[1]
|
Zhang, M., Li, J. and Hu, W. (2024) The Complex Interplay between Ferroptosis and Atherosclerosis. Biomedicine & Pharmacotherapy, 178, Article 117183. https://doi.org/10.1016/j.biopha.2024.117183
|
[2]
|
Gozzelino, R. and Arosio, P. (2016) Iron Homeostasis in Health and Disease. International Journal of Molecular Sciences, 17, Article 130. https://doi.org/10.3390/ijms17010130
|
[3]
|
Fischer, C., Volani, C., Komlódi, T., Seifert, M., Demetz, E., Valente de Souza, L., et al. (2021) Dietary Iron Overload and Hfe-/- Related Hemochromatosis Alter Hepatic Mitochondrial Function. Antioxidants, 10, Article 1818. https://doi.org/10.3390/antiox10111818
|
[4]
|
Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., et al. (2012) Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death. Cell, 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042
|
[5]
|
Xie, Y., Hou, W., Song, X., Yu, Y., Huang, J., Sun, X., et al. (2016) Ferroptosis: Process and Function. Cell Death & Differentiation, 23, 369-379. https://doi.org/10.1038/cdd.2015.158
|
[6]
|
Li, J., Cao, F., Yin, H., Huang, Z., Lin, Z., Mao, N., et al. (2020) Ferroptosis: Past, Present and Future. Cell Death & Disease, 11, Article No. 88. https://doi.org/10.1038/s41419-020-2298-2
|
[7]
|
高爽, 王臻楠, 顾耘. 血管内皮细胞功能障碍与动脉粥样硬化关系的研究进展[J]. 中西医结合心脑血管病杂志, 2018, 16(20): 2966-2970.
|
[8]
|
Bai, T., Li, M., Liu, Y., Qiao, Z. and Wang, Z. (2020) Inhibition of Ferroptosis Alleviates Atherosclerosis through Attenuating Lipid Peroxidation and Endothelial Dysfunction in Mouse Aortic Endothelial Cell. Free Radical Biology and Medicine, 160, 92-102. https://doi.org/10.1016/j.freeradbiomed.2020.07.026
|
[9]
|
Handa, P., Thomas, S., Morgan-Stevenson, V., Maliken, B.D., Gochanour, E., Boukhar, S., et al. (2019) Iron Alters Macrophage Polarization Status and Leads to Steatohepatitis and Fibrogenesis. Journal of Leukocyte Biology, 105, 1015-1026. https://doi.org/10.1002/jlb.3a0318-108r
|
[10]
|
Hu, X., Cai, X., Ma, R., Fu, W., Zhang, C. and Du, X. (2019) Iron-Load Exacerbates the Severity of Atherosclerosis via Inducing Inflammation and Enhancing the Glycolysis in Macrophages. Journal of Cellular Physiology, 234, 18792-18800. https://doi.org/10.1002/jcp.28518
|
[11]
|
Garrido-Urbani, S., Meguenani, M., Montecucco, F. and Imhof, B.A. (2013) Immunological Aspects of Atherosclerosis. Seminars in Immunopathology, 36, 73-91. https://doi.org/10.1007/s00281-013-0402-8
|
[12]
|
温婷, 王若楠, 张小燕, 等. 血管平滑肌细胞表型转变的机制及在心血管疾病中的作用研究进展[J]. 心脏杂志, 2023, 35(3): 337-343.
|
[13]
|
Zhang, S., Bei, Y., Huang, Y., Huang, Y., Hou, L., Zheng, X., et al. (2022) Induction of Ferroptosis Promotes Vascular Smooth Muscle Cell Phenotypic Switching and Aggravates Neointimal Hyperplasia in Mice. Molecular Medicine, 28, Article No. 121. https://doi.org/10.1186/s10020-022-00549-7
|
[14]
|
Xie, Z., Guo, J., Deng, Y., Yu, P., Zhi, C., He, Y., et al. (2024) The Suppression of FSP1 Expression via NRF2 Promotes Ferroptosis Induced by Reactive Oxygen Species in Vascular Smooth Muscle Cells. Process Biochemistry, 143, 277-291. https://doi.org/10.1016/j.procbio.2024.05.007
|
[15]
|
王婷婷, 于莉莉, 陈玉善, 等. 铁死亡在动脉粥样硬化中的作用及其靶向治疗研究进展[J]. 解放军医学院学报, 2023, 44(2): 162-167.
|
[16]
|
朱秀萍, 徐亚萍, 陆扬, 董晓武, 鲁兖. 铁死亡及其抑制剂研究进展[J/OL]. 中国现代应用药学, 2024: 1-12. https://doi.org/10.13748/j.cnki.issn1007-7693.20232168, 2025-03-09.
|
[17]
|
Tao, L., Yang, X., Ge, C., Zhang, P., He, W., Xu, X., et al. (2024) Integrative Clinical and Preclinical Studies Identify Ferroterminator1 as a Potent Therapeutic Drug for Mash. Cell Metabolism, 36, 2190-2206.e5. https://doi.org/10.1016/j.cmet.2024.07.013
|
[18]
|
Chen, Y., Cui, Y., Li, M., Xia, M., Xiang, Q., Mao, Y., et al. (2024) A Novel Mechanism of Ferroptosis Inhibition-Enhanced Atherosclerotic Plaque Stability: YAP1 Suppresses Vascular Smooth Muscle Cell Ferroptosis through GLS1. The FASEB Journal, 38, e23850. https://doi.org/10.1096/fj.202401251r
|
[19]
|
Peng, X., Sun, B., Tang, C., Shi, C., Xie, X., Wang, X., et al. (2024) HMOX1-LDHB Interaction Promotes Ferroptosis by Inducing Mitochondrial Dysfunction in Foamy Macrophages during Advanced Atherosclerosis. Developmental Cell. https://doi.org/10.1016/j.devcel.2024.12.011
|
[20]
|
汤金焰, 徐琦敏, 卢甜, 等. N-乙酰半胱氨酸对肝脏保护作用的研究进展[J]. 中西医结合肝病杂志, 2022, 32(8): 759-762.
|
[21]
|
杨中澜, 王敏, 周莉莉, 等. 乙酰半胱氨酸的药理作用与临床应用[J]. 中国临床药理学杂志, 2021, 37(14): 1932-1936.
|
[22]
|
王舒婷, 夏宁, 袁记方, 等. NAC 通过不同机制抑制激动剂依赖和非依赖的过表达mGlu1a介导的细胞凋亡[J]. 疾病监测, 2013, 28(3): 172-177.
|
[23]
|
Liu, J., Liu, Q., Han, J., Feng, J., Guo, T., Li, Z., et al. (2021) N-Acetylcysteine Inhibits Patulin-Induced Apoptosis by Affecting Ros-Mediated Oxidative Damage Pathway. Toxins, 13, Article 595. https://doi.org/10.3390/toxins13090595
|
[24]
|
Meng, Z., Liu, J., Feng, Z., Guo, S., Wang, M., Wang, Z., et al. (2022) N-Acetylcysteine Regulates Dental Follicle Stem Cell Osteogenesis and Alveolar Bone Repair via ROS Scavenging. Stem Cell Research & Therapy, 13, Article No. 466. https://doi.org/10.1186/s13287-022-03161-y
|
[25]
|
Homma, T., Kobayashi, S., Sato, H. and Fujii, J. (2019) Edaravone, a Free Radical Scavenger, Protects against Ferroptotic Cell Death in Vitro. Experimental Cell Research, 384, Article 111592. https://doi.org/10.1016/j.yexcr.2019.111592
|
[26]
|
Teng, H., Sun, X., Eglitis, R., Wang, X., Zhang, W., Wang, H., et al. (2024) Chiisanoside from the Leaves of Acanthopanax sessiliflorus Can Resist Cisplatin-Induced Ototoxicity by Maintaining Cytoskeletal Homeostasis and Inhibiting Ferroptosis. Journal of Agricultural and Food Chemistry, 72, 25720-25742. https://doi.org/10.1021/acs.jafc.4c07994
|
[27]
|
郭冰清. 黄芩素对erastin诱导成骨细胞铁死亡的影响及潜在机制[D]: [硕士学位论文]. 南京: 南京中医药大学, 2021.
|
[28]
|
Feng, J., Liu, L., Yao, F., et al. (2021) The Protective Effect of Tanshinone IIA on Endothelial Cells: A Generalist among Clinical Therapeutics. Expert Review of Clinical Pharmacology, 14, 239-248.
|
[29]
|
吴瑶, 宋囡, 贾连群, 等. 丹参酮IIA对ApoE-/-小鼠肝脏脂质沉积及铁死亡相关蛋白表达的影响[J]. 中国病理生理杂志, 2020, 36(7): 1261-1268.
|
[30]
|
He, L., Liu, Y.Y., Wang, K., et al. (2021) Tanshinone IIA Protects Human Coronary Artery Endothelial Cells from Ferroptosis by Activating the NRF2 Pathway. Biochemical and Biophysical Research Communications, 575, 1-7. https://doi.org/10.1016/j.bbrc.2021.08.067
|
[31]
|
Sheng, S., Xu, J., Liang, Q., et al. (2021) Astragaloside IV Inhibits Bleomycin‐Induced Ferroptosis in Human Umbilical Vein Endothelial Cells by Mediating LPC. Oxidative Medicine and Cellular Longevity, 2021, Article 6241242. https://doi.org/10.1155/2021/6241242
|
[32]
|
Luo, Y., Shang, P. and Li, D. (2017) Luteolin: A Flavonoid That Has Multiple Cardio-Protective Effects and Its Molecular Mechanisms. Frontiers in Pharmacology, 8, Article 692. https://doi.org/10.3389/fphar.2017.00692
|
[33]
|
李敏, 张丹, 张林, 等. 银杏花化学成分对血管内皮细胞铁死亡的抑制作用[J]. 国际药学研究杂志, 2020, 47(10): 857-862.
|
[34]
|
Guo, S., Zhou, Y. and Xie, X. (2022) Resveratrol Inhibiting TGF/ERK Signaling Pathway Can Improve Atherosclerosis: Backgrounds, Mechanisms and Effects. Biomedicine & Pharmacotherapy, 155, Article 113775. https://doi.org/10.1016/j.biopha.2022.113775
|
[35]
|
Zhang, X., Jiang, L., Chen, H., et al. (2022) Resveratrol Protected Acrolein-Induced Ferroptosis and Insulin Secretion Dysfunction via ER-Stress-Related PERK Pathway in MIN6 Cells. Toxicology, 465, Article 153048. https://doi.org/10.1016/j.tox.2021.153048
|
[36]
|
Khalil, A. and Berrougui, H. (2009) Mechanism of Action of Resveratrol in Lipid Metabolism and Atherosclerosis. Clinical Lipidology, 4, 527-531. https://doi.org/10.2217/clp.09.53
|
[37]
|
游福蓉, 杜占慧, 宗丽娟, 等. 白藜芦醇对ox-LDL诱导的内皮细胞铁死亡影响[J]. 青岛大学学报(医学版), 2023, 59(5): 633-638.
|
[38]
|
韩震海, 王飞飞, 潘立栋. 银杏素通过激活 Nrf2/SLC7A11/GPX4信号通路抑制ox-LDL 诱导的血管内皮细胞铁死亡[J]. 中国动脉硬化杂志, 2023, 31(3): 231-237.
|
[39]
|
黄紫霞, 吴明月, 许峰, 等. 柴胡皂苷 A 通过抑制氧化应激和铁死亡减轻过氧化氢诱导的人脐静脉内皮细胞损伤[J]. 中国动脉硬化杂志, 2022, 30(1): 43-48.
|
[40]
|
赵梦涵, 刘婷, 范超文, 等. 基于Nrf2/HO-1通路探讨虎杖含药血清对血管内皮细胞铁死亡的干预作用[J]. 中药材, 2023, 46(11): 2831-2836.
|
[41]
|
白晶雪, 雷根平, 王婷, 等. 基于铁死亡探讨中医药干预肾脏疾病作用机制研究进展[J]. 中草药, 55(18): 6393-6401.
|
[42]
|
何信用, 王俊岩, 宋囡, 等. 二陈汤合桃红四物汤调控p53/SLC7A11介导的氧化损伤及铁死亡抗动脉粥样硬化的作用及机制研究[J]. 中华中医药杂志, 2020, 35(5): 2344-2348.
|
[43]
|
Zhang, J., Wang, X., Guan, B., et al. (2023) Qing-Xin-Jie-Yu Granule Inhibits Ferroptosis and Stabilizes Atherosclerotic Plaques by Regulating The GPX4/xCT Signaling Pathway. Journal of Ethnopharmacology, 301, Article 115852. https://doi.org/10.1016/j.jep.2022.115852
|
[44]
|
周湘, 钟正龙, 王宇, 等. 清心解瘀方对稳定性冠心病疗效及相关指标的变化研究[J]. 中华中医药学刊, 2019, 37(12): 3065-3069.
|
[45]
|
杨莹, 王群, 王莹, 等. 四君子汤通过miR-375/xCT/GPX4途径改善ApoE-/-动脉粥样硬化小鼠肝脏脂质沉积的分子机制[J]. 时珍国医国药, 2022, 33(12): 2868-2870.
|
[46]
|
宋玮, 张钟艺, 张小波, 等. 茱萸丸调控p53/SLC7A11信号通路介导氧化损伤及铁死亡减轻动脉粥样硬化[J]. 中国中药杂志, 2024, 49(15): 4118-4127.
|
[47]
|
孙孟艳, 秦合伟, 李彦杰, 等. 血管软化丸调控Nrf2/xCT/GPX4通路抑制血管内皮细胞铁死亡改善动脉粥样硬化的作用机制[J]. 北京中医药大学学报, 2024, 47(3): 383-393.
|
[48]
|
徐晔, 秦合伟. 血管软化丸对颈动脉粥样硬化斑块病人内皮功能及血液流变学的影响[J]. 中西医结合心脑血管病杂志, 2018, 16(24): 3604-3607.
|
[49]
|
Zhang, M., Mao, C., Dai, Y., et al. (2024) Qixian Granule Inhibits Ferroptosis in Vascular Endothelial Cells by Modulating TRPML1 in the Lysosome to Prevent Postmenopausal Atherosclerosis. Journal of Ethnopharmacology, 328, Article 118076. https://doi.org/10.1016/j.jep.2024.118076
|