[1]
|
Wang, J. and Azam, W. (2024) Natural Resource Scarcity, Fossil Fuel Energy Consumption, and Total Greenhouse Gas Emissions in Top Emitting Countries. Geoscience Frontiers, 15, Article 101757. https://doi.org/10.1016/j.gsf.2023.101757
|
[2]
|
Abbasi, K.R., Shahbaz, M., Zhang, J., Irfan, M. and Alvarado, R. (2022) Analyze the Environmental Sustainability Factors of China: The Role of Fossil Fuel Energy and Renewable Energy. Renewable Energy, 187, 390-402. https://doi.org/10.1016/j.renene.2022.01.066
|
[3]
|
Schleussner, C., Ganti, G., Rogelj, J. and Gidden, M.J. (2022) An Emission Pathway Classification Reflecting the Paris Agreement Climate Objectives. Communications Earth & Environment, 3, Article No. 135. https://doi.org/10.1038/s43247-022-00467-w
|
[4]
|
Krogh, A., Junginger, M., Shen, L., Grue, J. and Pedersen, T.H. (2024) Climate Change Impacts of Bioenergy Technologies: A Comparative Consequential LCA of Sustainable Fuels Production with CCUS. Science of the Total Environment, 940, Article 173660. https://doi.org/10.1016/j.scitotenv.2024.173660
|
[5]
|
Kätelhön, A., Meys, R., Deutz, S., Suh, S. and Bardow, A. (2019) Climate Change Mitigation Potential of Carbon Capture and Utilization in the Chemical Industry. Proceedings of the National Academy of Sciences, 116, 11187-11194. https://doi.org/10.1073/pnas.1821029116
|
[6]
|
Desport, L. and Selosse, S. (2022) An Overview of CO2 Capture and Utilization in Energy Models. Resources, Conservation and Recycling, 180, Article 106150. https://doi.org/10.1016/j.resconrec.2021.106150
|
[7]
|
Hou, R., Fong, C., Freeman, B.D., Hill, M.R. and Xie, Z. (2022) Current Status and Advances in Membrane Technology for Carbon Capture. Separation and Purification Technology, 300, Article 121863. https://doi.org/10.1016/j.seppur.2022.121863
|
[8]
|
Jiang, L., Liu, W., Wang, R.Q., Gonzalez-Diaz, A., Rojas-Michaga, M.F., Michailos, S., et al. (2023) Sorption Direct Air Capture with CO2 Utilization. Progress in Energy and Combustion Science, 95, Article 101069. https://doi.org/10.1016/j.pecs.2022.101069
|
[9]
|
Dong, Y., Wu, H., Yang, F. and Gray, S. (2022) Cost and Efficiency Perspectives of Ceramic Membranes for Water Treatment. Water Research, 220, Article 118629. https://doi.org/10.1016/j.watres.2022.118629
|
[10]
|
Imtiaz, A., Othman, M.H.D., Jilani, A., Khan, I.U., Kamaludin, R. and Samuel, O. (2022) ZIF-Filler Incorporated Mixed Matrix Membranes (MMMs) for Efficient Gas Separation: A Review. Journal of Environmental Chemical Engineering, 10, Article 108541. https://doi.org/10.1016/j.jece.2022.108541
|
[11]
|
Dai, Y., Niu, Z., Luo, W., Wang, Y., Mu, P. and Li, J. (2023) A Review on the Recent Advances in Composite Membranes for CO2 Capture Processes. Separation and Purification Technology, 307, Article 122752. https://doi.org/10.1016/j.seppur.2022.122752
|
[12]
|
Ding, R., Wang, Q., Ruan, X., Dai, Y., Li, X., Zheng, W., et al. (2022) Novel and Versatile PEI Modified ZIF-8 Hollow Nanotubes to Construct CO2 Facilitated Transport Pathway in MMMs. Separation and Purification Technology, 289, Article 120768. https://doi.org/10.1016/j.seppur.2022.120768
|
[13]
|
Shah Buddin, M.M.H. and Ahmad, A.L. (2021) A Review on Metal-Organic Frameworks as Filler in Mixed Matrix Membrane: Recent Strategies to Surpass Upper Bound for CO2 Separation. Journal of CO2 Utilization, 51, Article 101616. https://doi.org/10.1016/j.jcou.2021.101616
|
[14]
|
Ahmad, M.Z., Martin-Gil, V., Supinkova, T., Lambert, P., Castro-Muñoz, R., Hrabanek, P., et al. (2021) Novel MMM Using CO2 Selective SSZ-16 and High-Performance 6FDA-Polyimide for CO2/CH4 Separation. Separation and Purification Technology, 254, Article 117582. https://doi.org/10.1016/j.seppur.2020.117582
|
[15]
|
Torres, A., Soto, C., Carmona, F.J., Simorte, M.T., Sanz, I., Muñoz, R., et al. (2024) Enhancing Permeability: Unraveling the Potential of Microporous Organic Polymers in Mixed Matrix Membranes. ACS Applied Polymer Materials, 6, 9088-9098. https://doi.org/10.1021/acsapm.4c01379
|
[16]
|
Zheng, W., Ding, R., Dai, Y., Ruan, X., Li, X., Jiang, X., et al. (2023) Regulating the Pore Engineering of MOFs by the Confined Dissolving of PSA Template to Improve CO2 Capture. Journal of Membrane Science, 670, Article 121373. https://doi.org/10.1016/j.memsci.2023.121373
|
[17]
|
Shin, J.E., Lee, S.K., Cho, Y.H. and Park, H.B. (2019) Effect of PEG-MEA and Graphene Oxide Additives on the Performance of Pebax 1657 Mixed Matrix Membranes for CO2 Separation. Journal of Membrane Science, 572, 300-308. https://doi.org/10.1016/j.memsci.2018.11.025
|
[18]
|
Karahan, H.E., Goh, K., Zhang, C., Yang, E., Yıldırım, C., Chuah, C.Y., et al. (2020) MXene Materials for Designing Advanced Separation Membranes. Advanced Materials, 32, Article 1906697. https://doi.org/10.1002/adma.201906697
|
[19]
|
Pazani, F., Salehi Maleh, M., Shariatifar, M., Jalaly, M., Sadrzadeh, M. and Rezakazemi, M. (2022) Engineered Graphene-Based Mixed Matrix Membranes to Boost CO2 Separation Performance: Latest Developments and Future Prospects. Renewable and Sustainable Energy Reviews, 160, Article 112294. https://doi.org/10.1016/j.rser.2022.112294
|
[20]
|
Liang, Y., Yu, C., Yang, X. and Qiao, Z. (2024) Preparation of Ultrathin and Highly Loaded MOF Mixed Matrix Membranes with Honeycomb-Like Structure via Ordered Array Self-assembly. Chemical Engineering Journal, 485, Article 149749. https://doi.org/10.1016/j.cej.2024.149749
|
[21]
|
He, X., Huang, Y., An, M., Fu, J., Wu, D., Qi, S., et al. (2024) Electric-Field-Assisted Arrangement of Carbon Nanotube Inside PDMS Membrane Matrix for Efficient Bio-Ethanol Recovery via Pervaporation. Separation and Purification Technology, 334, Article 125952. https://doi.org/10.1016/j.seppur.2023.125952
|
[22]
|
Hassan, N.S., Jalil, A.A., Bahari, M.B., Khusnun, N.F., Aldeen, E.M.S., Mim, R.S., et al. (2023) A Comprehensive Review on Zeolite-Based Mixed Matrix Membranes for CO2/CH4 Separation. Chemosphere, 314, Article 137709. https://doi.org/10.1016/j.chemosphere.2022.137709
|
[23]
|
Dai, Y., Fang, T., Li, S., Wang, Y., Zhong, S., Su, W., et al. (2024) Mixed-Matrix Membranes Based on Semi-Oxidation MXene Modified G-C3N4 Nanosheet for Enhanced CO2 Separation. Separation and Purification Technology, 348, Article 127776. https://doi.org/10.1016/j.seppur.2024.127776
|
[24]
|
Chen, Z., Zhang, P., Wu, H., Sun, S., You, X., Yuan, B., et al. (2022) Incorporating Amino Acids Functionalized Graphene Oxide Nanosheets into Pebax Membranes for CO2 Separation. Separation and Purification Technology, 288, Article 120682. https://doi.org/10.1016/j.seppur.2022.120682
|
[25]
|
Ding, Y., Dai, Y., Wang, H., Yang, X., Yu, M., Zheng, W., et al. (2024) Synergistic Improvement in Gas Separation Performance of MMMs by Porogenic Action and Strong Molecular Forces of ZIF-93. Separation and Purification Technology, 345, Article 127214. https://doi.org/10.1016/j.seppur.2024.127214
|
[26]
|
戴欢涛, 游新秀, 徐浩亮, 等. 铁浸渍竹子生物炭吸附CO2特性研究[J]. 能源化工, 2023, 44(5): 10-15.
|
[27]
|
张学杨, 徐浩亮, 戴欢涛, 等. 微波辐照木质素浸渍生物炭吸附CO2性能[J]. 中国环境科学, 2023, 43(8): 4427-4436.
|
[28]
|
刘淑军, 李冬初, 黄晶, 等. 近30年来我国小麦和玉米秸秆资源时空变化特征及还田减肥潜力[J]. 中国农业科学, 2023, 56(16): 3140-3155.
|
[29]
|
Cao, L., Zhang, X., Xu, Y., Xiang, W., Wang, R., Ding, F., et al. (2022) Straw and Wood Based Biochar for CO2 Capture: Adsorption Performance and Governing Mechanisms. Separation and Purification Technology, 287, Article 120592. https://doi.org/10.1016/j.seppur.2022.120592
|
[30]
|
Ding, R., Li, Z., Dai, Y., Li, X., Ruan, X., Gao, J., et al. (2022) Boosting the CO2/N2 Selectivity of MMMs by Vesicle Shaped ZIF-8 with High Amino Content. Separation and Purification Technology, 298, Article 121594. https://doi.org/10.1016/j.seppur.2022.121594
|
[31]
|
Wang, H., Ding, Y., Ning, M., Yu, M., Zheng, W., Ruan, X., et al. (2023) Amino-functional CPL-1 with Abundant CO2-Philic Groups to Enhance MMM-Based CO2 Separation. Separation and Purification Technology, 322, Article 124227. https://doi.org/10.1016/j.seppur.2023.124227
|
[32]
|
Zhang, X., Gao, B., Fang, J., Zou, W., Dong, L., Cao, C., et al. (2019) Chemically Activated Hydrochar as an Effective Adsorbent for Volatile Organic Compounds (VOCs). Chemosphere, 218, 680-686. https://doi.org/10.1016/j.chemosphere.2018.11.144
|
[33]
|
Luo, W., Hou, D., Guan, P., Li, F., Wang, C., Li, H., et al. (2024) Pebax Membranes-Based on Different Two-Dimensional Materials for CO2 Capture: A Review. Separation and Purification Technology, 340, Article 126744. https://doi.org/10.1016/j.seppur.2024.126744
|
[34]
|
Lin, D., Xiao, L., Qin, W., Loy, D.A., Wu, Z., Chen, H., et al. (2022) Preparation, Characterization and Antioxidant Properties of Curcumin Encapsulated Chitosan/Lignosulfonate Micelles. Carbohydrate Polymers, 281, Article 119080. https://doi.org/10.1016/j.carbpol.2021.119080
|
[35]
|
谢丽梅, 韩欣妍, 刘亦嘉, 等. 纳米铁复合生物炭与砷在土壤中的共迁移行为[J]. 中国环境科学, 2025: 1-11. https://doi.org/10.19674/j.cnki.issn1000-6923.20250109.006, 2025-03-08.
|
[36]
|
Serrano-Lotina, A., Portela, R., Baeza, P., Alcolea-Rodriguez, V., Villarroel, M. and Ávila, P. (2023) Zeta Potential as a Tool for Functional Materials Development. Catalysis Today, 423, Article 113862. https://doi.org/10.1016/j.cattod.2022.08.004
|
[37]
|
曾子弱, 李凯, 李晓康, 等. 竹基生物炭制备方法及其对苯吸附的影响研究[J]. 北京大学学报(自然科学版), 2024: 1-13. https://doi.org/10.13209/j.0479-8023.2024.112, 2025-03-08.
|
[38]
|
孙晓, 石林, 张凰, 等. 不同温度玉米秸秆生物炭对eDNA的吸附机制[J]. 环境化学, 2024: 1-10. http://kns.cnki.net/kcms/detail/11.1844.X.20241212.1012.002.html, 2025-03-08.
|
[39]
|
宁梦佳, 代岩, 郗元, 等. Cu(Qc)2强化Pebax混合基质膜分离CO2 [J]. 化工进展, 2021, 40(10): 5652-5659.
|
[40]
|
赵烨, 丘晓琳, 王杰, 等. 胺化木质素磺酸钠插层水滑石/Pebax混合基质膜的制备及气体分离性能研究[J]. 化工新型材料, 2024, 52(3): 102-108.
|
[41]
|
Du, X., Feng, S., Luo, J., Zhuang, Y., Song, W., Li, X., et al. (2023) Pebax Mixed Matrix Membrane with Bimetallic CeZr-MOFs to Enhance CO2 Separation. Separation and Purification Technology, 322, Article 124251. https://doi.org/10.1016/j.seppur.2023.124251
|
[42]
|
Zhao, D., Ren, J., Qiu, Y., Li, H., Hua, K., Li, X., et al. (2015) Effect of Graphene Oxide on the Behavior of Poly(Amide-6-b-ethylene Oxide)/Graphene Oxide Mixed-Matrix Membranes in the Permeation Process. Journal of Applied Polymer Science, 132. https://doi.org/10.1002/app.42624
|
[43]
|
Feng, L., Zhang, Q., Su, J., Ma, B., Wan, Y., Zhong, R., et al. (2023) Graphene-Oxide-Modified Metal-Organic Frameworks Embedded in Mixed-Matrix Membranes for Highly Efficient CO2/N2 Separation. Nanomaterials, 14, Article 24. https://doi.org/10.3390/nano14010024
|