[1]
|
Vutskits, L. and Xie, Z. (2016) Lasting Impact of General Anaesthesia on the Brain: Mechanisms and Relevance. Nature Reviews Neuroscience, 17, 705-717. https://doi.org/10.1038/nrn.2016.128
|
[2]
|
Short, T.G., Campbell, D., Frampton, C., Chan, M.T.V., Myles, P.S., Corcoran, T.B., et al. (2019) Anaesthetic Depth and Complications after Major Surgery: An International, Randomised Controlled Trial. The Lancet, 394, 1907-1914. https://doi.org/10.1016/s0140-6736(19)32315-3
|
[3]
|
Musizza, B. and Ribaric, S. (2010) Monitoring the Depth of Anaesthesia. Sensors, 10, 10896-10935. https://doi.org/10.3390/s101210896
|
[4]
|
Fahy, B.G. and Chau, D.F. (2018) The Technology of Processed Electroencephalogram Monitoring Devices for Assessment of Depth of Anesthesia. Anesthesia & Analgesia, 126, 111-117. https://doi.org/10.1213/ane.0000000000002331
|
[5]
|
Laferrière-Langlois, P., Morisson, L., Jeffries, S., Duclos, C., Espitalier, F. and Richebé, P. (2024) Depth of Anesthesia and Nociception Monitoring: Current State and Vision for 2050. Anesthesia & Analgesia, 138, 295-307. https://doi.org/10.1213/ane.0000000000006860
|
[6]
|
Seeck, M., Koessler, L., Bast, T., Leijten, F., Michel, C., Baumgartner, C., et al. (2017) The Standardized EEG Electrode Array of the IFCN. Clinical Neurophysiology, 128, 2070-2077. https://doi.org/10.1016/j.clinph.2017.06.254
|
[7]
|
Jameson, L.C. and Sloan, T.B. (2006) Using EEG to Monitor Anesthesia Drug Effects during Surgery. Journal of Clinical Monitoring and Computing, 20, 445-472. https://doi.org/10.1007/s10877-006-9044-x
|
[8]
|
Purdon, P.L., Sampson, A., Pavone, K.J. and Brown, E.N. (2015) Clinical Electroencephalography for Anesthesiologists: Part I: Background and Basic Signatures. Anesthesiology, 123, 937-960. https://doi.org/10.1097/aln.0000000000000841
|
[9]
|
Zakaria, L., Desowska, A., Berde, C.B. and Cornelissen, L. (2023) Electroencephalographic Delta and Alpha Oscillations Reveal Phase-Amplitude Coupling in Paediatric Patients Undergoing Sevoflurane-Based General Anaesthesia. British Journal of Anaesthesia, 130, 595-602. https://doi.org/10.1016/j.bja.2023.01.025
|
[10]
|
Sun, Y., Wei, C., Cui, V., Xiu, M. and Wu, A. (2020) Electroencephalography: Clinical Applications during the Perioperative Period. Frontiers in Medicine, 7, Article 251. https://doi.org/10.3389/fmed.2020.00251
|
[11]
|
Lewis, L.D., Ching, S., Weiner, V.S., Peterfreund, R.A., Eskandar, E.N., Cash, S.S., et al. (2013) Local Cortical Dynamics of Burst Suppression in the Anaesthetized Brain. Brain, 136, 2727-2737. https://doi.org/10.1093/brain/awt174
|
[12]
|
Sirmpilatze, N., Mylius, J., Ortiz-Rios, M., Baudewig, J., Paasonen, J., Golkowski, D., et al. (2022) Spatial Signatures of Anesthesia-Induced Burst-Suppression Differ between Primates and Rodents. eLife, 11, e74813. https://doi.org/10.7554/elife.74813
|
[13]
|
Hagihira, S. (2015) Changes in the Electroencephalogram during Anaesthesia and Their Physiological Basis. British Journal of Anaesthesia, 115, i27-i31. https://doi.org/10.1093/bja/aev212
|
[14]
|
Bong, C.L. and Yuan, I. (2024) The Utility of Electroencephalograhy in Guiding General Anesthesia in Children. Anesthesia & Analgesia. https://doi.org/10.1213/ane.0000000000007230
|
[15]
|
Bennett, C., Voss, L.J., Barnard, J.P.M. and Sleigh, J.W. (2009) Practical Use of the Raw Electroencephalogram Waveform during General Anesthesia: The Art and Science. Anesthesia & Analgesia, 109, 539-550. https://doi.org/10.1213/ane.0b013e3181a9fc38
|
[16]
|
Gimson, A. and Smith, M. (2021) Processed EEG from Depth of Anaesthesia Monitors and Seizures: A Scoping Review. Seizure, 91, 198-206. https://doi.org/10.1016/j.seizure.2021.06.011
|
[17]
|
Hight, D., Kreuzer, M., Ugen, G., Schuller, P., Stüber, F., Sleigh, J., et al. (2023) Five Commercial ‘Depth of Anaesthesia’ Monitors Provide Discordant Clinical Recommendations in Response to Identical Emergence-Like EEG Signals. British Journal of Anaesthesia, 130, 536-545. https://doi.org/10.1016/j.bja.2022.12.026
|
[18]
|
Punjasawadwong, Y., Phongchiewboon, A. and Bunchungmongkol, N. (2014) Bispectral Index for Improving Anaesthetic Delivery and Postoperative Recovery. Cochrane Database of Systematic Reviews, No. 6, CD003843. https://doi.org/10.1002/14651858.cd003843.pub3
|
[19]
|
Gelb, A.W., Morriss, W.W., Johnson, W. and Merry, A.F. (2018) World Health Organization-World Federation of Societies of Anaesthesiologists (WHO-WFSA) International Standards for a Safe Practice of Anesthesia. Anesthesia & Analgesia, 126, 2047-2055. https://doi.org/10.1213/ane.0000000000002927
|
[20]
|
Lewis, S.R., Pritchard, M.W., Fawcett, L.J. and Punjasawadwong, Y. (2019) Bispectral Index for Improving Intraoperative Awareness and Early Postoperative Recovery in Adults. Cochrane Database of Systematic Reviews, No. 9, CD003843. https://doi.org/10.1002/14651858.cd003843.pub4
|
[21]
|
Liu, Y., Qiu, D., Jia, L., Tan, J., Kang, J., Xie, T., et al. (2019) Depth of Anesthesia Measured by Bispectral Index and Postoperative Mortality: A Meta-Analysis of Observational Studies. Journal of Clinical Anesthesia, 56, 119-125. https://doi.org/10.1016/j.jclinane.2019.01.046
|
[22]
|
Schuller, P.J., Newell, S., Strickland, P.A. and Barry, J.J. (2015) Response of Bispectral Index to Neuromuscular Block in Awake Volunteers. British Journal of Anaesthesia, 115, i95-i103. https://doi.org/10.1093/bja/aev072
|
[23]
|
Myles, P., Leslie, K., McNeil, J., Forbes, A. and Chan, M. (2004) Bispectral Index Monitoring to Prevent Awareness during Anaesthesia: The B-Aware Randomised Controlled Trial. The Lancet, 363, 1757-1763. https://doi.org/10.1016/s0140-6736(04)16300-9
|
[24]
|
Kaki, A.M. and Almarakbi, W.A. (2009) Does Patient Position Influence the Reading of the Bispectral Index Monitor? Anesthesia & Analgesia, 109, 1843-1846. https://doi.org/10.1213/ane.0b013e3181bce58d
|
[25]
|
Dahaba, A.A. (2005) Different Conditions that Could Result in the Bispectral Index Indicating an Incorrect Hypnotic State. Anesthesia & Analgesia, 101, 765-773. https://doi.org/10.1213/01.ane.0000167269.62966.af
|
[26]
|
Raue, J.F., Tünsmeyer, J. and Kästner, S.B.R. (2020) Effects of Isoflurane, Remifentanil and Dexmedetomidine on Selected EEG Parameters Derived from a Narcotrend Monitor before and after Nociceptive Stimulation at Different MAC Multiples in Cats. BMC Veterinary Research, 16, Article No. 332. https://doi.org/10.1186/s12917-020-02532-y
|
[27]
|
Schultz, B., Grouven, U. and Schultz, A. (2002) Automatic Classification Algorithms of the EEG Monitor Narcotrend for Routinely Recorded EEG Data from General Anaesthesia: A Validation Study. Biomedizinische Technik/Biomedical Engineering, 47, 9-13. https://doi.org/10.1515/bmte.2002.47.1-2.9
|
[28]
|
Schneider, G., Kochs, E.F., Horn, B., Kreuzer, M. and Ningler, M. (2004) Narcotrend® Does Not Adequately Detect the Transition between Awareness and Unconsciousness in Surgical Patients. Anesthesiology, 101, 1105-1111. https://doi.org/10.1097/00000542-200411000-00009
|
[29]
|
Plourde, G. (2006) Auditory Evoked Potentials. Best Practice & Research Clinical Anaesthesiology, 20, 129-139. https://doi.org/10.1016/j.bpa.2005.07.012
|
[30]
|
Supp, G.G., Higgen, F.L., Hipp, J.F., Engel, A.K. and Siegel, M. (2018) Mid-Latency Auditory Evoked Potentials Differentially Predict Sedation and Drug Level under Opioid and Hypnotic Agents. Frontiers in Pharmacology, 9, Article 1427. https://doi.org/10.3389/fphar.2018.01427
|
[31]
|
Mou, L., Li, M., Xu, D., Qin, W., Liu, X., Zhang, M., et al. (2015) Neurophysiological and Neuropsychological Correlates of Subconscious Auditory Processing during Anesthesia and Their Implications in Anesthesia Awareness. Cell Biochemistry and Biophysics, 73, 147-153. https://doi.org/10.1007/s12013-015-0629-1
|
[32]
|
Linassi, F., Vide, S., Ferreira, A., Schneider, G., Gambús, P. and Kreuzer, M. (2024) Relationships between the Qnox, Qcon, Burst Suppression Ratio, and Muscle Activity Index of the CONOX Monitor during Total Intravenous Anesthesia: A Pilot Study. Journal of Clinical Monitoring and Computing, 38, 1281-1290. https://doi.org/10.1007/s10877-024-01214-6
|
[33]
|
Melia, U., Gabarron, E., Agustí, M., Souto, N., Pineda, P., Fontanet, J., et al. (2016) Comparison of the qCON and qNOX Indices for the Assessment of Unconsciousness Level and Noxious Stimulation Response during Surgery. Journal of Clinical Monitoring and Computing, 31, 1273-1281. https://doi.org/10.1007/s10877-016-9948-z
|
[34]
|
Aho, A.J., Kamata, K., Jäntti, V., Kulkas, A., Hagihira, S., Huhtala, H., et al. (2015) Comparison of Bispectral Index and Entropy Values with Electroencephalogram during Surgical Anaesthesia with Sevoflurane. British Journal of Anaesthesia, 115, 258-266. https://doi.org/10.1093/bja/aev206
|
[35]
|
Cimenser, A., Purdon, P.L., Pierce, E.T., Walsh, J.L., Salazar-Gomez, A.F., Harrell, P.G., et al. (2011) Tracking Brain States under General Anesthesia by Using Global Coherence Analysis. Proceedings of the National Academy of Sciences, 108, 8832-8837. https://doi.org/10.1073/pnas.1017041108
|
[36]
|
Görges, M., West, N.C., Cooke, E.M., Pi, S., Brant, R.F., Dumont, G.A., et al. (2019) Evaluating NeuroSENSE for Assessing Depth of Hypnosis during Desflurane Anesthesia: An Adaptive, Randomized-Controlled Trial. Canadian Journal of Anesthesia/Journal canadien d’anesthésie, 67, 324-335. https://doi.org/10.1007/s12630-019-01522-5
|
[37]
|
Huang, Y., Wen, P., Song, B. and Li, Y. (2022) Real-Time Depth of Anaesthesia Assessment Based on Hybrid Statistical Features of EEG. Sensors, 22, Article 6099. https://doi.org/10.3390/s22166099
|
[38]
|
Gu, Y., Liang, Z. and Hagihira, S. (2019) Use of Multiple EEG Features and Artificial Neural Network to Monitor the Depth of Anesthesia. Sensors, 19, Article 2499. https://doi.org/10.3390/s19112499
|
[39]
|
Olivieri, F., Biscetti, L., Pimpini, L., Pelliccioni, G., Sabbatinelli, J. and Giunta, S. (2024) Heart Rate Variability and Autonomic Nervous System Imbalance: Potential Biomarkers and Detectable Hallmarks of Aging and Inflammaging. Ageing Research Reviews, 101, Article 102521. https://doi.org/10.1016/j.arr.2024.102521
|
[40]
|
Grossman, P. (2024) Respiratory Sinus Arrhythmia (RSA), Vagal Tone and Biobehavioral Integration: Beyond Parasympathetic Function. Biological Psychology, 186, Article 108739. https://doi.org/10.1016/j.biopsycho.2023.108739
|
[41]
|
Zhao, Y., Yu, H., Gong, A., Zhang, S. and Xiao, B. (2023) Heart Rate Variability and Cardiovascular Diseases: A Mendelian Randomization Study. European Journal of Clinical Investigation, 54, e14085. https://doi.org/10.1111/eci.14085
|
[42]
|
Zhan, J., Wu, Z., Duan, Z., Yang, G., Du, Z., Bao, X., et al. (2021) Heart Rate Variability-Derived Features Based on Deep Neural Network for Distinguishing Different Anaesthesia States. BMC Anesthesiology, 21, Article No. 66. https://doi.org/10.1186/s12871-021-01285-x
|
[43]
|
Tiwari, R., Kumar, R., Malik, S., Raj, T. and Kumar, P. (2021) Analysis of Heart Rate Variability and Implication of Different Factors on Heart Rate Variability. Current Cardiology Reviews, 17, Article ID: e160721189770. https://doi.org/10.2174/1573403x16999201231203854
|
[44]
|
Kanaya, N., Hirata, N., Kurosawa, S., Nakayama, M. and Namiki, A. (2003) Differential Effects of Propofol and Sevoflurane on Heart Rate Variability. Anesthesiology, 98, 34-40. https://doi.org/10.1097/00000542-200301000-00009
|
[45]
|
Keim, O.C., Bolwin, L., Feldmann, R.E., Thiel, M. and Benrath, J. (2024) Heart Rate Variability as a Predictor of Intraoperative Autonomic Nervous System Homeostasis. Journal of Clinical Monitoring and Computing, 38, 1305-1313. https://doi.org/10.1007/s10877-024-01190-x
|
[46]
|
Grossman, P. and Taylor, E.W. (2007) Toward Understanding Respiratory Sinus Arrhythmia: Relations to Cardiac Vagal Tone, Evolution and Biobehavioral Functions. Biological Psychology, 74, 263-285. https://doi.org/10.1016/j.biopsycho.2005.11.014
|
[47]
|
Grossman, P. (2023) Fundamental Challenges and Likely Refutations of the Five Basic Premises of the Polyvagal Theory. Biological Psychology, 180, Article 108589. https://doi.org/10.1016/j.biopsycho.2023.108589
|
[48]
|
Charier, D., Vogler, M., Zantour, D., Pichot, V., Martins-Baltar, A., Courbon, M., et al. (2019) Assessing Pain in the Postoperative Period: Analgesia Nociception Indextm versus Pupillometry. British Journal of Anaesthesia, 123, e322-e327. https://doi.org/10.1016/j.bja.2018.09.031
|
[49]
|
Fratino, S., Peluso, L., Talamonti, M., Menozzi, M., Costa Hirai, L., Lobo, F., et al. (2021) Evaluation of Nociception Using Quantitative Pupillometry and Skin Conductance in Critically Ill Unconscious Patients: A Pilot Study. Brain Sciences, 11, 109. https://doi.org/10.3390/brainsci11010109
|
[50]
|
Upton, H.D., Ludbrook, G.L., Wing, A. and Sleigh, J.W. (2017) Intraoperative “Analgesia Nociception Index”—Guided Fentanyl Administration during Sevoflurane Anesthesia in Lumbar Discectomy and Laminectomy: A Randomized Clinical Trial. Anesthesia & Analgesia, 125, 81-90. https://doi.org/10.1213/ane.0000000000001984
|
[51]
|
Kim, M.K., Choi, G.J., Oh, K.S., Lee, S.P. and Kang, H. (2023) Pain Assessment Using the Analgesia Nociception Index (ANI) in Patients Undergoing General Anesthesia: A Systematic Review and Meta-Analysis. Journal of Personalized Medicine, 13, Article 1461. https://doi.org/10.3390/jpm13101461
|
[52]
|
Vinclair, M., Roudaud, F., Francony, G. and Payen, J. (2017) Quantitative Pupillometry to Assess Nociception in a Sedated Patient with Hemispheric Cerebral Infarction. European Journal of Anaesthesiology, 34, 316-318. https://doi.org/10.1097/eja.0000000000000548
|
[53]
|
Bornemann‐Cimenti, H., Lang‐Illievich, K., Kovalevska, K., Brenna, C.T.A. and Klivinyi, C. (2023) Effect of Nociception Level Index‐Guided Intra‐Operative Analgesia on Early Postoperative Pain and Opioid Consumption: A Systematic Review and Meta‐Analysis. Anaesthesia, 78, 1493-1501. https://doi.org/10.1111/anae.16148
|
[54]
|
Ledowski, T., Schneider, M., Gruenewald, M., Goyal, R.K., Teo, S.R. and Hruby, J. (2019) Surgical Pleth Index: Prospective Validation of the Score to Predict Moderate-to-Severe Postoperative Pain. British Journal of Anaesthesia, 123, e328-e332. https://doi.org/10.1016/j.bja.2018.10.066
|