Y.S., Yoon, H.S. and Bahn, G.H. (2015) Clinical Impact of Epileptiform Discharge in Children with Attention-Deficit/hyperactivity Disorder (ADHD). Journal of Child Neurology, 31, 584-588. https://doi.org/10.1177/0883073815604223
|
[31]
|
Socanski, D., Herigstad, A., Thomsen, P.H., Dag, A. and Larsen, T.K. (2010) Epileptiform Abnormalities in Children Diagnosed with Attention Deficit/Hyperactivity Disorder. Epilepsy & Behavior, 19, 483-486. https://doi.org/10.1016/j.yebeh.2010.08.005
|
[32]
|
Mahmoud, M.B., Ali, N.B., Fray, S., jamoussi, H., Chebbi, S. and Fredj, M. (2021) Utility of EEG on Attention Deficit-Hyperactivity Disorder (ADHD). Epilepsy & Behavior, 114, Article ID: 107583. https://doi.org/10.1016/j.yebeh.2020.107583
|
[33]
|
Bakke, K.A., Larsson, P.G., Eriksson, A. and Eeg-Olofsson, O. (2011) Levetiracetam Reduces the Frequency of Interictal Epileptiform Discharges during NREM Sleep in Children with ADHD. European Journal of Paediatric Neurology, 15, 532-538. https://doi.org/10.1016/j.ejpn.2011.04.014
|
[34]
|
Kanemura, H., Sano, F., Tando, T., Hosaka, H., Sugita, K. and Aihara, M. (2013) EEG Improvements with Antiepileptic Drug Treatment Can Show a High Correlation with Behavioral Recovery in Children with ADHD. Epilepsy & Behavior, 27, 443-448. https://doi.org/10.1016/j.yebeh.2013.03.014
|
[35]
|
Belger, A., Carpenter, K.L.H., Yucel, G.H., Cleary, K.M. and Donkers, F.C.L. (2011) The Neural Circuitry of Autism. Neurotoxicity Research, 20, 201-214. https://doi.org/10.1007/s12640-010-9234-7
|
[36]
|
Takarae, Y. and Sweeney, J. (2017) Neural Hyperexcitability in Autism Spectrum Disorders. Brain Sciences, 7, Article No. 129. https://doi.org/10.3390/brainsci7100129
|
[37]
|
Mulligan, C.K. and Trauner, D.A. (2013) Incidence and Behavioral Correlates of Epileptiform Abnormalities in Autism Spectrum Disorders. Journal of Autism and Developmental Disorders, 44, 452-458. https://doi.org/10.1007/s10803-013-1888-6
|
[38]
|
Hrdlicka, M., Komarek, V., Propper, L., Kulisek, R., Zumrova, A., Faladova, L., et al. (2004) Not EEG Abnormalities but Epilepsy Is Associated with Autistic Regression and Mental Functioning in Childhood Autism. European Child & Adolescent Psychiatry, 13, 209-213. https://doi.org/10.1007/s00787-004-0353-7
|
[39]
|
Nicotera, A.G., Hagerman, R.J., Catania, M.V., Buono, S., Di Nuovo, S., Liprino, E.M., et al. (2019) EEG Abnormalities as a Neurophysiological Biomarker of Severity in Autism Spectrum Disorder: A Pilot Cohort Study. Journal of Autism and Developmental Disorders, 49, 2337-2347. https://doi.org/10.1007/s10803-019-03908-2
|
[40]
|
Kawasaki, Y., Yokota, K., Shinomiya, M., Shimizu, Y. and Niwa, S. (1997) Brief Report: Electroencephalographic Paroxysmal Activities in the Frontal Area Emerged in Middle Childhood and during Adolescence in a Follow-Up Study of Autism. Journal of Autism and Developmental Disorders, 27, 605-620. https://doi.org/10.1023/a:1025886228387
|
[41]
|
Hara, H. (2007) Autism and Epilepsy: A Retrospective Follow-Up Study. Brain and Development, 29, 486-490. https://doi.org/10.1016/j.braindev.2006.12.012
|
[42]
|
Kanemura, H., Sano, F., Tando, T., Sugita, K. and Aihara, M. (2013) Can EEG Characteristics Predict Development of Epilepsy in Autistic Children? European Journal of Paediatric Neurology, 17, 232-237. https://doi.org/10.1016/j.ejpn.2012.10.002
|
[43]
|
Veerappan, V.D., Sweetha, B., Kavitha, H.R., Sivalingam, B., Nambi, S. and Pauline, L. (2018) Two-Year Follow-Up of Isolated Epileptiform Discharges in Autism: An Endophenotypic Biomarker? Indian Journal of Psychological Medicine, 40, 219-224. https://doi.org/10.4103/ijpsym.ijpsym_555_17
|
[44]
|
Chez, M.G., Chang, M., Krasne, V., Coughlan, C., Kominsky, M. and Schwartz, A. (2006) Frequency of Epileptiform EEG Abnormalities in a Sequential Screening of Autistic Patients with No Known Clinical Epilepsy from 1996 to 2005. Epilepsy & Behavior, 8, 267-271. https://doi.org/10.1016/j.yebeh.2005.11.001
|
[45]
|
Hollander, E., Dolgoff-Kaspar, R., Cartwright, C., Rawitt, R. and Novotny, S. (2001) An Open Trial of Divalproex Sodium in Autism Spectrum Disorders. The Journal of Clinical Psychiatry, 62, 530-534. https://doi.org/10.4088/jcp.v62n07a05
|
[46]
|
Wang, M., Jiang, L. and Tang, X. (2017) Levetiracetam Is Associated with Decrease in Subclinical Epileptiform Discharges and Improved Cognitive Functions in Pediatric Patients with Autism Spectrum Disorder. Neuropsychiatric Disease and Treatment, 13, 2321-2326. https://doi.org/10.2147/ndt.s143966
|
[47]
|
Hirota, T., Veenstra-VanderWeele, J., Hollander, E. and Kishi, T. (2013) Antiepileptic Medications in Autism Spectrum Disorder: A Systematic Review and Meta-Analysis. Journal of Autism and Developmental Disorders, 44, 948-957. https://doi.org/10.1007/s10803-013-1952-2
|