[1]
|
Franz, C.M.A.P., den Besten, H.M.W., Böhnlein, C., Gareis, M., Zwietering, M.H. and Fusco, V. (2018) Microbial Food Safety in the 21st Century: Emerging Challenges and Foodborne Pathogenic Bacteria. Trends in Food Science & Technology, 81, 155-158. https://doi.org/10.1016/j.tifs.2018.09.019
|
[2]
|
Abdallah, M., Benoliel, C., Drider, D., Dhulster, P. and Chihib, N. (2014) Biofilm Formation and Persistence on Abiotic Surfaces in the Context of Food and Medical Environments. Archives of Microbiology, 196, 453-472. https://doi.org/10.1007/s00203-014-0983-1
|
[3]
|
Somda, N.S., Tankoano, A., Métuor-Dabiré, A., Kaboré, D., Bonkoungou, J.O.I., Kpoda, D.S., et al. (2023) A Systematic Review and Meta-Analysis of Antibiotic Resistance of Foodborne Pathogenic Bacteria in West Africa between 2010 and 2020. Journal of Food Protection, 86, Article 100061. https://doi.org/10.1016/j.jfp.2023.100061
|
[4]
|
Petrucci, S., Costa, C., Broyles, D., Dikici, E., Daunert, S. and Deo, S. (2021) On-Site Detection of Food and Waterborne Bacteria—Current Technologies, Challenges, and Future Directions. Trends in Food Science & Technology, 115, 409-421. https://doi.org/10.1016/j.tifs.2021.06.054
|
[5]
|
Beuchat, L.R., Kim, H., Gurtler, J.B., Lin, L., Ryu, J. and Richards, G.M. (2009) Cronobacter Sakazakii in Foods and Factors Affecting Its Survival, Growth, and Inactivation. International Journal of Food Microbiology, 136, 204-213. https://doi.org/10.1016/j.ijfoodmicro.2009.02.029
|
[6]
|
Zhong, D., Wang, Z., Ye, Z., Wang, Y. and Cai, X. (2024) Cancer-Derived Exosomes as Novel Biomarkers in Metastatic Gastrointestinal Cancer. Molecular Cancer, 23, Article No. 67. https://doi.org/10.1186/s12943-024-01948-6
|
[7]
|
Huang, J., Lucero-Prisno, D.E., Zhang, L., Xu, W., Wong, S.H., Ng, S.C., et al. (2023) Updated Epidemiology of Gastrointestinal Cancers in East Asia. Nature Reviews Gastroenterology & Hepatology, 20, 271-287. https://doi.org/10.1038/s41575-022-00726-3
|
[8]
|
LaCourse, K.D., Johnston, C.D. and Bullman, S. (2021) The Relationship between Gastrointestinal Cancers and the Microbiota. The Lancet Gastroenterology & Hepatology, 6, 498-509. https://doi.org/10.1016/s2468-1253(20)30362-9
|
[9]
|
Kazemi, Y., Dehghani, S., Nosrati, R., Taghdisi, S.M., Abnous, K., Alibolandi, M., et al. (2022) Recent Progress in the Early Detection of Cancer Based on CD44 Biomarker; Nano-Biosensing Approaches. Life Sciences, 300, Article 120593. https://doi.org/10.1016/j.lfs.2022.120593
|
[10]
|
Gomari, M.M., Farsimadan, M., Rostami, N., Mahmoudi, Z., Fadaie, M., Farhani, I., et al. (2021) CD44 Polymorphisms and Its Variants, as an Inconsistent Marker in Cancer Investigations. Mutation Research/Reviews in Mutation Research, 787, Article 108374. https://doi.org/10.1016/j.mrrev.2021.108374
|
[11]
|
da Cunha, C.B., Klumpers, D.D., Koshy, S.T., Weaver, J.C., Chaudhuri, O., Seruca, R., et al. (2016) CD44 Alternative Splicing in Gastric Cancer Cells Is Regulated by Culture Dimensionality and Matrix Stiffness. Biomaterials, 98, 152-162. https://doi.org/10.1016/j.biomaterials.2016.04.016
|
[12]
|
Cheng, Q., Zheng, H., Li, M., Wang, H., Guo, X., Zheng, Z., et al. (2022) LGR4 Cooperates with PrPc to Endow the Stemness of Colorectal Cancer Stem Cells Contributing to Tumorigenesis and Liver Metastasis. Cancer Letters, 540, Article 215725. https://doi.org/10.1016/j.canlet.2022.215725
|
[13]
|
Ikenaga, N., Ohuchida, K., Mizumoto, K., Cui, L., Kayashima, T., Morimatsu, K., et al. (2010) CD10+ Pancreatic Stellate Cells Enhance the Progression of Pancreatic Cancer. Gastroenterology, 139, 1041-1051.E8. https://doi.org/10.1053/j.gastro.2010.05.084
|
[14]
|
Artells, R., Moreno, I., Díaz, T., Martínez, F., Gel, B., Navarro, A., et al. (2010) Tumour CD133 mRNA Expression and Clinical Outcome in Surgically Resected Colorectal Cancer Patients. European Journal of Cancer, 46, 642-649. https://doi.org/10.1016/j.ejca.2009.11.003
|
[15]
|
Sanderson, E., Glymour, M.M., Holmes, M.V., Kang, H., Morrison, J., Munafò, M.R., et al. (2022) Mendelian Randomization. Nature Reviews Methods Primers, 2, Article No. 6. https://doi.org/10.1038/s43586-021-00092-5
|
[16]
|
Wang, H., Reid, B.M., Richmond, R.C., Lane, J.M., Saxena, R., Gonzalez, B.D., et al. (2024) Impact of Insomnia on Ovarian Cancer Risk and Survival: A Mendelian Randomization Study. eBioMedicine, 104, Article 105175. https://doi.org/10.1016/j.ebiom.2024.105175
|
[17]
|
Zhang, C., Jian, L., Li, X., Guo, W., Deng, W., Hu, X., et al. (2024) Mendelian Randomization Analysis of the Brain, Cerebrospinal Fluid, and Plasma Proteome Identifies Potential Drug Targets for Attention Deficit Hyperactivity Disorder. eBioMedicine, 105, Article 105197. https://doi.org/10.1016/j.ebiom.2024.105197
|
[18]
|
Kurki, M.I., Karjalainen, J., Palta, P., Sipilä, T.P., Kristiansson, K., Donner, K.M., et al. (2023) FinnGen Provides Genetic Insights from a Well-Phenotyped Isolated Population. Nature, 613, 508-518. https://doi.org/10.1038/s41586-022-05473-8
|
[19]
|
Elsworth, B., Lyon, M., Alexander, T., Liu, Y., Matthews, P., Hallett, J., et al. (2020) The MRC IEU OpenGWAS Data Infrastructure. Preprint. https://doi.org/10.1101/2020.08.10.244293
|
[20]
|
Sun, B.B., Maranville, J.C., Peters, J.E., Stacey, D., Staley, J.R., Blackshaw, J., et al. (2018) Genomic Atlas of the Human Plasma Proteome. Nature, 558, 73-79. https://doi.org/10.1038/s41586-018-0175-2
|
[21]
|
Boef, A.G.C., Dekkers, O.M. and Le Cessie, S. (2015) Mendelian Randomization Studies: A Review of the Approaches Used and the Quality of Reporting. International Journal of Epidemiology, 44, 496-511. https://doi.org/10.1093/ije/dyv071
|
[22]
|
Uche-Ikonne, O., Dondelinger, F. and Palmer, T. (2020) Software Application Profile: Bayesian Estimation of Inverse Variance Weighted and MR-Egger Models for Two-Sample Mendelian Randomization Studies—Mrbayes. International Journal of Epidemiology, 50, 43-49. https://doi.org/10.1093/ije/dyaa191
|
[23]
|
Mishra, Y., Ranjan, A., Mishra, V., Chattaraj, A., Aljabali, A.A.A., El-Tanani, M., et al. (2024) The Role of the Gut Microbiome in Gastrointestinal Cancers. Cellular Signalling, 115, Article 111013. https://doi.org/10.1016/j.cellsig.2023.111013
|
[24]
|
Cheng, S., Han, Z., Dai, D., Li, F., Zhang, X., Lu, M., et al. (2024) Multi-Omics of the Gut Microbial Ecosystem in Patients with Microsatellite-Instability-High Gastrointestinal Cancer Resistant to Immunotherapy. Cell Reports Medicine, 5, Article 101355. https://doi.org/10.1016/j.xcrm.2023.101355
|
[25]
|
Zha, L., Garrett, S. and Sun, J. (2019) Salmonella Infection in Chronic Inflammation and Gastrointestinal Cancer. Diseases, 7, Article 28. https://doi.org/10.3390/diseases7010028
|
[26]
|
Yoo, H.W., Hong, S.J. and Kim, S.H. (2024) Helicobacter Pylori Treatment and Gastric Cancer Risk after Endoscopic Resection of Dysplasia: A Nationwide Cohort Study. Gastroenterology, 166, 313-322.E3. https://doi.org/10.1053/j.gastro.2023.10.013
|
[27]
|
Lia, Z., Wang, J., Wang, Z. and Xu, Y. (2023) Towards an Optimal Model for Gastric Cancer Peritoneal Metastasis: Current Challenges and Future Directions. eBioMedicine, 92, Article 104601. https://doi.org/10.1016/j.ebiom.2023.104601
|
[28]
|
Polk, D.B. and Peek, R.M. (2010) Helicobacter pylori: Gastric Cancer and Beyond. Nature Reviews Cancer, 10, 403-414. https://doi.org/10.1038/nrc2857
|
[29]
|
Shmuely, H., Passaro, D., Figer, A., Niv, Y., Pitlik, S., Samra, Z., et al. (2001) Relationship between Helicobacter pylori CagA Status and Colorectal Cancer. The American Journal of Gastroenterology, 96, 3406-3410.
|
[30]
|
Liu, L., Sheng, X., Shuai, T., Zhao, Y., Li, B. and Li, Y. (2018) Helicobacter pylori Promotes Invasion and Metastasis of Gastric Cancer by Enhancing Heparanase Expression. World Journal of Gastroenterology, 24, 4565-4577. https://doi.org/10.3748/wjg.v24.i40.4565
|
[31]
|
Chan, A.O. (2003) Promoter Methylation of E-Cadherin Gene in Gastric Mucosa Associated with Helicobacter Pylori Infection and in Gastric Cancer. Gut, 52, 502-506. https://doi.org/10.1136/gut.52.4.502
|
[32]
|
Cebula, A.V. (2020) Yersinia-Mediated Colorectal Cancer Cell Death. MS Thesis, The University of Texas Health Science Center at San Antonio.
|
[33]
|
Wang, M., Song, X., Liu, X., Ma, C., Ma, J. and Shi, L. (2024) Engineered Oncolytic Bacteria for Malignant Solid Tumor Treatment. Interdisciplinary Medicine, 2, e20240005. https://doi.org/10.1002/inmd.20240005
|
[34]
|
Ji, J., Sundquist, J. and Sundquist, K. (2018) Cholera Vaccine Use Is Associated with a Reduced Risk of Death in Patients with Colorectal Cancer: A Population-Based Study. Gastroenterology, 154, 86-92.E1. https://doi.org/10.1053/j.gastro.2017.09.009
|
[35]
|
Doulberis, M., Angelopoulou, K., Kaldrymidou, E., Tsingotjidou, A., Abas, Z., Erdman, S.E., et al. (2014) Cholera-Toxin Suppresses Carcinogenesis in a Mouse Model of Inflammation-Driven Sporadic Colon Cancer. Carcinogenesis, 36, 280-290. https://doi.org/10.1093/carcin/bgu325
|
[36]
|
Viallet, J., Sharoni, Y., Frucht, H., Jensen, R.T., Minna, J.D. and Sausville, E.A. (1990) Cholera Toxin Inhibits Signal Transduction by Several Mitogens and the in Vitro Growth of Human Small-Cell Lung Cancer. Journal of Clinical Investigation, 86, 1904-1912. https://doi.org/10.1172/jci114923
|
[37]
|
Yusuf, K., Sampath, V. and Umar, S. (2023) Bacterial Infections and Cancer: Exploring This Association and Its Implications for Cancer Patients. International Journal of Molecular Sciences, 24, Article 3110.
|
[38]
|
Chen, C., Zhao, S., Karnad, A. and Freeman, J.W. (2018) The Biology and Role of CD44 in Cancer Progression: Therapeutic Implications. Journal of Hematology & Oncology, 11, Article No. 64. https://doi.org/10.1186/s13045-018-0605-5
|
[39]
|
Puré, E. and Cuff, C.A. (2001) A Crucial Role for CD44 in Inflammation. Trends in Molecular Medicine, 7, 213-221. https://doi.org/10.1016/s1471-4914(01)01963-3
|
[40]
|
Matsumura, Y. and Tarin, D. (1992) Significance of CD44 Gene Products for Cancer Diagnosis and Disease Evaluation. The Lancet, 340, 1053-1058. https://doi.org/10.1016/0140-6736(92)93077-z
|