[1]
|
杜尧, 马腾, 邓娅敏, 等. 潜流带水文-生物地球化学: 原理、方法及其生态意义[J]. 地球科学, 2017, 42(5): 661-673.
|
[2]
|
Sun, R., Dong, J., Li, Y., Li, P., Liu, Y., Liu, Y., et al. (2022) The Influence Research on Nitrogen Transport and Reaction in the Hyporheic Zone with an In-Stream Structure. International Journal of Environmental Research and Public Health, 19, Article 12695. https://doi.org/10.3390/ijerph191912695
|
[3]
|
Majeed, L.R., Majeed, L.F., Rashid, S., Bhat, S.A., Kumar, N. and Kumar, V. (2023) Intensification of Contaminants, Hydrology, and Pollution of Hyporheic Zone: The Liver of River Ecology—A Review. Environmental Sustainability, 7, 121-133. https://doi.org/10.1007/s42398-023-00290-9
|
[4]
|
Li, Y., Wang, S., Zhang, W., Yuan, J. and Xu, C. (2017) Potential Drivers of the Level and Distribution of Nitrogen in the Hyporheic Zone of Lake Taihu, China. Water, 9, Article 544. https://doi.org/10.3390/w9070544
|
[5]
|
Ward, A.S. (2015) The Evolution and State of Interdisciplinary Hyporheic Research. WIREs Water, 3, 83-103. https://doi.org/10.1002/wat2.1120
|
[6]
|
苏小四, 师亚坤, 董维红, 等. 潜流带生物地球化学特征研究进展[J]. 地球科学与环境学报, 2019, 41(3): 337-351.
|
[7]
|
Ranalli, A.J. and Macalady, D.L. (2010) The Importance of the Riparian Zone and In-Stream Processes in Nitrate Attenuation in Undisturbed and Agricultural Watersheds—A Review of the Scientific Literature. Journal of Hydrology, 389, 406-415. https://doi.org/10.1016/j.jhydrol.2010.05.045
|
[8]
|
Falkowski, P.G., Fenchel, T. and Delong, E.F. (2008) The Microbial Engines That Drive Earth’s Biogeochemical Cycles. Science, 320, 1034-1039. https://doi.org/10.1126/science.1153213
|
[9]
|
蔡奕, 邢婧文, 阮西科, 等, 河流潜流带氮素迁移转化数值模拟研究进展[J]. 水资源保护, 2023, 39(1): 181-189.
|
[10]
|
李辉, 徐新阳, 李培军, 等, 人工湿地中氨化细菌去除有机氮的效果[J]. 环境工程学报, 2008(8): 1044-1047.
|
[11]
|
Könneke, M., Bernhard, A.E., de la Torre, J.R., Walker, C.B., Waterbury, J.B. and Stahl, D.A. (2005) Isolation of an Autotrophic Ammonia-Oxidizing Marine Archaeon. Nature, 437, 543-546. https://doi.org/10.1038/nature03911
|
[12]
|
龚骏, 宋延静, 张晓黎. 海岸带沉积物中氮循环功能微生物多样性[J]. 生物多样性, 2013, 21(4): 434-445.
|
[13]
|
Ward, B.B., Devol, A.H., Rich, J.J., Chang, B.X., Bulow, S.E., Naik, H., et al. (2009) Denitrification as the Dominant Nitrogen Loss Process in the Arabian Sea. Nature, 461, 78-81. https://doi.org/10.1038/nature08276
|
[14]
|
Rysgaard, S., Glud, R.N., Risgaard-Petersen, N. and Dalsgaard, T. (2004) Denitrification and Anammox Activity in Arctic Marine Sediments. Limnology and Oceanography, 49, 1493-1502. https://doi.org/10.4319/lo.2004.49.5.1493
|
[15]
|
Kuypers, M.M.M., Marchant, H.K. and Kartal, B. (2018) The Microbial Nitrogen-Cycling Network. Nature Reviews Microbiology, 16, 263-276. https://doi.org/10.1038/nrmicro.2018.9
|
[16]
|
沈仁芳, 赵学强. 土壤微生物在植物获得养分中的作用[J]. 生态学报, 2015, 35(20): 6584-6591.
|
[17]
|
Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., et al. (2021) Nitrogen Fixing Azotobacter Species as Potential Soil Biological Enhancers for Crop Nutrition and Yield Stability. Frontiers in Microbiology, 12, Article 628379. https://doi.org/10.3389/fmicb.2021.628379
|
[18]
|
Vymazal, J. (2010) Constructed Wetlands for Wastewater Treatment. Water, 2, 530-549. https://doi.org/10.3390/w2030530
|
[19]
|
包涛涛, 李丝雨, 王一, 等. 根系-菌根-土壤微生物对毛竹林土壤氮矿化过程的贡献[J]. 生态学杂, 2024, 43(5): 1234-1242.
|
[20]
|
Vymazal, J. (2007) Removal of Nutrients in Various Types of Constructed Wetlands. Science of the Total Environment, 380, 48-65. https://doi.org/10.1016/j.scitotenv.2006.09.014
|
[21]
|
王嘉文, 吴刚, 徐云敏. 谷氨酰胺合成酶在植物氮同化及再利用中的研究进展[J]. 分子植物育种, 2019, 17(4): 1373-1377.
|
[22]
|
Wongkiew, S., Hu, Z., Chandran, K., Lee, J.W. and Khanal, S.K. (2017) Nitrogen Transformations in Aquaponic Systems: A Review. Aquacultural Engineering, 76, 9-19. https://doi.org/10.1016/j.aquaeng.2017.01.004
|
[23]
|
潘红, 冯浩杰, 娄燕宏, 等. 农田土壤硝化微生物的生态学研究进展[J]. 土壤通报, 2023, 54(3): 750-756.
|
[24]
|
Verbaendert, I., De Vos, P., Boon, N. and Heylen, K. (2011) Denitrification in Gram-Positive Bacteria: An Underexplored Trait. Biochemical Society Transactions, 39, 254-258. https://doi.org/10.1042/bst0390254
|
[25]
|
Zumft, W.G. (1997) Cell Biology and Molecular Basis of Denitrification. Microbiology and Molecular Biology Reviews, 61, 533-616. https://doi.org/10.1128/.61.4.533-616.1997
|
[26]
|
Li, G., Yu, Y., Li, X., Jia, H., Ma, X. and Opoku, P.A. (2024) Research Progress of Anaerobic Ammonium Oxidation (Anammox) Process Based on Integrated Fixed-Film Activated Sludge (IFAS). Environmental Microbiology Reports, 16, e13235. https://doi.org/10.1111/1758-2229.13235
|
[27]
|
Ludwig, W. (2007) Nucleic Acid Techniques in Bacterial Systematics and Identification. International Journal of Food Microbiology, 120, 225-236. https://doi.org/10.1016/j.ijfoodmicro.2007.06.023
|
[28]
|
Ren, W., Wang, P., Yan, J., Liu, G., Zeng, B., Hussain, T., et al. (2017) Melatonin Alleviates Weanling Stress in Mice: Involvement of Intestinal Microbiota. Journal of Pineal Research, 64, e12448. https://doi.org/10.1111/jpi.12448
|
[29]
|
Chao, A. and Bunge, J. (2002) Estimating the Number of Species in a Stochastic Abundance Model. Biometrics, 58, 531-539. https://doi.org/10.1111/j.0006-341x.2002.00531.x
|
[30]
|
Jo, J., Oh, J. and Park, C. (2020) Microbial Community Analysis Using High-Throughput Sequencing Technology: A Beginner’s Guide for Microbiologists. Journal of Microbiology, 58, 176-192. https://doi.org/10.1007/s12275-020-9525-5
|
[31]
|
Zengler, K., Toledo, G., Rappé, M., Elkins, J., Mathur, E.J., Short, J.M., et al. (2002) Cultivating the Uncultured. Proceedings of the National Academy of Sciences, 99, 15681-15686. https://doi.org/10.1073/pnas.252630999
|
[32]
|
Wilson, K.H. and Blitchington, R.B. (1996) Human Colonic Biota Studied by Ribosomal DNA Sequence Analysis. Applied and Environmental Microbiology, 62, 2273-2278. https://doi.org/10.1128/aem.62.7.2273-2278.1996
|
[33]
|
Pernthaler, A., Pernthaler, J. and Amann, R. (2002) Fluorescence in Situ Hybridization and Catalyzed Reporter Deposition for the Identification of Marine Bacteria. Applied and Environmental Microbiology, 68, 3094-3101. https://doi.org/10.1128/aem.68.6.3094-3101.2002
|
[34]
|
Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Huntley, J., Fierer, N., et al. (2012) Ultra-High-Throughput Microbial Community Analysis on the Illumina HiSeq and MiSeq Platforms. The ISME Journal, 6, 1621-1624. https://doi.org/10.1038/ismej.2012.8
|
[35]
|
Willis, A., Bunge, J. and Whitman, T. (2016) Improved Detection of Changes in Species Richness in High Diversity Microbial Communities. Journal of the Royal Statistical Society Series C: Applied Statistics, 66, 963-977. https://doi.org/10.1111/rssc.12206
|
[36]
|
Davey, H.M. and Kell, D.B. (1996) Flow Cytometry and Cell Sorting of Heterogeneous Microbial Populations: The Importance of Single-Cell Analyses. Microbiological Reviews, 60, 641-696. https://doi.org/10.1128/mr.60.4.641-696.1996
|
[37]
|
Nkongolo, K.K. and Narendrula-Kotha, R. (2020) Advances in Monitoring Soil Microbial Community Dynamic and Function. Journal of Applied Genetics, 61, 249-263. https://doi.org/10.1007/s13353-020-00549-5
|
[38]
|
Nelson, W.C., Graham, E.B., Crump, A.R., Fansler, S.J., Arntzen, E.V., Kennedy, D.W., et al. (2020) Distinct Temporal Diversity Profiles for Nitrogen Cycling Genes in a Hyporheic Microbiome. PLOS ONE, 15, e0228165. https://doi.org/10.1371/journal.pone.0228165
|
[39]
|
Ren, J., Hu, H., Lu, X. and Yu, R. (2023) Water and Heat Exchange Responses to Flooding and Local Storm Events in the Hyporheic Zone Driven by a Meandering Bend. Science of the Total Environment, 883, Article 163732. https://doi.org/10.1016/j.scitotenv.2023.163732
|
[40]
|
Song, K., Lee, S., Mitsch, W.J. and Kang, H. (2010) Different Responses of Denitrification Rates and Denitrifying Bacterial Communities to Hydrologic Pulsing in Created Wetlands. Soil Biology and Biochemistry, 42, 1721-1727. https://doi.org/10.1016/j.soilbio.2010.06.007
|
[41]
|
周念清, 乙东泽, 蔡奕, 等. 感潮河岸潜流带非饱和土水分运移实验模拟研究[J]. 勘察科学技术, 2024(3): 8-13.
|
[42]
|
Austin, B.J. and Strauss, E.A. (2010) Nitrification and Denitrification Response to Varying Periods of Desiccation and Inundation in a Western Kansas Stream. Hydrobiologia, 658, 183-195. https://doi.org/10.1007/s10750-010-0462-x
|
[43]
|
Martínez-Espinosa, C., Sauvage, S., Al Bitar, A., Green, P.A., Vörösmarty, C.J. and Sánchez-Pérez, J.M. (2021) Denitrification in Wetlands: A Review towards a Quantification at Global Scale. Science of the Total Environment, 754, Article 142398. https://doi.org/10.1016/j.scitotenv.2020.142398
|
[44]
|
Chen, J., Luo, M., Ma, R., Zhou, H., Zou, S. and Gan, Y. (2020) Nitrate Distribution under the Influence of Seasonal Hydrodynamic Changes and Human Activities in Huixian Karst Wetland, South China. Journal of Contaminant Hydrology, 234, Article 103700. https://doi.org/10.1016/j.jconhyd.2020.103700
|
[45]
|
Haque, M.A., Jewel, M.A.S., Atique, U., Paul, A.K., Naher, N. and Iqbal, S. (2020) Seasonal and Spatial Variation of Flagellate Communities in a Tropical River. Limnologica, 85, Article 125824. https://doi.org/10.1016/j.limno.2020.125824
|
[46]
|
Xu, T., Shen, Y., Ding, Z. and Zhu, B. (2023) Seasonal Dynamics of Microbial Communities in Rhizosphere and Bulk Soils of Two Temperate Forests. Rhizosphere, 25, Article 100673. https://doi.org/10.1016/j.rhisph.2023.100673
|
[47]
|
Green, C.T., Puckett, L.J., Böhlke, J.K., Bekins, B.A., Phillips, S.P., Kauffman, L.J., et al. (2008) Limited Occurrence of Denitrification in Four Shallow Aquifers in Agricultural Areas of the United States. Journal of Environmental Quality, 37, 994-1009. https://doi.org/10.2134/jeq2006.0419
|
[48]
|
Reddy, K.R. and D’Angelo, E.M. (1997) Biogeochemical Indicators to Evaluate Pollutant Removal Efficiency in Constructed Wetlands. Water Science and Technology, 35, 1-10. https://doi.org/10.2166/wst.1997.0152
|
[49]
|
Wang, H., Chen, F., Zhang, C., Wang, M. and Kan, J. (2021) Estuarine Gradients Dictate Spatiotemporal Variations of Microbiome Networks in the Chesapeake Bay. Environmental Microbiome, 16, Article No. 22. https://doi.org/10.1186/s40793-021-00392-z
|
[50]
|
Colby, G.A., Ruuskanen, M.O., St.Pierre, K.A., St.Louis, V.L., Poulain, A.J. and Aris-Brosou, S. (2020) Warming Climate Is Reducing the Diversity of Dominant Microbes in the Largest High Arctic Lake. Frontiers in Microbiology, 11, Article 561194. https://doi.org/10.3389/fmicb.2020.561194
|
[51]
|
Rivett, M.O., Buss, S.R., Morgan, P., Smith, J.W.N. and Bemment, C.D. (2008) Nitrate Attenuation in Groundwater: A Review of Biogeochemical Controlling Processes. Water Research, 42, 4215-4232. https://doi.org/10.1016/j.watres.2008.07.020
|
[52]
|
Fierer, N., Morse, J.L., Berthrong, S.T., Bernhardt, E.S. and Jackson, R.B. (2007) Environmental Controls on the Landscape-Scale Biogeography of Stream Bacterial Communities. Ecology, 88, 2162-2173. https://doi.org/10.1890/06-1746.1
|
[53]
|
Tietz, A., Kirschner, A., Langergraber, G., Sleytr, K. and Haberl, R. (2007) Characterisation of Microbial Biocoenosis in Vertical Subsurface Flow Constructed Wetlands. Science of the Total Environment, 380, 163-172. https://doi.org/10.1016/j.scitotenv.2006.11.034
|
[54]
|
Cai, Y., Xing, J., Huang, R., Ruan, X., Zhou, N. and Yi, D. (2022) Occurrence Characteristics of Inorganic Nitrogen in Groundwater in Silty-Clay Riparian Hyporheic Zones under Tidal Action: A Case Study of the Jingzi River in Shanghai, China. Applied Sciences, 12, Article 7704. https://doi.org/10.3390/app12157704
|
[55]
|
Lin, Y., Jing, S., Lee, D. and Wang, T. (2002) Nutrient Removal from Aquaculture Wastewater Using a Constructed Wetlands System. Aquaculture, 209, 169-184. https://doi.org/10.1016/s0044-8486(01)00801-8
|
[56]
|
李勇, 张维维, 袁佳慧, 等. 潜流带水流特性及氮素运移转化研究进展[J]. 河海大学学报(自然科学版), 2016, 44(1): 1-7.
|
[57]
|
Findlay, S. (1995) Importance of Surface-Subsurface Exchange in Stream Ecosystems: The Hyporheic Zone. Limnology and Oceanography, 40, 159-164. https://doi.org/10.4319/lo.1995.40.1.0159
|
[58]
|
Bourke, S.A., Cook, P.G., Shanafield, M., Dogramaci, S. and Clark, J.F. (2014) Characterisation of Hyporheic Exchange in a Losing Stream Using Radon-222. Journal of Hydrology, 519, 94-105. https://doi.org/10.1016/j.jhydrol.2014.06.057
|
[59]
|
Stuyfzand, P.J. (2010) Hydrogeochemical Processes during Riverbank Filtration and Artificial Recharge of Polluted Surface Waters: Zonation, Identification, and Quantification. In: NATO Science for Peace and Security Series C: Environmental Security, Springer, 97-128. https://doi.org/10.1007/978-94-007-0026-0_7
|
[60]
|
Boulton, A.J., Datry, T., Kasahara, T., Mutz, M. and Stanford, J.A. (2010) Ecology and Management of the Hyporheic Zone: Stream-Groundwater Interactions of Running Waters and Their Floodplains. Journal of the North American Benthological Society, 29, 26-40. https://doi.org/10.1899/08-017.1
|
[61]
|
Storey, R.G., Williams, D.D. and Fulthorpe, R.R. (2004) Nitrogen Processing in the Hyporheic Zone of a Pastoral Stream. Biogeochemistry, 69, 285-313. https://doi.org/10.1023/b:biog.0000031049.95805.ec
|
[62]
|
Ward, A.S., Fitzgerald, M., Gooseff, M.N., Voltz, T.J., Binley, A.M. and Singha, K. (2012) Hydrologic and Geomorphic Controls on Hyporheic Exchange during Base Flow Recession in a Headwater Mountain Stream. Water Resources Research, 48, Article W04513. https://doi.org/10.1029/2011wr011461
|
[63]
|
Riley, A.J. and Dodds, W.K. (2013) Whole-Stream Metabolism: Strategies for Measuring and Modeling Diel Trends of Dissolved Oxygen. Freshwater Science, 32, 56-69. https://doi.org/10.1899/12-058.1
|
[64]
|
Flemming, H. and Wingender, J. (2010) The Biofilm Matrix. Nature Reviews Microbiology, 8, 623-633. https://doi.org/10.1038/nrmicro2415
|
[65]
|
Schilling, K. and Zhang, Y. (2004) Baseflow Contribution to Nitrate-Nitrogen Export from a Large, Agricultural Watershed, USA. Journal of Hydrology, 295, 305-316. https://doi.org/10.1016/j.jhydrol.2004.03.010
|
[66]
|
Shan, J., Yang, P., Shang, X., Rahman, M.M. and Yan, X. (2018) Anaerobic Ammonium Oxidation and Denitrification in a Paddy Soil as Affected by Temperature, pH, Organic Carbon, and Substrates. Biology and Fertility of Soils, 54, 341-348. https://doi.org/10.1007/s00374-018-1263-z
|
[67]
|
李勇, 单雅洁, 李娜, 等. 太湖潜流带有机质含量对硝酸盐还原途径的影响[J]. 河海大学学报(自然科学版), 2022, 50(1): 44-51.
|
[68]
|
Pescimoro, E., Boano, F., Sawyer, A.H. and Soltanian, M.R. (2019) Modeling Influence of Sediment Heterogeneity on Nutrient Cycling in Streambeds. Water Resources Research, 55, 4082-4095. https://doi.org/10.1029/2018wr024221
|
[69]
|
Liu, S. and Chui, T.F.M. (2019) Numerical Modelling to Evaluate the Nitrogen Removal Rate in Hyporheic Zone and Its Implications for Stream Management. Hydrological Processes, 33, 3084-3097. https://doi.org/10.1002/hyp.13548
|
[70]
|
Andersen, T.K., Jensen, M.H. and Srensen, J. (1984) Diurnal Variation of Nitrogen Cycling in Coastal, Marine Sediments. Marine Biology, 83, 171-176. https://doi.org/10.1007/bf00394725
|
[71]
|
Herrman, K.S., Bouchard, V. and Moore, R.H. (2007) Factors Affecting Denitrification in Agricultural Headwater Streams in Northeast Ohio, USA. Hydrobiologia, 598, 305-314. https://doi.org/10.1007/s10750-007-9164-4
|
[72]
|
周念清, 李章平, 李丹, 等. 西洞庭湖湿地Eh与pH空间变异特征及影响因子分析[J]. 地球科学与环境学报, 2016, 38(1): 126-133.
|
[73]
|
周念清, 赵姗, 沈新平. 天然湿地演替带氮循环研究进展[J]. 科学通报, 2014, 59(18): 1688-1699.
|
[74]
|
Allison, S.D. and Martiny, J.B.H. (2008) Resistance, Resilience, and Redundancy in Microbial Communities. Proceedings of the National Academy of Sciences, 105, 11512-11519. https://doi.org/10.1073/pnas.0801925105
|
[75]
|
Zhang, L., Guo, L., Cui, Z. and Ju, F. (2024) Exploiting Predatory Bacteria as Biocontrol Agents across Ecosystems. Trends in Microbiology, 32, 398-409. https://doi.org/10.1016/j.tim.2023.10.005
|
[76]
|
Lai, T.F., Ford, R.M. and Huwiler, S.G. (2023) Advances in Cellular and Molecular Predatory Biology of Bdellovibrio Bacteriovorus Six Decades after Discovery. Frontiers in Microbiology, 14, Article 1168709. https://doi.org/10.3389/fmicb.2023.1168709
|
[77]
|
Contreras-Moreno, F.J., Pérez, J., Muñoz-Dorado, J., Moraleda-Muñoz, A. and Marcos-Torres, F.J. (2024) Myxococcus Xanthus Predation: An Updated Overview. Frontiers in Microbiology, 15, Article 1339696. https://doi.org/10.3389/fmicb.2024.1339696
|
[78]
|
Stief, P. (2013) Stimulation of Microbial Nitrogen Cycling in Aquatic Ecosystems by Benthic Macrofauna: Mechanisms and Environmental Implications. Biogeosciences, 10, 7829-7846. https://doi.org/10.5194/bg-10-7829-2013
|
[79]
|
Gribsholt, B., Kostka, J. and Kristensen, E. (2003) Impact of Fiddler Crabs and Plant Roots on Sediment Biogeochemistry in a Georgia Saltmarsh. Marine Ecology Progress Series, 259, 237-251. https://doi.org/10.3354/meps259237
|
[80]
|
Cao, D., Shi, F., Koike, T., Lu, Z. and Sun, J. (2014) Halophyte Plant Communities Affecting Enzyme Activity and Microbes in Saline Soils of the Yellow River Delta in China. Clean—Soil, Air, Water, 42, 1433-1440. https://doi.org/10.1002/clen.201300007
|
[81]
|
Karlowsky, S., Augusti, A., Ingrisch, J., Akanda, M.K.U., Bahn, M. and Gleixner, G. (2018) Drought-Induced Accumulation of Root Exudates Supports Post-Drought Recovery of Microbes in Mountain Grassland. Frontiers in Plant Science, 9, Article 1593. https://doi.org/10.3389/fpls.2018.01593
|