[1]
|
Asher, M.I., Rutter, C.E., Bissell, K., Chiang, C., El Sony, A., Ellwood, E., et al. (2021) Worldwide Trends in the Burden of Asthma Symptoms in School-Aged Children: Global Asthma Network Phase I Cross-Sectional Study. The Lancet, 398, 1569-1580. https://doi.org/10.1016/s0140-6736(21)01450-1
|
[2]
|
García-Marcos, L., Asher, M.I., Pearce, N., Ellwood, E., Bissell, K., Chiang, C., et al. (2022) The Burden of Asthma, Hay Fever and Eczema in Children in 25 Countries: GAN Phase I Study. European Respiratory Journal, 60, Article 2102866. https://doi.org/10.1183/13993003.02866-2021
|
[3]
|
Busse, W.W., Lemanske, R.F. and Gern, J.E. (2010) Role of Viral Respiratory Infections in Asthma and Asthma Exacerbations. The Lancet, 376, 826-834. https://doi.org/10.1016/s0140-6736(10)61380-3
|
[4]
|
Hauptman, M., Gaffin, J.M., Petty, C.R., Sheehan, W.J., Lai, P.S., Coull, B., et al. (2020) Proximity to Major Roadways and Asthma Symptoms in the School Inner-City Asthma Study. Journal of Allergy and Clinical Immunology, 145, 119-126.E4. https://doi.org/10.1016/j.jaci.2019.08.038
|
[5]
|
Arrieta, M., Arévalo, A., Stiemsma, L., Dimitriu, P., Chico, M.E., Loor, S., et al. (2018) Associations between Infant Fungal and Bacterial Dysbiosis and Childhood Atopic Wheeze in a Nonindustrialized Setting. Journal of Allergy and Clinical Immunology, 142, 424-434.E10. https://doi.org/10.1016/j.jaci.2017.08.041
|
[6]
|
Dwivedi, M., Powali, S., Rastogi, S., Singh, A. and Gupta, D.K. (2021) Microbial Community in Human Gut: A Therapeutic Prospect and Implication in Health and Diseases. Letters in Applied Microbiology, 73, 553-568. https://doi.org/10.1111/lam.13549
|
[7]
|
Jin, Q., Ren, F., Dai, D., Sun, N., Qian, Y. and Song, P. (2023) The Causality between Intestinal Flora and Allergic Diseases: Insights from a Bi-Directional Two-Sample Mendelian Randomization Analysis. Frontiers in Immunology, 14, Article 1121273. https://doi.org/10.3389/fimmu.2023.1121273
|
[8]
|
Zou, X., Wu, J., Ye, H., Feng, D., Meng, P., Yang, H., et al. (2021) Associations between Gut Microbiota and Asthma Endotypes: A Cross-Sectional Study in South China Based on Patients with Newly Diagnosed Asthma. Journal of Asthma and Allergy, 14, 981-992. https://doi.org/10.2147/jaa.s320088
|
[9]
|
Wang, Z., Lai, Z., Zhang, X., Huang, P., Xie, J., Jiang, Q., et al. (2021) Altered Gut Microbiome Compositions Are Associated with the Severity of Asthma. Journal of Thoracic Disease, 13, 4322-4338. https://doi.org/10.21037/jtd-20-2189
|
[10]
|
Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G.A.D., Gasbarrini, A., et al. (2019) What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 7, Article 14. https://doi.org/10.3390/microorganisms7010014
|
[11]
|
Sharma, G., Garg, N., Hasan, S. and Shirodkar, S. (2022) Prevotella: An Insight into Its Characteristics and Associated Virulence Factors. Microbial Pathogenesis, 169, Article 105673. https://doi.org/10.1016/j.micpath.2022.105673
|
[12]
|
Zheng, W., Peng, K.R., Li, F.B., Zhao, H., Jiang, L.Q., Chen, F.B. and Jiang, M.Z. (2021) Characteristics of Gastric Mucosa Microbiota in Children with Chronic Gastritis and Duodenal Ulcer. Chinese Journal of Pediatrics, 59, 551-556.
|
[13]
|
Zhao-Fleming, H.H., Barake, S.R.S., Hand, A., Wilkinson, J.E., Sanford, N., Winn, R., et al. (2018) Traditional Culture Methods Fail to Detect Principle Pathogens in Necrotising Soft Tissue Infection: A Case Report. Journal of Wound Care, 27, S24-S28. https://doi.org/10.12968/jowc.2018.27.sup4.s24
|
[14]
|
Scher, J.U., Sczesnak, A., Longman, R.S., Segata, N., Ubeda, C., Bielski, C., et al. (2013) Expansion of Intestinal Prevotella copri Correlates with Enhanced Susceptibility to Arthritis. eLife, 2, e01202. https://doi.org/10.7554/elife.01202
|
[15]
|
Dillon, S.M., Lee, E.J., Kotter, C.V., Austin, G.L., Gianella, S., Siewe, B., et al. (2016) Gut Dendritic Cell Activation Links an Altered Colonic Microbiome to Mucosal and Systemic T-Cell Activation in Untreated HIV-1 Infection. Mucosal Immunology, 9, 24-37. https://doi.org/10.1038/mi.2015.33
|
[16]
|
Moran‐Ramos, S., Cerqueda‐García, D., López‐Contreras, B., Larrieta‐Carrasco, E., Villamil‐Ramírez, H., Molina‐Cruz, S., et al. (2023) A Metagenomic Study Identifies a Prevotella copri Enriched Microbial Profile Associated with Non‐alcoholic Steatohepatitis in Subjects with Obesity. Journal of Gastroenterology and Hepatology, 38, 791-799. https://doi.org/10.1111/jgh.16147
|
[17]
|
Yuan, H., Wu, X., Wang, X., Zhou, J. and Park, S. (2024) Microbial Dysbiosis Linked to Metabolic Dysfunction-Associated Fatty Liver Disease in Asians: Prevotella copri Promotes Lipopolysaccharide Biosynthesis and Network Instability in the Prevotella Enterotype. International Journal of Molecular Sciences, 25, Article 2183. https://doi.org/10.3390/ijms25042183
|
[18]
|
Mai, H., Yang, X., Xie, Y., Zhou, J., Wang, Q., Wei, Y., et al. (2024) The Role of Gut Microbiota in the Occurrence and Progression of Non-Alcoholic Fatty Liver Disease. Frontiers in Microbiology, 14, Article 1257903. https://doi.org/10.3389/fmicb.2023.1257903
|
[19]
|
Su, Y., Zhang, Y. and Xu, J. (2023) Genetic Association and Bidirectional Mendelian Randomization for Causality between Gut Microbiota and Six Lung Diseases. Frontiers in Medicine, 10, Article 1279239. https://doi.org/10.3389/fmed.2023.1279239
|
[20]
|
Yeoh, Y.K., Sun, Y., Ip, L.Y.T., Wang, L., Chan, F.K.L., Miao, Y., et al. (2022) Prevotella Species in the Human Gut Is Primarily Comprised of Prevotella copri, Prevotella stercorea and Related Lineages. Scientific Reports, 12, Article No. 9055. https://doi.org/10.1038/s41598-022-12721-4
|
[21]
|
Martínez, I., Stegen, J.C., Maldonado-Gómez, M.X., Eren, A.M., Siba, P.M., Greenhill, A.R., et al. (2015) The Gut Microbiota of Rural Papua New Guineans: Composition, Diversity Patterns, and Ecological Processes. Cell Reports, 11, 527-538. https://doi.org/10.1016/j.celrep.2015.03.049
|
[22]
|
Wu, G.D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y., Keilbaugh, S.A., et al. (2011) Linking Long-Term Dietary Patterns with Gut Microbial Enterotypes. Science, 334, 105-108. https://doi.org/10.1126/science.1208344
|
[23]
|
De Filippis, F., Pellegrini, N., Vannini, L., Jeffery, I.B., La Storia, A., Laghi, L., et al. (2015) High-Level Adherence to a Mediterranean Diet Beneficially Impacts the Gut Microbiota and Associated Metabolome. Gut, 65, 1812-1821. https://doi.org/10.1136/gutjnl-2015-309957
|
[24]
|
Rampelli, S., Schnorr, S.L., Consolandi, C., Turroni, S., Severgnini, M., Peano, C., et al. (2015) Metagenome Sequencing of the Hadza Hunter-Gatherer Gut Microbiota. Current Biology, 25, 1682-1693. https://doi.org/10.1016/j.cub.2015.04.055
|
[25]
|
Kovatcheva-Datchary, P., Nilsson, A., Akrami, R., Lee, Y.S., De Vadder, F., Arora, T., et al. (2015) Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. Cell Metabolism, 22, 971-982. https://doi.org/10.1016/j.cmet.2015.10.001
|
[26]
|
Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D.R., et al. (2011) Enterotypes of the Human Gut Microbiome. Nature, 473, 174-180. https://doi.org/10.1038/nature09944
|
[27]
|
Chung, W.S.F., Walker, A.W., Bosscher, D., Garcia-Campayo, V., Wagner, J., Parkhill, J., et al. (2020) Relative Abundance of the Prevotella Genus within the Human Gut Microbiota of Elderly Volunteers Determines the Inter-Individual Responses to Dietary Supplementation with Wheat Bran Arabinoxylan-Oligosaccharides. BMC Microbiology, 20, Article No. 283. https://doi.org/10.1186/s12866-020-01968-4
|
[28]
|
Yoon, S., Lee, G., Yu, J., Lee, K., Lee, K., Si, J., et al. (2022) Distinct Changes in Microbiota-Mediated Intestinal Metabolites and Immune Responses Induced by Different Antibiotics. Antibiotics, 11, Article 1762. https://doi.org/10.3390/antibiotics11121762
|
[29]
|
Wu, J., Shen, H., Lv, Y., He, J., Xie, X., Xu, Z., et al. (2024) Age over Sex: Evaluating Gut Microbiota Differences in Healthy Chinese Populations. Frontiers in Microbiology, 15, Article 1412991. https://doi.org/10.3389/fmicb.2024.1412991
|
[30]
|
De Filippis, F., Pasolli, E., Tett, A., Tarallo, S., Naccarati, A., De Angelis, M., et al. (2019) Distinct Genetic and Functional Traits of Human Intestinal Prevotella copri Strains Are Associated with Different Habitual Diets. Cell Host & Microbe, 25, 444-453.E3. https://doi.org/10.1016/j.chom.2019.01.004
|
[31]
|
Marsland, B.J., Trompette, A. and Gollwitzer, E.S. (2015) The Gut-Lung Axis in Respiratory Disease. Annals of the American Thoracic Society, 12, S150-S156. https://doi.org/10.1513/annalsats.201503-133aw
|
[32]
|
Dang, A.T. and Marsland, B.J. (2019) Microbes, Metabolites, and the Gut-Lung Axis. Mucosal Immunology, 12, 843-850. https://doi.org/10.1038/s41385-019-0160-6
|
[33]
|
Walsh, C.J., Guinane, C.M., O'Toole, P.W. and Cotter, P.D. (2014) Beneficial Modulation of the Gut Microbiota. FEBS Letters, 588, 4120-4130. https://doi.org/10.1016/j.febslet.2014.03.035
|
[34]
|
Budden, K.F., Gellatly, S.L., Wood, D.L.A., Cooper, M.A., Morrison, M., Hugenholtz, P., et al. (2016) Emerging Pathogenic Links between Microbiota and the Gut-Lung Axis. Nature Reviews Microbiology, 15, 55-63. https://doi.org/10.1038/nrmicro.2016.142
|
[35]
|
Sze, M.A., Tsuruta, M., Yang, S.J., Oh, Y., Man, S.F.P., Hogg, J.C., et al. (2014) Changes in the Bacterial Microbiota in Gut, Blood, and Lungs Following Acute LPS Instillation into Mice Lungs. PLOS ONE, 9, e111228. https://doi.org/10.1371/journal.pone.0111228
|
[36]
|
Perrone, E.E., Jung, E., Breed, E., Dominguez, J.A., Liang, Z., Clark, A.T., et al. (2012) Mechanisms of Methicillin-Resistant Staphylococcus Aureus Pneumonia-Induced Intestinal Epithelial Apoptosis. Shock, 38, 68-75. https://doi.org/10.1097/shk.0b013e318259abdb
|
[37]
|
Huang, Y., Tang, J., Cai, Z., Zhou, K., Chang, L., Bai, Y., et al. (2020) Prevotella Induces the Production of Th17 Cells in the Colon of Mice. Journal of Immunology Research, 2020, Article ID: 9607328. https://doi.org/10.1155/2020/9607328
|
[38]
|
Larsen, J.M. (2017) The Immune Response to Prevotella Bacteria in Chronic Inflammatory Disease. Immunology, 151, 363-374. https://doi.org/10.1111/imm.12760
|
[39]
|
Yan, T., Bao, Y., Cao, S., Jiang, P., Zhang, Z., Li, L., et al. (2024) The Investigation of the Role of Oral-Originated Prevotella-Induced Inflammation in Childhood Asthma. Frontiers in Microbiology, 15, Article 1400079. https://doi.org/10.3389/fmicb.2024.1400079
|
[40]
|
Hosoki, K., Nakamura, A., Kainuma, K., Sugimoto, M., Nagao, M., Hiraguchi, Y., et al. (2013) Differential Activation of Eosinophils by Bacteria Associated with Asthma. International Archives of Allergy and Immunology, 161, 16-22. https://doi.org/10.1159/000350338
|
[41]
|
Ouyang, W. and O’Garra, A. (2019) IL-10 Family Cytokines IL-10 and IL-22: From Basic Science to Clinical Translation. Immunity, 50, 871-891. https://doi.org/10.1016/j.immuni.2019.03.020
|
[42]
|
Seehus, C.R., Kadavallore, A., Torre, B.d.l., Yeckes, A.R., Wang, Y., Tang, J., et al. (2017) Alternative Activation Generates IL-10 Producing Type 2 Innate Lymphoid Cells. Nature Communications, 8, Article No. 1900. https://doi.org/10.1038/s41467-017-02023-z
|
[43]
|
Larsen, J.M., Musavian, H.S., Butt, T.M., Ingvorsen, C., Thysen, A.H. and Brix, S. (2015) Chronic Obstructive Pulmonary Disease and Asthma‐Associated Proteobacteria, but Not Commensal Prevotella Spp., Promote Toll‐Like Receptor 2‐Independent Lung Inflammation and Pathology. Immunology, 144, 333-342. https://doi.org/10.1111/imm.12376
|
[44]
|
Bassis, C.M., Erb-Downward, J.R., Dickson, R.P., Freeman, C.M., Schmidt, T.M., Young, V.B., et al. (2015) Analysis of the Upper Respiratory Tract Microbiotas as the Source of the Lung and Gastric Microbiotas in Healthy Individuals. mBio, 6. https://doi.org/10.1128/mbio.00037-15
|
[45]
|
Yuan, G., Yu, Y., Ji, L., Jie, X., Yue, L., Kang, Y., et al. (2016) Down-Regulated Receptor Interacting Protein 140 Is Involved in Lipopolysaccharide-Preconditioning-Induced Inactivation of Kupffer Cells and Attenuation of Hepatic Ischemia Reperfusion Injury. PLOS ONE, 11, e0164217. https://doi.org/10.1371/journal.pone.0164217
|
[46]
|
Bruse, N., Jansen, A., Gerretsen, J., Rijbroek, D., Wienholts, K., Arron, M., et al. (2023) The Gut Microbiota Composition Has No Predictive Value for the Endotoxin-Induced Immune Response or Development of Endotoxin Tolerance in Humans in Vivo. Microbes and Infection, 25, Article 105174. https://doi.org/10.1016/j.micinf.2023.105174
|
[47]
|
李斌恺, 赖克方, 沈璐, 等. BCG-LPS对哮喘小鼠气道炎症和气道反应性的影响[J]. 岭南急诊医学杂志, 2016, 21(6): 553-555.
|
[48]
|
Zhang, N., Zhang, R., Jiang, L., Gao, Z., Xia, W., Ma, X., et al. (2024) Inhibition of Colorectal Cancer in Alzheimer’s Disease Is Mediated by Gut Microbiota via Induction of Inflammatory Tolerance. Proceedings of the National Academy of Sciences, 121, e2314337121. https://doi.org/10.1073/pnas.2314337121
|
[49]
|
Flint, H.J., Scott, K.P., Duncan, S.H., Louis, P. and Forano, E. (2012) Microbial Degradation of Complex Carbohydrates in the Gut. Gut Microbes, 3, 289-306. https://doi.org/10.4161/gmic.19897
|
[50]
|
Stokholm, J., Blaser, M.J., Thorsen, J., Rasmussen, M.A., Waage, J., Vinding, R.K., et al. (2018) Maturation of the Gut Microbiome and Risk of Asthma in Childhood. Nature Communications, 9, Article No. 141. https://doi.org/10.1038/s41467-017-02573-2
|
[51]
|
Tagé, B.S.S., Gonzatti, M.B., Vieira, R.P., Keller, A.C., Bortoluci, K.R. and Aimbire, F. (2024) Three Main SCFAs Mitigate Lung Inflammation and Tissue Remodeling Nlrp3-Dependent in Murine HDM-Induced Neutrophilic Asthma. Inflammation, 47, 1386-1402. https://doi.org/10.1007/s10753-024-01983-x
|
[52]
|
Cani, P.D. (2018) Human Gut Microbiome: Hopes, Threats and Promises. Gut, 67, 1716-1725. https://doi.org/10.1136/gutjnl-2018-316723
|
[53]
|
Macia, L., Tan, J., Vieira, A.T., Leach, K., Stanley, D., Luong, S., et al. (2015) Metabolite-Sensing Receptors GPR43 and GPR109A Facilitate Dietary Fibre-Induced Gut Homeostasis through Regulation of the Inflammasome. Nature Communications, 6, Article No. 6734. https://doi.org/10.1038/ncomms7734
|
[54]
|
Yip, W., Hughes, M.R., Li, Y., Cait, A., Hirst, M., Mohn, W.W., et al. (2021) Butyrate Shapes Immune Cell Fate and Function in Allergic Asthma. Frontiers in Immunology, 12, Article 628453. https://doi.org/10.3389/fimmu.2021.628453
|
[55]
|
Patricia, H., Ramona, R. and Wilfried, E. (2020) Histone Deacetylases as Targets in Autoimmune and Autoinflammatory Diseases. Advances in Immunology, 147, 51-59.
|
[56]
|
Lawlor, L. and Yang, X.B. (2019) Harnessing the HDAC-Histone Deacetylase Enzymes, Inhibitors and How These Can Be Utilised in Tissue Engineering. International Journal of Oral Science, 11, Article No. 20. https://doi.org/10.1038/s41368-019-0053-2
|
[57]
|
Hull, E.E., Montgomery, M.R. and Leyva, K.J. (2016) HDAC Inhibitors as Epigenetic Regulators of the Immune System: Impacts on Cancer Therapy and Inflammatory Diseases. BioMed Research International, 2016, Article ID: 8797206. https://doi.org/10.1155/2016/8797206
|
[58]
|
Ropero, S. and Esteller, M. (2007) The Role of Histone Deacetylases (HDACs) in Human Cancer. Molecular Oncology, 1, 19-25. https://doi.org/10.1016/j.molonc.2007.01.001
|
[59]
|
Wang, R.X., Lee, J.S., Campbell, E.L. and Colgan, S.P. (2020) Microbiota-Derived Butyrate Dynamically Regulates Intestinal Homeostasis through Regulation of Actin-Associated Protein Synaptopodin. Proceedings of the National Academy of Sciences, 117, 11648-11657. https://doi.org/10.1073/pnas.1917597117
|
[60]
|
Grygiel-Górniak, B. (2014) Peroxisome Proliferator-Activated Receptors and Their Ligands: Nutritional and Clinical Implications—A Review. Nutrition Journal, 13, Article No. 17. https://doi.org/10.1186/1475-2891-13-17
|
[61]
|
Ghosh, S.K., Perrine, S.P., Williams, R.M. and Faller, D.V. (2012) Histone Deacetylase Inhibitors Are Potent Inducers of Gene Expression in Latent EBV and Sensitize Lymphoma Cells to Nucleoside Antiviral Agents. Blood, 119, 1008-1017. https://doi.org/10.1182/blood-2011-06-362434
|
[62]
|
Marion-Letellier, R., Dechelotte, P., Iacucci, M. and Ghosh, S. (2008) Dietary Modulation of Peroxisome Proliferator-Activated Receptor Gamma. Gut, 58, 586-593. https://doi.org/10.1136/gut.2008.162859
|
[63]
|
Byndloss, M.X., Olsan, E.E., Rivera-Chávez, F., Tiffany, C.R., Cevallos, S.A., Lokken, K.L., et al. (2017) Microbiota-Activated PPAR-γ Signaling Inhibits Dysbiotic Enterobacteriaceae Expansion. Science, 357, 570-575. https://doi.org/10.1126/science.aam9949
|
[64]
|
崔天怡, 刘佳蕊, 吕彬, 等. 肠道菌群及免疫调节与儿童哮喘关系的研究进展[J]. 中国全科医学, 2022, 25(8): 1021-1026.
|